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What Are Model Objects?

Model Objects Represent Linear Systems
In Control System Toolbox™, System Identification Toolbox, and Robust Control Toolbox™ software,
you represent linear systems as model objects. In System Identification Toolbox, you also represent
nonlinear models as model objects. Model objects are specialized data containers that encapsulate
model data and other attributes in a structured way. Model objects allow you to manipulate linear
systems as single entities rather than keeping track of multiple data vectors, matrices, or cell arrays.

Model objects can represent single-input, single-output (SISO) systems or multiple-input, multiple-
output (MIMO) systems. You can represent both continuous- and discrete-time linear systems.

The main families of model objects are:

• Numeric Models — Basic representation of linear systems with fixed numerical coefficients. This
family also includes identified models that have coefficients estimated with System Identification
Toolbox software.

• Generalized Models — Representations that combine numeric coefficients with tunable or
uncertain coefficients. Generalized models support tasks such as parameter studies or
compensator tuning.

About Model Data
The data encapsulated in your model object depends on the model type you use. For example:

• Transfer functions store the numerator and denominator coefficients
• State-space models store the A, B, C, and D matrices that describe the dynamics of the system
• PID controller models store the proportional, integral, and derivative gains

Other model attributes stored as model data include time units, names for the model inputs or
outputs, and time delays.

Note All model objects are MATLAB® objects, but working with them does not require a background
in object-oriented programming. To learn more about objects and object syntax, see “Role of Classes
in MATLAB”.

See Also

More About
• “Types of Model Objects” on page 1-4
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Types of Model Objects
The following diagram illustrates the relationships between the types of model objects in Control
System Toolbox, Robust Control Toolbox, and System Identification Toolbox software. Model types
that begin with id require System Identification Toolbox software. Model types that begin with u
require Robust Control Toolbox software. All other model types are available with Control System
Toolbox software.

The diagram illustrates the following two overlapping broad classifications of model object types:

1 Choosing Your System Identification Approach
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• Dynamic System Models vs. Static Models — In general, Dynamic System Models represent
systems that have internal dynamics, while Static Models represent static input/output
relationships.

• Numeric Models vs. Generalized Models — Numeric Models are the basic numeric
representation of linear systems with fixed coefficients. Generalized Models represent systems
with tunable or uncertain components.

See Also

More About
• “What Are Model Objects?” on page 1-3
• “Dynamic System Models” on page 1-6
• “Numeric Models” on page 1-8
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Dynamic System Models
Dynamic System Models generally represent systems that have internal dynamics or memory of past
states such as integrators, delays, transfer functions, and state-space models.

Most commands for analyzing linear systems, such as bode, margin, and linearSystemAnalyzer,
work on most Dynamic System Model objects. For Generalized Models, analysis commands use the
current value of tunable parameters and the nominal value of uncertain parameters. Commands that
generate response plots display random samples of uncertain models.

The following table lists the Dynamic System Models.

Model Family Model Types
Numeric LTI models — Basic numeric
representation of linear systems

tf
zpk
ss
frd
pid
pidstd
pid2
pidstd2

Sparse State-Space Models — Represent large
sparse state-space models

mechss
sparss

Identified LTI models — Representations of linear
systems with tunable coefficients, whose values
can be identified using measured input/output
data.

idtf
idss
idfrd
idgrey
idpoly
idproc

Identified nonlinear models — Representations of
nonlinear systems with tunable coefficients,
whose values can be identified using input/output
data. Limited support for commands that analyze
linear systems.

idnlarx
idnlhw
idnlgrey

Generalized LTI models — Representations of
systems that include tunable or uncertain
coefficients

genss
genfrd
uss
ufrd

Dynamic Control Design Blocks — Tunable,
uncertain, or switch analysis points for
constructing models of control systems

tunableGain
tunableTF
tunableSS
tunablePID

1 Choosing Your System Identification Approach
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Model Family Model Types
tunablePID2
ultidyn
udyn
AnalysisPoint

See Also

More About
• “Numeric Linear Time Invariant (LTI) Models” on page 1-8
• “Identified LTI Models” on page 1-8
• “Identified Nonlinear Models” on page 1-9
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Numeric Models

Numeric Linear Time Invariant (LTI) Models
Numeric LTI models are the basic numeric representation of linear systems or components of linear
systems. Use numeric LTI models for modeling dynamic components, such as transfer functions or
state-space models, whose coefficients are fixed, numeric values. You can use numeric LTI models for
linear analysis or control design tasks.

The following table summarizes the available types of numeric LTI models.

Model Type Description
tf Transfer function model in polynomial form
zpk Transfer function model in zero-pole-gain (factorized) form
ss State-space model
frd Frequency response data model
pid Parallel-form PID controller
pidstd Standard-form PID controller
pid2 Parallel-form two-degree-of-freedom (2-DOF) PID controller
pidstd2 Standard-form 2-DOF PID controller

Creating Numeric LTI Models

For information about creating numeric LTI models, see:

• “Transfer Functions” (Control System Toolbox)
• “State-Space Models” (Control System Toolbox)
• “Frequency Response Data (FRD) Models” (Control System Toolbox)
• “Proportional-Integral-Derivative (PID) Controllers” (Control System Toolbox)

Applications of Numeric LTI Models

You can use Numeric LTI models to represent block diagram components such as plant or sensor
dynamics. By connecting Numeric LTI models together, you can derive Numeric LTI models of block
diagrams. Use Numeric LTI models for most modeling, analysis, and control design tasks, including:

• Analyzing linear system dynamics using analysis commands such as bode, step, or impulse.
• Designing controllers for linear systems using the Control System Designer app or the PID

Tuner GUI (Control System Toolbox).
• Designing controllers using control design commands such as pidtune, rlocus, or lqr/lqg.

Identified LTI Models
Identified LTI Models represent linear systems with coefficients that are identified using measured
input/output data. You can specify initial values and constraints for the estimation of the coefficients.

The following table summarizes the available types of identified LTI models.

1 Choosing Your System Identification Approach
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Model Type Description
idtf Transfer function model in polynomial form, with identifiable

parameters
idss State-space model, with identifiable parameters
idpoly Polynomial input-output model, with identifiable parameters
idproc Continuous-time process model, with identifiable parameters
idfrd Frequency-response model, with identifiable parameters
idgrey Linear ODE (grey-box) model, with identifiable parameters

Identified Nonlinear Models
Identified Nonlinear Models represent nonlinear systems with coefficients that are identified using
measured input/output data. You can specify initial values and constraints for the estimation of the
coefficients.

The following table summarizes the available types of identified nonlinear models.

Model Type Description
idnlarx Nonlinear ARX model, with identifiable

parameters
idnlgrey Nonlinear ODE (grey-box) model, with

identifiable parameters
idnlhw Hammerstein-Wiener model, with identifiable

parameters

 Numeric Models
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About Identified Linear Models

What are IDLTI Models?
System Identification Toolbox software uses objects to represent a variety of linear and nonlinear
model structures. These linear model objects are collectively known as Identified Linear Time-
Invariant (IDLTI) models.

IDLTI models contain two distinct dynamic components:

• Measured component — Describes the relationship between the measured inputs and the
measured output (G)

• Noise component — Describes the relationship between the disturbances at the output and the
measured output (H)

Models that only have the noise component H are called time-series or signal models. Typically, you
create such models using time-series data that consist of one or more outputs y(t) with no
corresponding input.

The total output is the sum of the contributions from the measured inputs and the disturbances: y =
G u + H e, where u represents the measured inputs and e the disturbance. e(t) is modeled as zero-
mean Gaussian white noise with variance Λ. The following figure illustrates an IDLTI model.

When you simulate an IDLTI model, you study the effect of input u(t) (and possibly initial conditions)
on the output y(t). The noise e(t) is not considered. However, with finite-horizon prediction of the
output, both the measured and the noise components of the model contribute towards computation of
the (predicted) response.

One-step ahead prediction model corresponding to a linear identified model (y = Gu+He)

Measured and Noise Component Parameterizations
The various linear model structures provide different ways of parameterizing the transfer functions G
and H. When you construct an IDLTI model or estimate a model directly using input-output data, you
can configure the structure of both G and H, as described in the following table:

1 Choosing Your System Identification Approach
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Model Type Transfer Functions G and H Configuration Method
State space
model (idss)

Represents an identified state-space model
structure, governed by the equations:

ẋ = Ax + Bu + Ke
y = Cx + Du + e

where the transfer function between the
measured input u and output y is
G(s) = C(sI − A)−1B + D and the noise transfer
function is H(s) = C(sI − A)−1K + I.

Construction: Use idss to create a model,
specifying values of state-space matrices A, B,
C, D and K as input arguments (using NaNs to
denote unknown entries).

Estimation: Use ssest or n4sid, specifying
name-value pairs for various configurations,
such as, canonical parameterization of the
measured dynamics ('Form'/'canonical'),
denoting absence of feedthrough by fixing D to
zero ('Feedthrough'/false), and absence of
noise dynamics by fixing K to zero
('DisturbanceModel'/'none').

Polynomial
model
(idpoly)

Represents a polynomial model such as ARX,
ARMAX and BJ. An ARMAX model, for example,
uses the input-output equation Ay(t) = Bu(t)
+Ce(t), so that the measured transfer function
G is G(s) = A−1B, while the noise transfer
function is H(s) = A−1C.

The ARMAX model is a special configuration of
the general polynomial model whose governing
equation is:

Ay(t) = B
Fu(t) + C

De(t)

The autoregressive component, A, is common
between the measured and noise components.
The polynomials B and F constitute the
measured component while the polynomials C
and D constitute the noise component.

Construction: Use idpoly to create a model
using values of active polynomials as input
arguments. For example, to create an Output-
Error model which uses G = B/F as the
measured component and has a trivial noise
component (H = 1). enter:

y = idpoly([],B,[],[],F)

Estimation: Use the armax, arx, or bj,
specifying the orders of the polynomials as
input arguments. For example, bj requires you
to specify the orders of the B, C, D, and F
polynomials to construct a model with
governing equation

y(t) = B
Fu(t) + C

De(t)

Transfer
function
model (idtf)

Represents an identified transfer function
model, which has no dynamic elements to
model noise behavior. This object uses the
trivial noise model H(s) = I. The governing
equation is

y(t) = num
den u(t) + e(t)

Construction: Use idtf to create a model,
specifying values of the numerator and
denominator coefficients as input arguments.
The numerator and denominator vectors
constitute the measured component G =
num(s)/den(s). The noise component is fixed
to H = 1.

Estimation: Use tfest, specifying the number
of poles and zeros of the measured component
G.
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Model Type Transfer Functions G and H Configuration Method
Process
model
(idproc)

Represents a process model, which provides
options to represent the noise dynamics as
either first- or second-order ARMA process
(that is, H(s)= C(s)/A(s), where C(s) and A(s)
are monic polynomials of equal degree). The
measured component, G(s), is represented by a
transfer function expressed in pole-zero form.

For process (and grey-box) models, the noise
component is often treated as an on-demand
extension to an otherwise measured
component-centric representation. For these
models, you can add a noise component by
using the DisturbanceModel estimation
option. For example:

model = procest(data,'P1D')

estimates a model whose equation is:

y(s) = Kp
1

(Tp1s + 1)e−sTdu(s) + e(s) .

To add a second order noise component to the
model, use:

Options = procestOptions('DisturbanceModel','ARMA1');
model = procest(data,'P1D',Options);

This model has the equation:

y(s) = Kp
1

(Tp1s + 1)e−sTdu(s) +
1 + c1s
1 + d1se(s)

where the coefficients c1 and d1 parameterize
the noise component of the model. If you are
constructing a process model using the idproc
command, specify the structure of the
measured component using the Type input
argument and the noise component by using
the NoiseTF name-value pair. For example,

model = idproc('P1','Kp',1,'Tp1',1,'NoiseTF',...
struct('num',[1 0.1],'den',[1 0.5]))

creates the process model y(s) = 1/(s+1) u(s) +
(s + 0.1)/(s + 0.5) e(s)

Sometimes, fixing coefficients or specifying bounds on the parameters are not sufficient. For example,
you may have unrelated parameter dependencies in the model or parameters may be a function of a
different set of parameters that you want to identify exclusively. For example, in a mass-spring-
damper system, the A and B parameters both depend on the mass of the system. To achieve such
parameterization of linear models, you can use grey-box modeling where you establish the link
between the actual parameters and model coefficients by writing an ODE file. To learn more, see
“Grey-Box Model Estimation”.

Linear Model Estimation
You typically use estimation to create models in System Identification Toolbox. You execute one of the
estimation commands, specifying as input arguments the measured data, along with other inputs

1 Choosing Your System Identification Approach
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necessary to define the structure of a model. To illustrate, the following example uses the state-space
estimation command, ssest, to create a state space model. The first input argument data specifies
the measured input-output data. The second input argument specifies the order of the model.

sys = ssest(data,4)

The estimation function treats the noise variable e(t) as prediction error – the residual portion of the
output that cannot be attributed to the measured inputs. All estimation algorithms work to minimize a
weighted norm of e(t) over the span of available measurements. The weighting function is defined by
the nature of the noise transfer function H and the focus of estimation, such as simulation or
prediction error minimization.

Black Box (“Cold Start”) Estimation

In a black-box estimation, you only have to specify the order to configure the structure of the model.

sys = estimator(data,orders) 

where estimator is the name of an estimation command to use for the desired model type.

For example, you use tfest to estimate transfer function models, arx for ARX-structure polynomial
models, and procest for process models.

The first argument, data, is time- or frequency domain data represented as an iddata or idfrd
object. The second argument, orders, represents one or more numbers whose definitions depends
upon the model type:

• For transfer functions, orders refers to the number of poles and zeros.
• For state-space models, orders refers to the number of states.
• For process models, orders denotes the structural elements of a process model, such as, the

number of poles and presence of delay and integrator.

When working with the app, you specify the orders in the appropriate edit fields of corresponding
model estimation dialogs.

Structured Estimations

In some situations, you want to configure the structure of the desired model more closely than what
is achieved by simply specifying the orders. In such cases, you construct a template model and
configure its properties. You then pass that template model as an input argument to the estimation
commands in place of orders.

To illustrate, the following example assigns initial guess values to the numerator and the denominator
polynomials of a transfer function model, imposes minimum and maximum bounds on their estimated
values, and then passes the object to the estimator function.

% Initial guess for numerator
num = [1 2];
den = [1 2 1 1];
% Initial guess for the denominator 
sys = idtf(num,den);
% Set min bound on den coefficients to 0.1
sys.Structure.Denominator.Minimum = [1 0.1 0.1 0.1]; 
sysEstimated = tfest(data,sys); 

 About Identified Linear Models
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The estimation algorithm uses the provided initial guesses to kick-start the estimation and delivers a
model that respects the specified bounds.

You can use such a model template to also configure auxiliary model properties such as input/output
names and units. If the values of some of the model’s parameters are initially unknown, you can use
NaNs for them in the template.

Estimation Options

There are many options associated with a model’s estimation algorithm that configure the estimation
objective function, initial conditions and numerical search algorithm, among other things. For every
estimation command, estimator, there is a corresponding option command named
estimatorOptions. To specify options for a particular estimator command, such as tfest, use the
options command that corresponds to the estimation command, in this case, tfestOptions. The
options command returns an options set that you then pass as an input argument to the
corresponding estimation command.

For example, to estimate an Output-Error structure polynomial model, you use oe. To specify
simulation as the focus and lsqnonlin as the search method, you use oeOptions:

load iddata1 z1
Options = oeOptions('Focus','simulation','SearchMethod','lsqnonlin');
sys= oe(z1,[2 2 1],Options);

Information about the options used to create an estimated model is stored in the OptionsUsed field
of the model’s Report property. For more information, see “Estimation Report” on page 1-21.

See Also

More About
• “Types of Model Objects” on page 1-4
• “Available Linear Models” on page 1-19
• “About Identified Nonlinear Models” on page 11-2
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Linear Model Structures

About System Identification Toolbox Model Objects
Objects are instances of model classes. Each class is a blueprint that defines the following
information about your model:

• How the object stores data
• Which operations you can perform on the object

This toolbox includes nine classes for representing models. For example, idss represents linear
state-space models and idnlarx represents nonlinear ARX models. For a complete list of available
model objects, see “Available Linear Models” on page 1-19 and “Available Nonlinear Models” on
page 11-9.

Model properties define how a model object stores information. Model objects store information
about a model, such as the mathematical form of a model, names of input and output channels, units,
names and values of estimated parameters, parameter uncertainties, and estimation report. For
example, an idss model has an InputName property for storing one or more input channel names.

The allowed operations on an object are called methods. In System Identification Toolbox software,
some methods have the same name but apply to multiple model objects. For example, step creates a
step response plot for all dynamic system objects. However, other methods are unique to a specific
model object. For example, canon is unique to state-space idss models and linearize to nonlinear
black-box models.

Every class has a special method, called the constructor, for creating objects of that class. Using a
constructor creates an instance of the corresponding class or instantiates the object. The constructor
name is the same as the class name. For example, idss and idnlarx are both the name of the class
and the name of the constructor for instantiating the linear state-space models and nonlinear ARX
models, respectively.

When to Construct a Model Structure Independently of Estimation
You use model constructors to create a model object at the command line by specifying all required
model properties explicitly.

You must construct the model object independently of estimation when you want to:

• Simulate or analyze the effect of model parameters on its response, independent of estimation.
• Specify an initial guess for specific model parameter values before estimation. You can specify

bounds on parameter values, or set up the auxiliary model information in advance, or both.
Auxiliary model information includes specifying input/output names, units, notes, user data, and
so on.

In most cases, you can use the estimation commands to both construct and estimate the model—
without having to construct the model object independently. For example, the estimation command
tfest creates a transfer function model using data and the number of poles and zeros of the model.
Similarly, nlarx creates a nonlinear ARX model using data and model orders and delays that define
the regressor configuration. For information about how to both construct and estimate models with a
single command, see “Model Estimation Commands” on page 1-31.
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In case of grey-box models, you must always construct the model object first and then estimate the
parameters of the ordinary differential or difference equation.

Commands for Constructing Linear Model Structures
The following table summarizes the model constructors available in the System Identification Toolbox
product for representing various types of linear models.

After model estimation, you can recognize the corresponding model objects in the MATLAB
Workspace browser by their class names. The name of the constructor matches the name of the
object it creates.

For information about how to both construct and estimate models with a single command, see “Model
Estimation Commands” on page 1-31.

Summary of Model Constructors

Model Constructor Resulting Model Class
idfrd Nonparametric frequency-response model.
idproc Continuous-time, low-order transfer functions (process

models).
idpoly Linear input-output polynomial models:

• ARX
• ARMAX
• Output-Error
• Box-Jenkins

idss Linear state-space models.
idtf Linear transfer function models.
idgrey Linear ordinary differential or difference equations (grey-

box models). You write a function that translates user
parameters to state-space matrices. Can also be viewed as
state-space models with user-specified parameterization.

For more information about when to use these commands, see “When to Construct a Model Structure
Independently of Estimation” on page 1-15.

Model Properties
Categories of Model Properties

The way a model object stores information is defined by the properties of the corresponding model
class.

Each model object has properties for storing information that are relevant only to that specific model
type. The idtf, idgrey, idpoly, idproc, and idss model objects are based on the idlti
superclass and inherit all idlti properties.

In general, all model objects have properties that belong to the following categories:
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• Names of input and output channels, such as InputName and OutputName
• Sample time of the model, such as Ts
• Units for time or frequency
• Model order and mathematical structure (for example, ODE or nonlinearities)
• Properties that store estimation results (Report)
• User comments, such as Notes and Userdata

For information about getting help on object properties, see the model reference pages.

Viewing Model Properties and Estimated Parameters

The following table summarizes the commands for viewing and changing model property values.
Property names are not case sensitive. You do not need to type the entire property name if the first
few letters uniquely identify the property.

Task Command Example
View all model
properties and their
values

get Load sample data, compute an ARX model, and list
the model properties:

load iddata8
m_arx=arx(z8,[4 3 2 3 0 0 0]);
get(m_arx)

Access a specific
model property

Use dot notation View the A matrix containing the estimated
parameters in the previous model:

m_arx.A

For properties, such as Report,
that are configured like
structures, use dot notation of
the form
model.PropertyName.FieldN
ame.
FieldName is the name of any
field of the property.

View the method used in ARX model estimation:

m_arx.Report.Method

Change model
property values

dot notation Change the input delays for all three input channels
to [1 1 1] for an ARX model:

m_arx.InputDelay = [1 1 1]

Access model
parameter values
and uncertainty
information

Use getpar, getpvec and
getcov
See Also: polydata, idssdata,
tfdata, zpkdata

• View a table of all parameter attributes:

getpar(m_arx)
• View the A polynomial and 1 standard uncertainty

of an ARX model:

[a,~,~,~,~,da] = polydata(m_arx)

Set model property
values and
uncertainty
information

Use setpar, setpvec and
setcov

• Set default parameter labels:

m_arx = setpar(m_arx,'label','default')
• Set parameter covariance data:

m_arx = setcov(m_arx,cov)
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Task Command Example
Get number of
parameters

Use nparams Get the number of parameters:

nparams(sys)

See Also
Validate each model directly after estimation to help fine-tune your modeling strategy. When you do
not achieve a satisfactory model, you can try a different model structure and order, or try another
identification algorithm. For more information about validating and troubleshooting models, see
“Validating Models After Estimation” on page 17-2.
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Available Linear Models
A linear model is often sufficient to accurately describe the system dynamics and, in most cases, you
should first try to fit linear models. Available linear structures include transfer functions and state-
space models, summarized in the following table.

Model Type Usage Learn More
Transfer function (idtf) Use this structure to represent

transfer functions:

y = num
den u + e

where num and den are
polynomials of arbitrary lengths.
You can specify initial guesses
for, and estimate, num, den, and
transport delays.

“Transfer Function Models”

Process model (idproc) Use this structure to represent
process models that are low
order transfer functions
expressed in pole-zero form.
They include integrator, delay,
zero, and up to 3 poles.

“Process Models”

State-space model (idss) Use this structure to represent
known state-space structures
and black-box structures. You
can fix certain parameters to
known values and estimate the
remaining parameters. You can
also prescribe minimum/
maximum bounds on the values
of the free parameters. If you
need to specify parameter
dependencies or parameterize
the state-space matrices using
your own parameters, use a
grey-box model.

“State-Space Models”
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Model Type Usage Learn More
Polynomial models (idpoly) Use to represent linear transfer

functions based on the general
form input-output polynomial
form:

Ay = B
F u + C

De

where A, B, C, D and F are
polynomials with coefficients
that the toolbox estimates from
data.

Typically, you begin modeling
using simpler forms of this
generalized structure (such as
ARX:Ay = Bu + e and OE:
y = B

Fu + e) and, if necessary,
increase the model complexity.

“Input-Output Polynomial
Models”

Grey-box model (idgrey) Use to represent arbitrary
parameterizations of state-space
models. For example, you can
use this structure to represent
your ordinary differential or
difference equation (ODE) and
to define parameter
dependencies.

“Linear Grey-Box Models”

See Also

More About
• “Linear Model Structures” on page 1-15
• “About Identified Linear Models” on page 1-10
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Estimation Report

What is an Estimation Report?
The estimation report contains information about the results and options used for a model estimation.
This report is stored in the Report property of the estimated model. The exact contents of the report
depend on the estimator function you use to obtain the model.

Specifically, the estimation report has the following information:

• Status of the model — whether the model is constructed or estimated
• How the initial conditions are handled during estimation
• Termination conditions for iterative estimation algorithms
• Final prediction error (FPE), percent fit to estimation data, and mean-square error (MSE)
• Raw, normalized, and small sample-size corrected Akaike Information Criteria (AIC) and Bayesian

Information Criterion (BIC)
• Type and properties of the estimation data
• All estimated quantities — parameter values, initial states for state-space and grey-box models,

and their covariances
• The option set used for configuring the estimation algorithm

To learn more about the report produced for a specific estimator, see the corresponding reference
page.

You can use the report to:

• Keep an estimation log, such as the data, default and other settings used, and estimated results
such as parameter values, initial conditions, and fit. See “Access Estimation Report” on page 1-
21.

• Compare options or results of separate estimations. See “Compare Estimated Models Using
Estimation Report” on page 1-22.

• Configure another estimation using the previously specified options. See “Analyze and Refine
Estimation Results Using Estimation Report” on page 1-23.

Access Estimation Report
This example shows how to access the estimation report.

The estimation report keeps a log of information such as the data used, default and other settings
used, and estimated results such as parameter values, initial conditions, and fit.

After you estimate a model, use dot notation to access the estimation report. For example:

load iddata1 z1;
np = 2;
sys = tfest(z1,np);
sys_report = sys.Report

sys_report = 
              Status: 'Estimated using TFEST'
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              Method: 'TFEST'
    InitializeMethod: 'iv'
            N4Weight: 'Not applicable'
           N4Horizon: 'Not applicable'
    InitialCondition: 'estimate'
                 Fit: [1x1 struct]
          Parameters: [1x1 struct]
         OptionsUsed: [1x1 idoptions.tfest]
           RandState: []
            DataUsed: [1x1 struct]
         Termination: [1x1 struct]

Explore the options used during the estimation.

sys.Report.OptionsUsed

Option set for the tfest command:

      InitializeMethod: 'iv'
     InitializeOptions: [1x1 struct]
      InitialCondition: 'auto'
               Display: 'off'
           InputOffset: []
          OutputOffset: []
    EstimateCovariance: 1
        Regularization: [1x1 struct]
          SearchMethod: 'auto'
         SearchOptions: [1x1 idoptions.search.identsolver]
       WeightingFilter: []
      EnforceStability: 0
          OutputWeight: []
              Advanced: [1x1 struct]

View the fit of the transfer function model with the estimation data.

sys.Report.Fit

ans = struct with fields:
    FitPercent: 70.7720
       LossFcn: 1.6575
           MSE: 1.6575
           FPE: 1.7252
           AIC: 1.0150e+03
          AICc: 1.0153e+03
          nAIC: 0.5453
           BIC: 1.0372e+03

Compare Estimated Models Using Estimation Report
This example shows how to compare multiple estimated models using the estimation report.

Load estimation data.

load iddata1 z1;
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Estimate a transfer function model.

np = 2;
sys_tf = tfest(z1,np);

Estimate a state-space model.

sys_ss = ssest(z1,2);

Estimate an ARX model.

sys_arx = arx(z1, [2 2 1]);

Compare the percentage fit of the estimated models to the estimation data.

fit_tf = sys_tf.Report.Fit.FitPercent

fit_tf = 70.7720

fit_ss = sys_ss.Report.Fit.FitPercent

fit_ss = 76.3808

fit_arx = sys_arx.Report.Fit.FitPercent

fit_arx = 68.7220

The comparison shows that the state-space model provides the best percent fit to the data.

Analyze and Refine Estimation Results Using Estimation Report
This example shows how to analyze an estimation and configure another estimation using the
estimation report.

Estimate a state-space model that minimizes the 1-step ahead prediction error.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','mrdamper.mat'));
z = iddata(F,V,Ts);
opt = ssestOptions;
opt.Focus = 'prediction';
opt.Display = 'on';
sys1 = ssest(z,2,opt);

sys1 has good 1-step prediction ability as indicated by >90% fit of the prediction results to the data.

Use compare(z,sys1) to check the model's ability to simulate the measured output F using the
input V. The model's simulated response has only 45% fit to the data.

Perform another estimation where you retain the original options used for sys1 except that you
change the focus to minimize the simulation error.

Fetch the options used by sys1 stored in its Report property. This approach is useful when you have
saved the estimated model but not the corresponding option set used for the estimation.

opt2 = sys1.Report.OptionsUsed;

Change the focus to simulation and re-estimate the model.
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opt2.Focus = 'simulation';
sys2 = ssest(z,sys1,opt2);

Compare the simulated response to the estimation data using compare(z,sys1,sys2). The fit
improves to 53%.

See Also

More About
• “About Identified Linear Models” on page 1-10
• “About Identified Nonlinear Models” on page 11-2

1 Choosing Your System Identification Approach

1-24



Imposing Constraints on Model Parameter Values
All identified linear (IDLTI) models, except idfrd, contain a Structure property. The Structure
property contains the adjustable entities (parameters) of the model. Each parameter has attributes
such as value, minimum/maximum bounds, and free/fixed status that allow you to constrain them to
desired values or a range of values during estimation. You use the Structure property to impose
constraints on the values of various model parameters.

The Structure property contains the essential parameters that define the structure of a given
model:

• For identified transfer functions, includes the numerator, denominator, and delay parameters
• For polynomial models, includes the list of active polynomials
• For state-space models, includes the list of state-space matrices

For information about other model types, see the model reference pages.

For example, the following example constructs an idtf model, specifying values for the Numerator
and Denominator parameters:

num = [1 2];
den = [1 2 2];
sys = idtf(num,den)

You can update the value of the Numerator and Denominator properties after you create the object
as follows:

new_den = [1 1 10];
sys.Denominator = new_den;

To fix the denominator to the value you specified (treat its coefficients as fixed parameters), use the
Structure property of the object as follows:

sys.Structure.Denominator.Value = new_den;
sys.Structure.Denominator.Free = false(1,3);

For a transfer function model, the Numerator, Denominator, and IODelay model properties are
simply pointers to the Value attribute of the corresponding parameter in the Structure property.

Similar relationships exist for other model structures. For example, the A property of a state-space
model contains the double value of the state matrix. It is an alias to the A parameter value stored in
Structure.A.Value.
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Recommended Model Estimation Sequence
System identification is an iterative process, where you identify models with different structures from
data and compare model performance. You start by estimating the parameters of simple model
structures. If the model performance is poor, you gradually increase the complexity of the model
structure. Ultimately, you choose the simplest model that best describes the dynamics of your system.

Another reason to start with simple model structures is that higher-order models are not always more
accurate. Increasing model complexity increases the uncertainties in parameter estimates and
typically requires more data (which is common in the case of nonlinear models).

Note Model structure is not the only factor that determines model accuracy. If your model is poor,
you might need to preprocess your data by removing outliers or filtering noise. For more information,
see “Ways to Prepare Data for System Identification” on page 2-5.

Estimate impulse-response and frequency-response models first to gain insight into the system
dynamics and assess whether a linear model is sufficient. For more information, see “Correlation
Models” and “Frequency-Response Models”. Then, estimate parametric models in the following
order:

1 Transfer function, ARX polynomial, and state-space models provide the simplest structures.
Estimation of ARX and state-space models let you determine the model orders.

In the System Identification app. Choose to estimate the Transfer function models, ARX
polynomial models, and the state-space model using the n4sid method.

At the command line. Use the tfest, arx, and the n4sid commands, respectively.

For more information, see “Input-Output Polynomial Models” and “State-Space Models”.
2 ARMAX and BJ polynomial models provide more complex structures and require iterative

estimation. Try several model orders and keep the model orders as low as possible.

In the System Identification app. Select to estimate the BJ and ARMAX polynomial models.

At the command line. Use the bj or armax commands.

For more information, see “Input-Output Polynomial Models”.
3 Nonlinear ARX or Hammerstein-Wiener models provide nonlinear structures. For more

information, see “Nonlinear Model Identification”.

For general information about choosing you model strategy, see “System Identification Overview”. For
information about validating models, see “Validating Models After Estimation” on page 17-2.
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Supported Models for Time- and Frequency-Domain Data

Supported Models for Time-Domain Data
Continuous-Time Models

You can directly estimate the following types of continuous-time models:

• Transfer function models.
• Process models.
• State-space models.

You can also use d2c to convert an estimated discrete-time model into a continuous-time model.

Discrete-Time Models

You can estimate all linear on page 1-15 and nonlinear on page 11-6 models supported by the
System Identification Toolbox product as discrete-time models, except process models, which are
defined only in continuous-time..

ODEs (Grey-Box Models)

You can estimate both continuous-time and discrete-time models from time-domain data for linear and
nonlinear differential and difference equations.

Nonlinear Models

You can estimate discrete-time Hammerstein-Wiener and nonlinear ARX models from time-domain
data.

You can also estimate nonlinear grey-box models from time-domain data. See “Estimate Nonlinear
Grey-Box Models” on page 13-25.

Supported Models for Frequency-Domain Data
There are two types of frequency-domain data:

• Frequency response data
• Frequency domain input/output signals which are Fourier Transforms of the corresponding time

domain signals.

The data is considered continuous-time if its sample time (Ts) is 0, and is considered discrete-time if
the sample time is nonzero.

Continuous-Time Models

You can estimate the following types of continuous-time models directly:

• Transfer function models using continuous- or discrete-time data.
• Process models using continuous- or discrete-time data.
• Input-output polynomial models of output-error structure using continuous time data.
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• State-space models using continuous- or discrete-time data.

From continuous-time frequency-domain data, you can only estimate continuous-time models.

You can also use d2c to convert an estimated discrete-time model into a continuous-time model.

Discrete-Time Models

You can estimate all linear model types supported by the System Identification Toolbox product as
discrete-time models, except process models, which are defined in continuous-time only. For
estimation of discrete-time models, you must use discrete-time data.

The noise component of a model cannot be estimated using frequency domain data, except for ARX
models. Thus, the K matrix of an identified state-space model, the noise component, is zero. An
identified polynomial model has output-error (OE) or ARX structure; BJ/ARMAX or other polynomial
structure with nontrivial values of C or D polynomials cannot be estimated.

ODEs (Grey-Box Models)

For linear grey-box models, you can estimate both continuous-time and discrete-time models from
frequency-domain data. The noise component of the model, the K matrix, cannot be estimated using
frequency domain data; it remains fixed to 0.

Nonlinear grey-box models are supported only for time-domain data.

Nonlinear Black-Box Models

Nonlinear black box (nonlinear ARX and Hammerstein-Wiener models) cannot be estimated using
frequency domain data.

See Also
“Supported Continuous- and Discrete-Time Models” on page 1-29
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Supported Continuous- and Discrete-Time Models
For linear and nonlinear ODEs (grey-box models), you can specify any ordinary differential or
difference equation to represent your continuous-time or discrete-time model in state-space form,
respectively. In the linear case, both time-domain and frequency-domain data are supported. In the
nonlinear case, only time-domain data is supported.

For black-box models, the following tables summarize supported continuous-time and discrete-time
models.

Supported Continuous-Time Models

Model Type Description
Transfer function models Estimate continuous-time transfer function models directly using

tfest from either time- and frequency-domain data.
If you estimated a discrete-time transfer function model from time-
domain data, then use d2c to transform it into a continuous-time
model.

Low-order transfer functions (process
models)

Estimate low-order process models for up to three free poles from
either time- or frequency-domain data.

Linear input-output polynomial models To get a linear, continuous-time model of arbitrary structure from
time-domain data, you can estimate a discrete-time model, and then
use d2c to transform it into a continuous-time model.
You can estimate only polynomial models of Output Error structure
using continuous-time frequency domain data.. Other structures that
include noise models, such as Box-Jenkins (BJ) and ARMAX, are not
supported for frequency-domain data.

State-space models Estimate continuous-time state-space models directly using the
estimation commands from either time- and frequency-domain data.
If you estimated a discrete-time state-space model from time-domain
data, then use d2c to transform it into a continuous-time model.

Linear ODEs (grey-box) models If the MATLAB file returns continuous-time model matrices, then
estimate the ordinary differential equation (ODE) coefficients using
either time- or frequency-domain data.

Nonlinear ODEs (grey-box) models If the MATLAB file returns continuous-time output and state derivative
values, estimate arbitrary differential equations (ODEs) from time-
domain data.
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Supported Discrete-Time Models

Model Type Description
Linear input-output polynomial models Estimate arbitrary-order, linear parametric models from time- or

frequency-domain data.
To get a discrete-time model, your data sample time must be set to the
(nonzero) value you used to sample in your experiment.

“Nonlinear Model Identification” Estimate from time-domain data only.
Linear ODEs (grey-box) models If the MATLAB file returns discrete-time model matrices, then

estimate ordinary difference equation coefficients from time-domain or
discrete-time frequency-domain data.

Nonlinear ODEs (grey-box) models If the MATLAB file returns discrete-time output and state update
values, estimate ordinary difference equations from time-domain data.
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Model Estimation Commands
In most cases, a model can be created by using a model estimation command on a dataset. For
example, ssest(data,nx) creates a continuous-time state-space model of order Nx using the input/
output of frequency response data DATA.

Note For ODEs (grey-box models), you must first construct the model structure and then apply an
estimation command (either greyest or pem) to the resulting model object.

The following table summarizes System Identification Toolbox estimation commands. For detailed
information about using each command, see the corresponding reference page.

Commands for Constructing and Estimating Models

Model Type Estimation Commands
Transfer function models tfest
Process models procest
Linear input-output polynomial models armax (ARMAX only)

arx (ARX only)
bj (BJ only)
iv4 (ARX only)
oe (OE only)
polyest (for all models)

State-space models n4sid
ssest

Time-series models ar
arx (for multiple outputs)
ivar
nlarx(for nonlinear time-series models)

Nonlinear ARX models nlarx
Hammerstein-Wiener models nlhw
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Modeling Multiple-Output Systems

About Modeling Multiple-Output Systems
You can estimate multiple-output model directly using all the measured inputs and outputs, or you
can try building models for subsets of the most important input and output channels. To learn more
about each approach, see:

• “Modeling Multiple Outputs Directly” on page 1-32
• “Modeling Multiple Outputs as a Combination of Single-Output Models” on page 1-32

Modeling multiple-output systems is more challenging because input/output couplings require
additional parameters to obtain a good fit and involve more complex models. In general, a model is
better when more data inputs are included during modeling. Including more outputs typically leads to
worse simulation results because it is harder to reproduce the behavior of several outputs
simultaneously.

If you know that some of the outputs have poor accuracy and should be less important during
estimation, you can control how much each output is weighed in the estimation. For more
information, see “Improving Multiple-Output Estimation Results by Weighing Outputs During
Estimation” on page 1-33.

Modeling Multiple Outputs Directly
You can perform estimation with linear and nonlinear models for multiple-output data.

Tip Estimating multiple-output state-space models directly generally produces better results than
estimating other types of multiple-output models directly.

Modeling Multiple Outputs as a Combination of Single-Output Models
You may find that it is harder for a single model to explain the behavior of several outputs. If you get
a poor fit estimating a multiple-output model directly, you can try building models for subsets of the
most important input and output channels.

Use this approach when no feedback is present in the dynamic system and there are no couplings
between the outputs. If you are unsure about the presence of feedback, see “How to Analyze Data
Using the advice Command” on page 2-73.

To construct partial models, use subreferencing to create partial data sets, such that each data set
contains all inputs and one output. For more information about creating partial data sets, see the
following topics:

• For working in the System Identification app, see “Create Data Sets from a Subset of Signal
Channels” on page 2-24.

• For working at the command line, see the “Select Data Channels, I/O Data and Experiments in
iddata Objects” on page 2-37.

After validating the single-output models, use vertical concatenation to combine these partial models
into a single multiple-output model. For more information about concatenation, see “Increasing
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Number of Channels or Data Points of iddata Objects” on page 2-40 or “Adding Input or Output
Channels in idfrd Objects” on page 2-63.

You can try refining the concatenated multiple-output model using the original (multiple-output) data
set.

Improving Multiple-Output Estimation Results by Weighing Outputs
During Estimation
When estimating linear and nonlinear black-box models for multiple-output systems, you can control
the relative importance of output channels during the estimation process. The ability to control how
much each output is weighed during estimation is useful when some of the measured outputs have
poor accuracy or should be treated as less important during estimation. For example, if you have
already modeled one output well, you might want to focus the estimation on modeling the remaining
outputs. Similarly, you might want to refine a model for a subset of outputs.

Use the OutputWeight estimation option to indicate the desired output weighting. If you set this
option to 'noise', an automatic weighting, equal to the inverse of the estimated noise variance, is
used for model estimation. You can also specify a custom weighting matrix, which must be a positive
semi-definite matrix.

Note

• The OutputWeight option is not available for polynomial models, except ARX models, since their
estimation algorithm estimates the parameters one output at a time.

• Transfer function (idtf) and process models (idproc) ignore OutputWeight when they contain
nonzero or free transport delays. In the presence of delays, the estimation is carried out one
output at a time.

For more information about the OutputWeight option, see the estimation option sets, such as
arxOptions, ssestOptions, tfestOptions, nlarxOptions, and nlhwOptions.

Note For multiple-output idnlarx models containing neuralnet or treepartition nonlinearity
estimators, output weighting is ignored because each output is estimated independently.
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Regularized Estimates of Model Parameters

What Is Regularization?
Regularization is the technique for specifying constraints on the flexibility of a model, thereby
reducing uncertainty in the estimated parameter values.

Model parameters are obtained by fitting measured data to the predicted model response, such as a
transfer function with three poles or a second-order state-space model. The model order is a measure
of its flexibility — higher the order, the greater the flexibility. For example, a model with three poles is
more flexible than one with two poles. Increasing the order causes the model to fit the observed data
with increasing accuracy. However, the increased flexibility comes with the price of higher
uncertainty in the estimates, measured by a higher value of random or variance error. On the other
hand, choosing a model with too low an order leads to larger systematic errors. Such errors cannot
be attributed to measurement noise and are also known as bias error.

Ideally, the parameters of a good model should minimize the mean square error (MSE), given by a
sum of systematic error (bias) and random error (variance):

MSE = |Bias|2 + Variance

The minimization is thus a tradeoff in constraining the model. A flexible (high order) model gives
small bias and large variance, whereas a simpler (low order) model results in larger bias and smaller
variance errors. Typically, you can investigate this tradeoff between bias and variance errors by
cross-validation tests on a set of models of increasing flexibility. However, such tests do not always
give full control in managing the parameter estimation behavior. For example:

• You cannot use the known (a priori) information about the model to influence the quality of the
fits.

• In grey-box and other structured models, the order is fixed by the underlying ODEs and cannot be
changed. If the data is not rich enough to capture the full range of dynamic behavior, this typically
leads to high uncertainty in the estimated values.

• Varying the model order does not let you explicitly shape the variance of the underlying
parameters.

Regularization gives you a better control over the bias versus variance tradeoff by introducing an
additional term in the minimization criterion that penalizes the model flexibility. Without
regularization, for a model with one output and no weighting, the parameter estimates are obtained
by minimizing a weighted quadratic norm of the prediction errors ε(t,θ):

VN θ = 1
N ∑

t = 1

N
ε2(t, θ)

where t is the time variable, N is the number of data samples, and ε(t,θ) is the predicted error
computed as the difference between the observed output and the predicted output of the model.

Regularization modifies the cost function by adding a term proportional to the square of the norm of
the parameter vector θ, so that the parameters θ are obtained by minimizing:

V N θ = 1
N ∑t = 1

N
ε2 t, θ +   1

N λ θ 2
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where λ is a positive constant that has the effect of trading variance error in VN(θ) for bias error —
the larger the value of λ, the higher the bias and lower the variance of θ. The added term penalizes
the parameter values with the effect of keeping their values small during estimation. In statistics, this
type of regularization is called ridge regression. For more information, see “Ridge Regression”
(Statistics and Machine Learning Toolbox).

Note Another choice for the norm of θ vector is the L1-norm, known as lasso regularization. However,
System Identification Toolbox supports only the 2-norm based penalty, known as L2 regularization, as
shown in the previous equation.

The penalty term is made more effective by using a positive definite matrix R, which allows weighting
and/or rotation of the parameter vector:

V N θ = 1
N ∑

t = 1

N
ε2 t, θ + 1

N λθTRθ

The square matrix R gives additional freedom for:

• Shaping the penalty term to meet the required constraints, such as keeping the model stable
• Adding known information about the model parameters, such as reliability of the individual

parameters in the θ vector

For structured models such as grey-box models, you may want to keep the estimated parameters
close to their guess values to maintain the physical validity of the estimated model. This can be
achieved by generalizing the penalty term to λ θ− θ* TR θ− θ* , such that the cost function becomes:

V N θ = 1
N ∑

t = 1

N
ε2 t, θ + 1

N λ θ− θ* TR θ− θ*

Minimizing this cost function has the effect of estimating θ such that their values remain close to
initial guesses θ*.

In regularization:

• θ* represents prior knowledge about the unknown parameters.
• λ*R represents the confidence in the prior knowledge of the unknown parameters. This implies

that the larger the value, the higher the confidence.

A formal interpretation in a Bayesian setting is that θ has a prior distribution that is Gaussian with
mean θ* and covariance matrix σ2/λR−1, where σ2 is the variance of ε(t). The use of regularization
can therefore be linked to some prior information about the system. This could be quite soft, such as
the system is stable.

You can use the regularization variables λ and R as tools to find a good model that balances
complexity and provides the best tradeoff between bias and variance. You can obtain regularized
estimates of parameters for transfer function, state-space, polynomial, grey-box, process, and
nonlinear black-box models. The three terms defining the penalty term, λ, R and θ*, are represented
by regularization options Lambda, R, and Nominal, respectively in the toolbox. You can specify their
values in the estimation option sets for both linear and nonlinear models. In the System Identification
app, click Regularization in the linear model estimation dialog box or Estimation Options in the
Nonlinear Models dialog box.
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When to Use Regularization
Use regularization for:

• Identifying overparameterized models.
• Imposing a priori knowledge of model parameters in structured models.
• Incorporating knowledge of system behavior in ARX and FIR models.

Identifying Overparameterized Models

Over-parameterized models are rich in parameters. Their estimation typically yields parameter values
with a high level of uncertainty. Over-parameterization is common for nonlinear ARX (idnlarx)
models and can also be for linear state-space models using free parameterization.

In such cases, regularization improves the numerical conditioning of the estimation. You can explore
the bias-vs.-variance tradeoff using various values of the regularization constant Lambda. Typically,
the Nominal option is its default value of 0, and R is an identity matrix such that the following cost
function is minimized:

V N θ = 1
N ∑t = 1

N
ε2 t, θ +   1

N λ θ 2

In the following example, a nonlinear ARX model estimation using a large number of neurons leads to
an ill-conditioned estimation problem.

% Load estimation data.
load regularizationExampleData.mat nldata
% Estimate model without regularization.
Orders = [1 2 1];
NL = sigmoidnet('NumberOfUnits',30);
sys = nlarx(nldata,Orders,NL);
compare(nldata,sys)

Applying even a small regularizing penalty produces a good fit for the model to the data.

% Estimate model using regularization constant λ = 1e-8.
opt = nlarxOptions;
opt.Regularization.Lambda = 1e-8;
sysr = nlarx(nldata,Orders,NL,opt);
compare(nldata,sysr)

Imposing A Priori Knowledge of Model Parameters in Structured Models

In models derived from differential equations, the parameters have physical significance. You may
have a good guess for typical values of those parameters even if the reliability of the guess may be
different for each parameter. Because the model structure is fixed in such cases, you cannot simplify
the structure to reduce variance errors.

Using the regularization constant Nominal, you can keep the estimated values close to their initial
guesses. You can also design R to reflect the confidence in the initial guesses of the parameters. For
example, if θ is a 2-element vector and you can guess the value of the first element with more
confidence than the second one, set R to be a diagonal matrix of size 2-by-2 such that R(1,1) >>
R(2,2).
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In the following example, a model of a DC motor is parameterized by static gain G and time constant
τ. From prior knowledge, suppose you know that G is about 4 and τ is about 1. Also, assume that you
have more confidence in the value of τ than G and would like to guide the estimation to remain close
to the initial guess.

% Load estimation data.
load regularizationExampleData.mat motorData
% Create idgrey model for DC motor dynamics. 
mi = idgrey(@DCMotorODE,{'G',4;'Tau',1},'cd',{}, 0);
mi = setpar(mi,'label','default'); 
% Configure Regularization options.
opt = greyestOptions;
opt.Regularization.Lambda = 100;
% Specify that the second parameter better known than the first.
opt.Regularization.R = [1, 1000]; 
% Specify initial  guess as Nominal. 
opt.Regularization.Nominal = 'model';
% Estimate model.
sys = greyest(motorData,mi,opt)
getpar(sys)

Incorporating Knowledge of System Behavior in ARX and FIR Models

In many situations, you may know the shape of the system impulse response from impact tests. For
example, it is quite common for stable systems to have an impulse response that is smooth and
exponentially decaying. You can use such prior knowledge of system behavior to derive good values of
regularization constants for linear-in-parameter models such as ARX and FIR structure models using
the arxRegul command.

For black-box models of arbitrary structure, it is often difficult to determine the optimal values of
Lambda and R that yield the best bias-vs.-variance tradeoff. Therefore, it is recommended that you
start by obtaining the regularized estimate of an ARX or FIR structure model. Then, convert the
model to a state-space, transfer function or polynomial model using the idtf, idss, or idpoly
commands, followed by order reduction if required.

In the following example, direct estimation of a 15th order continuous-time transfer function model
fails due to numerical ill-conditioning.

% Load estimation data.
load dryer2
Dryer = iddata(y2,u2,0.08);
Dryerd = detrend(Dryer,0);
Dryerde = Dryerd(1:500);
xe = Dryerd(1:500);
ze = Dryerd(1:500);
zv = Dryerd(501:end);
% Estimate model without regularization.
sys1 = tfest(ze,15);

Therefore, use regularized ARX estimation and then convert the model to transfer function structure.

% Specify regularization constants.
[L, R] = arxRegul(ze,[15 15 1]);
optARX = arxOptions;
optARX.Regularization.Lambda = L;
optARX.Regularization.R = R;
% Estimate ARX model.
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sysARX = arx(ze,[15 15 1],optARX);
% Convert model to continuous time. 
sysc = d2c(sysARX);
% Convert model to transfer function.
sys2 = idtf(sysc);
% Validate the models sys1 and sys2.
compare(zv,sys1,sys2)

Choosing Regularization Constants
A guideline for selecting the regularization constants λ and R is in the Bayesian interpretation. The
added penalty term is an assumption that the parameter vector θ is a Gaussian random vector with
mean θ* and covariance matrix σ2/λR−1.

You can relate naturally to such an assumption for a grey-box model, where the parameters are of
known physical interpretation. In other cases, this may be more difficult. Then, you have to use ridge
regression (R = 1; θ* = 0) and tune λ by trial and error.

Use the following techniques for determining λ and R values:

• Incorporate prior information using tunable kernels.
• Perform cross-validation tests.

Incorporate Prior Information Using Tunable Kernels

Tuning the regularization constants for ARX models in arxRegul is based on simple assumptions
about the properties of the true impulse responses.

In the case of an FIR model, the parameter vector contains the impulse response coefficients bk for
the system. From prior knowledge of the system, it is often known that the impulse response is
smooth and exponentially decaying:

E bk
2 = Cμk,   corr bkbk− 1 = ρ

where corr means correlation. The equation is a parameterization of the regularization constants in
terms of coefficients C, μ, and ρ and the chosen shape (decaying polynomial) is called a kernel. The
kernel thus contains information about parameterization of the prior covariance of the impulse
response coefficients.

You can estimate the parameters of the kernel by adjusting them to the measured data using the
RegularizationKernel input of the arxRegul command. For example, the DC kernel estimates all
three parameters while the TC kernel links ρ = μ. This technique of tuning kernels applies to all
linear-in-parameter models such as ARX and FIR models.

Perform Cross-Validation Tests

A general way to test and evaluate any regularization parameters is to estimate a model based on
certain parameters on an estimation data set, and evaluate the model fit for another validation data
set. This is known as cross-validation.

Cross-validation is entirely analogous to the method for selecting model order:

1 Generate a list of candidate λ and R values to be tested.
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2 Estimate a model for each candidate regularization constant set.
3 Compare the model fit to the validation data.
4 Use the constants that give the best fit to the validation data.

For example:

% Create estimation and validation data sets.
ze = z(1:N/2);
zv = z(N/2:end);
% Specify regularization options and estimate models.
opt = ssestOptions;
for tests = 1:M
opt.Regularization.Lambda = Lvalue(test);
opt.Regularization.R = Rvalue(test);
m{test} = ssest(ze,order,opt);
end
% Compare models with validation data for model fit.
[~,fit] = compare(zv,m{:))
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Estimate Regularized ARX Model Using System Identification
App

This example shows how to estimate regularized ARX models using automatically generated
regularization constants in the System Identification app.

Open a saved System Identification App session.

filename = fullfile(matlabroot,'help','toolbox',...
           'ident','examples','ex_arxregul.sid');
systemIdentification(filename)

The session imports the following data and model into the System Identification app:

• Estimation data eData

The data is collected by simulating a system with the following known transfer function:

G z = 0.02008 + 0.04017z−1 + 0.02008z−2

1− 1.56z−1 + 0.6414z−2

• Transfer function model trueSys

trueSys is the transfer function model used to generate the estimation data eData described
previously. You also use the impulse response of this model later to compare the impulse
responses of estimated ARX models.

Estimate a 50th-order ARX model.

1 In the System Identification app, select Estimate > Polynomial Models to open the Polynomial
Models dialog box.

2 Verify that ARX is selected in the Structure list.
3 In the Orders field, specify [0 50 0] as the ARX model order and delay.
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4 Click Estimate to estimate the model.

A model arx0500 is added to the System Identification app.

Estimate a 50th-order regularized ARX model.

1 In the Polynomial Models dialog box, click Regularization.
2 In the Regularization Options dialog box, select TC from the Regularization Kernel drop-down

list.
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Specifying this option automatically determines regularization constants using the TC
regularization kernel. To learn more, see the arxRegul reference page.

Click Close to close the dialog box.
3 In the Name field in the Polynomial Models dialog box, type arx0500reg.
4 Click Estimate.

A model arx0500reg is added to the System Identification app.

Compare the unregularized and regularized model outputs to estimation data.

Select the Model output check box in the System Identification app.

The Measured and simulated model output plot shows that both the models have an 84% fit with the
data.
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Determine if regularization leads to parameter values with less variance.

Because the model fit to the estimation data is similar with and without using regularization, compare
the impulse response of the ARX models with the impulse responses of trueSys, the system used to
collect the estimation data.

1 Click the trueSys icon in the model board of the System Identification app.

2 Select the Transient resp check box to open the Transient Response plot window.

By default, the plot shows the step response.
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3 In the Transient response plot window, select Options > Impulse response to change to plot to
display the impulse response.

4 Select Options > Show 99% confidence intervals to plot the confidence intervals.

The plot shows that the impulse response of the unregularized model arx0500 is far off from the
true system and has large uncertainties.

To get a closer look at the model fits to the data and the variances, magnify a portion of the plot.
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The fit of the regularized ARX model arx0500reg closely matches the impulse response of the
true system and the variance is greatly reduced as compared to the unregularized model.

See Also

Related Examples
• “Regularized Identification of Dynamic Systems” on page 1-55

More About
• “Regularized Estimates of Model Parameters” on page 1-34
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Loss Function and Model Quality Metrics

What is a Loss Function?
The System Identification Toolbox software estimates model parameters by minimizing the error
between the model output and the measured response. This error, called loss function or cost
function, is a positive function of prediction errors e(t). In general, this function is a weighted sum of
squares of the errors. For a model with ny-outputs, the loss function V(θ) has the following general
form:

V(θ) =   1
N∑t = 1

N

eT t, θ   W θ   e t, θ

where:

• N is the number of data samples.
• e(t,θ) is ny-by-1 error vector at a given time t, parameterized by the parameter vector θ.
• W(θ) is the weighting matrix, specified as a positive semidefinite matrix. If W is a diagonal matrix,

you can think of it as a way to control the relative importance of outputs during multi-output
estimations. When W is a fixed or known weight, it does not depend on θ.

The software determines the parameter values by minimizing V(θ) with respect to θ.

For notational convenience, V(θ) is expressed in its matrix form:

V θ = 1
N trace ET θ   E θ   W(θ)

E(θ) is the error matrix of size N-by-ny. The i:th row of E(θ) represents the error value at time t = i.

The exact form of V(θ) depends on the following factors:

• Model structure. For example, whether the model that you want to estimate is an ARX or a state-
space model.

• Estimator and estimation options. For example, whether you are using n4sid or ssest estimator
and specifying options such as Focus and OutputWeight.

Options to Configure the Loss Function
You can configure the loss function for your application needs. The following estimation options, when
available for the estimator, configure the loss function:

1 Choosing Your System Identification Approach

1-46



Estimation
Option

Description Notes

Focus Focus option affects how e(t) in the loss function is
computed:

• When Focus is 'prediction', e(t) represents 1-step
ahead prediction error:

ep t = ymeasured t − ypredicted(t)
• When Focus is 'simulation', e(t) represents the

simulation error:

es t = ymeasured t − ysimulated(t)

Note For models whose noise component is trivial, (H(q) =
1), ep(t), and es(t) are equivalent.

The Focus option can also be interpreted as a weighting
filter in the loss function. For more information, see “Effect
of Focus and WeightingFilter Options on the Loss Function”
on page 1-50.

• Specify the Focus option
in the estimation option
sets.

• The estimation option sets
for oe and tfest do not
have a Focus option
because the noise-
component for the
estimated models is trivial,
and so ep(t) and es(t) are
equivalent.

WeightingFilt
er

When you specify a weighting filter, prefiltered prediction or
simulation error is minimized:

ef (t) = ℒ (e(t))

where ℒ ( . ) is a linear filter. The WeightingFilter option
can be interpreted as a custom weighting filter that is
applied to the loss function. For more information, see
“Effect of Focus and WeightingFilter Options on the Loss
Function” on page 1-50.

• Specify the
WeightingFilter option
in the estimation option
sets. Not all options for
WeightingFilter are
available for all estimation
commands.
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Estimation
Option

Description Notes

EnforceStabil
ity

When EnforceStability is true, the minimization
objective also contains a constraint that the estimated model
must be stable.

• Specify the
EnforceStability
option in the estimation
option sets.

• The estimation option sets
for procest and
ssregest commands do
not have an
EnforceStability
option. These estimation
commands always yield a
stable model.

• The estimation commands
tfest and oe always yield
a stable model when used
with time-domain
estimation data.

• Identifying unstable plants
requires data collection
under a closed loop with a
stabilizing feedback
controller. A reliable
estimation of the plant
dynamics requires a
sufficiently rich noise
component in the model
structure to separate out
the plant dynamics from
feedback effects. As a
result, models that use a
trivial noise component
(H(q) = 1), such as models
estimated by tfest and
oe commands, do not
estimate good results for
unstable plants.
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Estimation
Option

Description Notes

OutputWeight OutputWeight option configures the weighting matrix W(θ)
in the loss function and lets you control the relative
importance of output channels during multi-output
estimations.

• When OutputWeight is 'noise', W(θ) equals the
inverse of the estimated variance of error e(t):

W θ = 1
N ET θ   E θ −1

Because W depends on θ, the weighting is determined as
a part of the estimation. Minimization of the loss function
with this weight simplifies the loss function to:

V θ = det 1
N ET θ   E θ

Using the inverse of the noise variance is the optimal
weighting in the maximum likelihood sense.

• When OutputWeight is an ny-by-ny positive
semidefinite matrix, a constant weighting is used. This
loss function then becomes a weighted sum of squared
errors.

• Specify the
OutputWeight option in
the estimation option sets.
Not all options for
OutputWeight are
available for all estimation
commands.

• OutputWeight is not
available for polynomial
model estimation because
such models are always
estimated one output at a
time.

• OutputWeight cannot be
'noise' when
SearchMethod is
'lsqnonlin'.

ErrorThreshol
d

ErrorThreshold option specifies the threshold for when to
adjust the weight of large errors from quadratic to linear.
Errors larger than ErrorThreshold times the estimated
standard deviation have a linear weight in the loss function.

V(θ) =   1
N ∑t ∈ I

eT t, θ   W θ   e t, θ

+∑t ∈ J
vT t, θ   W θ   v t, θ

where:

• I represents those time instants for which
  e t   < ρ * σ  
 

, where ρ is the error threshold.

• J represents the complement of I, that is, the time
instants for which e t   > = ρ * σ.

• σ is the estimated standard deviation of the error.

The error v(t,θ) is defined as:

v t, θ = e t, θ * σ ρ
e t, θ

• Specify the
ErrorThreshold option
in the estimation option
sets.

• A typical value for the
error threshold ρ = 1.6
minimizes the effect of
data outliers on the
estimation results.
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Estimation
Option

Description Notes

Regularizatio
n

Regularization option modifies the loss function to add a
penalty on the variance of the estimated parameters.

The loss function is set up with the goal of minimizing the
prediction errors. It does not include specific constraints on
the variance (a measure of reliability) of estimated
parameters. This can sometimes lead to models with large
uncertainty in estimated model parameters, especially when
the model has many parameters.

Regularization introduces an additional term in the loss
function that penalizes the model flexibility:

V θ =   1
N∑t = 1

N

eT t, θ   W θ   e t, θ   +   1
N λ

  θ− θ* TR   θ− θ*

The second term is a weighted (R) and scaled (λ) variance of
the estimated parameter set θ about its nominal value θ*.

• Specify the
Regularization option
in the estimation option
sets.

• For linear-in-parameter
models (FIR models) and
ARX models, you can
compute optimal values of
the regularization
variables R and λ using the
arxRegul command.

Effect of Focus and WeightingFilter Options on the Loss Function

The Focus option can be interpreted as a weighting filter in the loss function. The
WeightingFilter option is an additional custom weighting filter that is applied to the loss function.

To understand the effect of Focus and WeightingFilter, consider a linear single-input single-
output model:

y(t) = G(q, θ) u(t) + H(q, θ) e(t)

Where G(q,θ) is the measured transfer function, H(q,θ) is the noise model, and e(t) represents the
additive disturbances modeled as white Gaussian noise. q is the time-shift operator.

In frequency domain, the linear model can be represented as:

Y(ω) = G(ω, θ)U(ω) + H(ω, θ)E(ω)

where Y(ω), U(ω), and E(ω) are the Fourier transforms of the output, input, and output error,
respectively. G(ω,θ) and H(ω,θ) represent the frequency response of the input-output and noise
transfer functions, respectively.

The loss function to be minimized for the SISO model is given by:

V(θ) =   1
N∑t = 1

N

eT t, θ   e t, θ

Using Parseval’s Identity, the loss function in frequency-domain is:

V(θ, ω) =   1
N E(ω) 2
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Substituting for E(ω) gives:

V(θ, ω) = 1
N

Y(ω)
U(ω) − G(θ, ω))

2 U(ω) 2

H(θ, ω) 2

Thus, you can interpret minimizing the loss function V as fitting G(θ,ω) to the empirical transfer

function Y(ω)/U(ω), using U(ω) 2

H(θ, ω) 2  as a weighting filter. This corresponds to specifying Focus as

'prediction'. The estimation emphasizes frequencies where input has more power ( U(ω) 2 is
greater) and de-emphasizes frequencies where noise is significant ( H(θ, ω) 2 is large).

When Focus is specified as 'simulation', the inverse weighting with H(θ, ω) 2 is not used. That
is, only the input spectrum is used to weigh the relative importance of the estimation fit in a specific
frequency range.

When you specify a linear filter ℒ  as WeightingFilter, it is used as an additional custom weighting
in the loss function.

V(θ) = 1
N2

Y(ω)
U(ω) − G(θ))

2 U(ω) 2

H(θ) 2 ℒ (ω) 2

Here ℒ (ω) is the frequency response of the filter. Use ℒ (ω) to enhance the fit of the model response
to observed data in certain frequencies, such as to emphasize the fit close to system resonant
frequencies.

The estimated value of input-output transfer function G is the same as what you get if you instead
first prefilter the estimation data with ℒ ( . ) using idfilt, and then estimate the model without
specifying WeightingFilter. However, the effect of ℒ ( . ) on the estimated noise model H depends
on the choice of Focus:

• Focus is 'prediction' — The software minimizes the weighted prediction error
ef (t) = ℒ (ep(t)), and the estimated model has the form:

y(t) = G(q)u(t) + H1(q)e(t)

Where H1(q) = H(q)/ℒ (q). Thus, the estimation with prediction focus creates a biased estimate of
H. This is the same estimated noise model you get if you instead first prefilter the estimation data
with ℒ ( . ) using idfilt, and then estimate the model.

When H is parameterized independent of G, you can treat the filter ℒ ( . ) as a way of affecting the
estimation bias distribution. That is, you can shape the trade-off between fitting G to the system
frequency response and fitting H/ℒ  to the disturbance spectrum when minimizing the loss
function. For more details see, section 14.4 in System Identification: Theory for the User, Second
Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

• Focus is 'simulation' — The software first estimates G by minimizing the weighted simulation
error ef (t) = ℒ (es(t)), where es t = ymeasured t − G(q)umeasured t . Once G is estimated, the
software fixes it and computes H by minimizing pure prediction errors e(t) using unfiltered data.
The estimated model has the form:

y(t) = G(q)u(t) + He(t)
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If you prefilter the data first, and then estimate the model, you get the same estimate for G but get
a biased noise model H/ℒ .

Thus, the WeightingFilter has the same effect as prefiltering the estimation data for estimation of
G. For estimation of H, the effect of WeightingFilter depends upon the choice of Focus. A
prediction focus estimates a biased version of the noise model H/ℒ , while a simulation focus
estimates H. Prefiltering the estimation data, and then estimating the model always gives H/ℒ  as the
noise model.

Model Quality Metrics
After you estimate a model, use model quality metrics to assess the quality of identified models,
compare different models, and pick the best one. The Report.Fit property of an identified model
stores various metrics such as FitPercent, LossFcn, FPE, MSE, AIC, nAIC, AICc, and BIC values.

• FitPercent, LossFcn, and MSE are measures of the actual quantity that is minimized during the
estimation. For example, if Focus is 'simulation', these quantities are computed for the
simulation error es (t). Similarly, if you specify the WeightingFilter option, then LossFcn, FPE,
and MSE are computed using filtered residuals ef (t).

• FPE, AIC, nAIC, AICc, and BIC measures are computed as properties of the output disturbance
according to the relationship:

y t = G q u t + H q e(t)

G(q) and H(q) represent the measured and noise components of the estimated model.

Regardless of how the loss function is configured, the error vector e(t) is computed as 1-step
ahead prediction error using a given model and a given dataset. This implies that even when the
model is obtained by minimizing the simulation error es (t), the FPE and various AIC values are
still computed using the prediction error ep (t). The actual value of ep (t) is determined using the
pe command with prediction horizon of 1 and using the initial conditions specified for the
estimation.

These metrics contain two terms — one for describing the model accuracy and another to describe

its complexity. For example, in FPE, det 1
N ET   E  describes the model accuracy and 

1 + np
N

1− np
N

describes the model complexity.

By comparing models using these criteria, you can pick a model that gives the best (smallest
criterion value) trade-off between accuracy and complexity.
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Quality Metric Description
FitPercent Normalized Root Mean Squared Error (NRMSE) expressed as a percentage,

defined as:

FitPercent =   100 1−
ymeasured− ymodel

ymeasured− ymeasured

where:

• ymeasured is the measured output data.
• ymeasured is its (channel-wise) mean.
• ymodel is the simulated or predicted response of the model, governed by the

Focus.
• ||.|| indicates the 2-norm of a vector.

FitPercent varies between -Inf (bad fit) to 100 (perfect fit). If the value is
equal to zero, then the model is no better at fitting the measured data than a
straight line equal to the mean of the data.

LossFcn Value of the loss function when the estimation completes. It contains effects of
error thresholds, output weight, and regularization used for estimation.

MSE Mean Squared Error measure, defined as:

MSE =   1
N∑t = 1

N

eT t   e t

where:

• e(t) is the signal whose norm is minimized for estimation.
• N is the number of data samples in the estimation dataset.

FPE Akaike’s Final Prediction Error (FPE), defined as:

FPE = det 1
N ET   E

1 +
np
N

1−
np
N

where:

• np is the number of free parameters in the model. np includes the number of
estimated initial states.

• N is the number of samples in the estimation dataset.
• E is the N-by-ny matrix of prediction errors, where ny is the number of output

channels.
AIC A raw measure of Akaike's Information Criterion, defined as:

AIC = N ∗ log det 1
N ET   E + 2 ∗ np + N ny ∗ log 2π + 1

 Loss Function and Model Quality Metrics

1-53



Quality Metric Description
AICc Small sample-size corrected Akaike's Information Criterion, defined as:

AICc = AIC + 2 ∗ np ∗
(np + 1)

(N − np− 1)

This metric is often more reliable for picking a model of optimal complexity from
a list of candidate models when the data size N is small.

nAIC Normalized measure of Akaike's Information Criterion, defined as:

nAIC = log det 1
N ET   E +

2 ∗ np
N

BIC Bayesian Information Criterion, defined as:

BIC = N ∗ log det 1
N ET   E + N ∗ ny ∗ log 2π + 1 + np ∗ log(N)

See Also
aic | fpe | goodnessOfFit | nparams | pe | predict | sim

More About
• “System Identification Overview”
• “Simulate and Predict Identified Model Output” on page 17-6
• “Assigning Estimation Weightings” on page 6-16
• “Modeling Multiple-Output Systems” on page 1-32
• “Regularized Estimates of Model Parameters” on page 1-34
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Regularized Identification of Dynamic Systems
This example shows the benefits of regularization for identification of linear and nonlinear models.

What is Regularization

When a dynamic system is identified using measured data, the parameter estimates are determined
as:

where the criterion typically is a weighted quadratic norm of the prediction errors . An 
regularized criterion is modified as:

A common special case of this is when . This is called ridge regression in statistics, e.g,
see the ridge command in Statistics and Machine Learning Toolbox™.

A useful way of thinking about regularization is that  represents prior knowledge about the
unknown parameter vector and that  describes the confidence in this knowledge. (The larger

, the higher confidence). A formal interpretation in a Bayesian setting is that  has a prior
distribution that is Gaussian with mean  and covariance matrix , where  is the variance
of the innovations.

The use of regularization can therefore be linked to some prior information about the system. This
could be quite soft, like that the system is stable. The regularization variables  and  can be seen as
tools to find a good model complexity for best tradeoff between bias and variance. The regularization
constants  and  are represented by options called Lambda and R respectively in System
Identification Toolbox™. The choice of  is controlled by the Nominal regularization option.

Bias - Variance Tradeoff in FIR modeling

Consider the problem of estimating the impulse response of a linear system as an FIR model:

These are estimated by the command: m = arx(z,[0 nb 0]). The choice of order nb is a tradeoff
between bias (large nb is required to capture slowly decaying impulse responses without too much
error) and variance (large nb gives many parameters to estimate which gives large variance).

Let us illustrate it with a simulated example. We pick a simple second order butterworth filter as
system:

Its impulse response is shown in Figure 1:

trueSys = idtf([0.02008 0.04017 0.02008],[1 -1.561 0.6414],1);
[y0,t] = impulse(trueSys);
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plot(t,y0)
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')

Figure 1: The true impulse response.

The impulse response has decayed to zero after less than 50 samples. Let us estimate it from data
generated by the system. We simulate the system with low-pass filtered white noise as input and add
a small white noise output disturbance with variance 0.0025 to the output. 1000 samples are
collected. This data is saved in the regularizationExampleData.mat file and shown in Figure 2.

load regularizationExampleData.mat eData
plot(eData)
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Figure 2: The data used for estimation.

To determine a good value for nb we basically have to try a few values and by some validation
procedure evaluate which is best. That can be done in several ways, but since we know the true
system in this case, we can determine the theoretically best possible value, by trying out all models
with nb=1,...,50 and find which one has the best fit to the true impulse response. Such a test
shows that nb = 13 gives the best error norm (mse = 0.2522) to the impulse response. This
estimated impulse response is shown together with the true one in Figure 3.

nb = 13;
m13 = arx(eData,[0 nb 0]);

[y13,~,~,y13sd] = impulse(m13,t);
plot(t,y0,t,y13)
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True system','13:th order FIR model')
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Figure 3: The true impulse response together with the estimate for order nb = 13.

Despite the 1000 data points with very good signal to noise ratio the estimate is not impressive. The
uncertainty in the response is also quite large as shown by the 1 standard deviation values of
response. The reason is that the low pass input has poor excitation.

plot(t,y0,t,y13,t,y13+y13sd,'r:',t,y13-y13sd,'r:')
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True system','13:th order FIR model','Bounds')
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Figure 4: Estimated response with confidence bounds corresponding to 1 s.d.

Let us therefore try to reach a good bias-variance trade-off by ridge regression for a FIR model of
order 50. Use arxOptions to configure the regularization constants. For this exercise we apply a
simple penalty of .

aopt = arxOptions;
aopt.Regularization.Lambda = 1;
m50r = arx(eData, [0 50 0], aopt);

The resulting estimate has an error norm of 0.1171 to the true impulse response and is shown in
Figure 5 along with the confidence bounds.

[y50r,~,~,y50rsd] = impulse(m50r,t);
plot(t,y0,t,y50r,t,y50r+y50rsd,'r:',t,y50r-y50rsd,'r:')
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True system','50:th order regularized estimate')

 Regularized Identification of Dynamic Systems

1-59



Figure 5: The true impulse response together with the ridge-regularized estimate for order nb =
50.

Clearly even this simple choice of regularization gives a much better bias-variance tradeoff, than
selecting an optimal FIR order with no regularization.

Automatic Determination of Regularization Constants for FIR Models

We can do even better. By using the insight that the true impulse response decays to zero and is
smooth, we can tailor the choice of  to the data. This is achieved by the arxRegul function.

[L,R] = arxRegul(eData,[0 50 0],arxRegulOptions('RegularizationKernel','TC'));
aopt.Regularization.Lambda = L;
aopt.Regularization.R = R;
mrtc = arx(eData, [0 50 0], aopt);
[ytc,~,~,ytcsd] = impulse(mrtc,t);

arxRegul uses fmincon from Optimization Toolbox™ to compute the hyper-parameters associated
with the regularization kernel ("TC" here). If Optimization Toolbox is not available, a simple Gauss-
Newton search scheme is used instead; use the "Advanced.SearchMethod" option of
arxRegulOptions to choose the search method explicitly. The estimated hyper-parameters are then
used to derive the values of  and .

Using the estimated values of  and  in ARX leads to an error norm of 0.0461 and the response is
shown in Figure 6. This kind of tuned regularization is what is achieved also by the impulseest
command. As the figure shows, the fit to the impulse response as well as the variance is greatly
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reduced as compared to the unregularized estimates. The price is a bias in the response estimate,
which seems to be insignificant for this example.

plot(t,y0,t,ytc,t,ytc+ytcsd,'r:',t,ytc-ytcsd,'r:')
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True system','50:th order tuned regularized estimate')

Figure 6: The true impulse response together with the tuned regularized estimate for order nb =
50.

Using Regularized ARX-models for Estimating State-Space Models

Consider a system m0, which is a 30:th order linear system with colored measurement noise:

where G(q) is the input-to-output transfer function and H(q) is the disturbance transfer function.
This system is stored in the regularizationExampleData.mat data file. The impulse responses of G(q)
and H(q) are shown in Figure 7.

load regularizationExampleData.mat m0
m0H = noise2meas(m0); % the extracted noise component of the model
[yG,t] = impulse(m0);
yH = impulse(m0H,t);

clf
subplot(211)
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plot(t, yG)
title('Impulse Response of G(q)'), ylabel('Amplitude')

subplot(212)
plot(t, yH)
title('Impulse Response of H(q)'), ylabel('Amplitude')
xlabel('Time (seconds)')

Figure 7: The impulse responses of G(q) (top) and H(q) (bottom).

We have collected 210 data points by simulating m0 with a white noise input u with variance 1, and a
noise level e with variance 0.1. This data is saved in regularizationExampleData.mat and is plotted
below.

load regularizationExampleData.mat m0simdata
clf
plot(m0simdata)
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Figure 8: The data to be used for estimation.

To estimate the impulse responses of m0 from these data, we can naturally employ state-space models
in the innovations form (or equivalently ARMAX models) and compute the impulse response using the
impulse command as before. For computing the state-space model, we can use a syntax such as:

mk = ssest(m0simdata, k, 'Ts', 1);

The catch is to determine a good order k. There are two commonly used methods:

• Cross validation CV: Estimate mk for k = 1,...,maxo using the first half of the data ze =
m0simdata(1:150) and evaluate the fit to the second half of the data zv =
m0simdata(151:end) using the compare command: [~,fitk] = compare(zv, mk,
compareOptions('InitialCondition', 'z')). Determine the order k that maximizes the
fit. Then reestimate the model using the whole data record.

• Use the Akaike criterion AIC: Estimate models for orders k = 1,...,maxo using the whole data
set, and then pick that model that minimizes aic(mk).

Applying these techniques to the data with a maximal order maxo = 30 shows that CV picks k = 15
and AIC picks k = 3.

The "Oracle" test: In addition to the CV and AIC tests, one can also check for what order k the fit
between the true impulse response of G(q) (or H(q)) and the estimated model is maximized. This of
course requires knowledge of the true system m0 which is impractical. However, if we do carry on this
comparison for our example where m0 is known, we find that k = 12 gives the best fit of estimated
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model's impulse response to that of m0 (=|G(q)|). Similarly, we find that k = 3 gives the best fit of
estimated model's noise component's impulse response to that of the noise component of m0 (=|
H(q)|). The Oracle test sets a reference point for comparison of the quality of models generated by
using various orders and regularization parameters.

Let us compare the impulse responses computed for various order selection criteria:

m3 = ssest(m0simdata, 3, 'Ts', 1);
m12 = ssest(m0simdata, 12, 'Ts', 1);
m15 = ssest(m0simdata, 15, 'Ts', 1);

y3 = impulse(m3, t);
y12 = impulse(m12, t);
y15 = impulse(m15, t);

plot(t,yG, t,y12, t,y15, t,y3)
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True G(q)',...
   sprintf('Oracle choice: %2.4g%%',100*goodnessOfFit(y12,yG,'NRMSE')),...
   sprintf('CV choice: %2.4g%%',100*goodnessOfFit(y15,yG,'NRMSE')),...
   sprintf('AIC choice: %2.4g%%',100*goodnessOfFit(y3,yG,'NRMSE')))

Figure 9: The true impulse response of G(q) compared to estimated models of various orders.

yH3 = impulse(noise2meas(m3), t);
yH15 = impulse(noise2meas(m15), t);

1 Choosing Your System Identification Approach

1-64



plot(t,yH, t,yH3, t,yH15, t,yH3)
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True H(q)',...
   sprintf('Oracle choice: %2.4g%%',100*goodnessOfFit(yH3,yH,'NRMSE')),...
   sprintf('CV choice: %2.4g%%',100*goodnessOfFit(yH15,yH,'NRMSE')),...
   sprintf('AIC choice: %2.4g%%',100*goodnessOfFit(yH3,yH,'NRMSE')))

Figure 10: The true impulse response of H(q) compared to estimated noise models of various
orders.

We see that a fit as good as 83% is possible to achieve for G(q) among the state-space models, but
the order selection procedure may not find that best order.

We then turn to what can be obtained with regularization. We estimate a rather high order,
regularized ARX-model by doing:

aopt = arxOptions;
[Lambda, R] = arxRegul(m0simdata, [5 60 0], arxRegulOptions('RegularizationKernel','TC'));
aopt.Regularization.R = R;
aopt.Regularization.Lambda = Lambda;
mr = arx(m0simdata, [5 60 0], aopt);
nmr = noise2meas(mr);
ymr = impulse(mr, t);
yHmr = impulse(nmr, t);
fprintf('Goodness of fit for ARX model is: %2.4g%%\n',100*goodnessOfFit(ymr,yG,'NRMSE'))
fprintf('Goodness of fit for noise component of ARX model is: %2.4g%%\n',100*goodnessOfFit(yHmr,yH,'NRMSE'))
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Goodness of fit for ARX model is: 16.88%
Goodness of fit for noise component of ARX model is: 21.29%

It turns out that this regularized ARX model shows a fit to the true G(q) that is even better than the
Oracle choice. The fit to H(q) is more than 80% which also is better that the Oracle choice of order
for best noise model. It could be argued that mr is a high order (60 states) model, and it is unfair to
compare it with lower order state space models. But this high order model can be reduced to, say,
order 7 by using the balred command (requires Control System Toolbox™):

mred7 = balred(idss(mr),7);
nmred7 = noise2meas(mred7);
y7mr = impulse(mred7, t);
y7Hmr = impulse(nmred7, t);

Figures 11 and 12 show how the regularized and reduced order regularized models compare with the
Oracle choice of state-space order for ssest without any loss of accuracy.

plot(t,yG, t,y12, t,ymr, t,y7mr)
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
legend('True G(q)',...
   sprintf('Oracle choice: %2.4g%%',100*goodnessOfFit(y12,yG,'NRMSE')),...
   sprintf('High order regularized: %2.4g%%',100*goodnessOfFit(ymr,yG,'NRMSE')),...
   sprintf('Reduced order: %2.4g%%',100*goodnessOfFit(y7mr,yG,'NRMSE')))

Figure 11: The regularized models compared to the Oracle choice for G(q).

plot(t,yH, t,yH3, t,yHmr, t,y7Hmr)
xlabel('Time (seconds)'), ylabel('Amplitude'), title('Impulse Response')
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legend('True H(q)',...
   sprintf('Oracle choice: %2.4g%%',100*goodnessOfFit(yH3,yH,'NRMSE')),...
   sprintf('High order regularized: %2.4g%%',100*goodnessOfFit(yHmr,yH,'NRMSE')),...
   sprintf('Reduced order: %2.4g%%',100*goodnessOfFit(y7Hmr,yH,'NRMSE')))

Figure 12: The regularized models compared to the Oracle choice for H(q).

A natural question to ask is whether the choice of orders in the ARX model is as sensitive a decision
as the state space model order in ssest. Simple test, using e.g. arx(z,[10 50 0], aopt), shows
only minor changes in the fit of G(q).

State Space Model Estimation by Regularized Reduction Technique

The above steps of estimating a high-order ARX model, followed by a conversion to state-space and
reduction to the desired order can be automated using the ssregest command. ssregest greatly
simplifies this procedure while also facilitating other useful options such as search for optimal order
and fine tuning of model structure by specification of feedthrough and delay values. Here we simply
reestimate the reduced model similar to mred7 using ssregest:

opt = ssregestOptions('ARXOrder',[5 60 0]);
mred7_direct = ssregest(m0simdata, 7, 'Feedthrough', true, opt);
compare(m0simdata, mred7, mred7_direct)
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Figure 13: Comparing responses of state space models to estimation data.

h = impulseplot(mred7, mred7_direct, 40);
showConfidence(h,1) %  1 s.d. "zero interval"
hold on
s = stem(t,yG,'r');
s.DisplayName = 'True G(q)';
legend('show')
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Figure 14: Comparing impulse responses of state space models.

In Figure 14, the confidence bound is only shown for the model mred7_direct since it was not
calculated for the model mred7. You can use the translatecov command for generating confidence
bounds for arbitrary transformations (here balred) of identified models. Note also that the
ssregest command does not require you to provide the "ARXOrder" option value. It makes an
automatic selection based on data length when no value is explicitly set.

Basic Bias - Variance Tradeoff in Grey Box Models

We shall discuss here grey box estimation which is a typical case where prior information meets
information in observed data. It will be good to obtain a well balanced tradeoff between these
information sources, and regularization is a prime tool for that.

Consider a DC motor (see e.g., iddemo7) with static gain G to angular velocity and time constant :

In state-space form we have:
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where  is the state vector composed of the angle  and the velocity . We observe both
states in noise as suggested by the output equation.

From prior knowledge and experience we think that  is about 4 and  is about 1. We collect in
motorData 400 data points from the system, with a substantial amount of noise (standard deviation
of e is 50 in each component. We also save noise-free simulation data for the same model for
comparison purposes. The data is shown in Figure 15.

load regularizationExampleData.mat motorData motorData_NoiseFree
t = motorData.SamplingInstants;
subplot(311)
plot(t,[motorData_NoiseFree.y(:,1),motorData.y(:,1)])
ylabel('Output 1')
subplot(312)
plot(t,[motorData_NoiseFree.y(:,2),motorData.y(:,2)])
ylabel('Output 2')
subplot(313)
plot(t,motorData_NoiseFree.u) % input is the same for both datasets
ylabel('Input')
xlabel('Time (seconds)')

Figure 15: The noisy data to be used for grey box estimation superimposed over noise-free
simulation data to be used for qualifications. From top to bottom: Angle, Angular Velocity, Input
voltage.

The true parameter values in this simulation are G = 2.2 and  = 0.8. To estimate the model we
create an idgrey model file DCMotorODE.m.
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type('DCMotorODE')

function [A,B,C,D] = DCMotorODE(G,Tau,Ts)
%DCMOTORODE ODE file representing the dynamics of a DC motor parameterized
%by gain G and time constant Tau.
%
%   [A,B,C,D,K,X0] = DCMOTORODE(G,Tau,Ts) returns the state space matrices
%   of the DC-motor with time-constant Tau and static gain G. The sample
%   time is Ts.
%
%   This file returns continuous-time representation if input argument Ts
%   is zero. If Ts>0, a discrete-time representation is returned.
%
% See also IDGREY, GREYEST.

%   Copyright 2013 The MathWorks, Inc.

A = [0 1;0 -1/Tau];
B = [0; G/Tau];
C = eye(2);
D = [0;0];
if Ts>0 % Sample the model with sample time Ts
   s = expm([[A B]*Ts; zeros(1,3)]);
   A = s(1:2,1:2);
   B = s(1:2,3);
end

An idgrey object is then created as:

mi = idgrey(@DCMotorODE,{'G', 4; 'Tau', 1},'cd',{}, 0);

where we have inserted the guessed parameter value as initial values. This model is adjusted to the
information in observed data by using the greyest command:

m = greyest(motorData, mi)

m =
  Continuous-time linear grey box model defined by @DCMotorODE function:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
           x1      x2
   x1       0       1
   x2       0  -1.741
 
  B = 
          u1
   x1      0
   x2  3.721
 
  C = 
       x1  x2
   y1   1   0
   y2   0   1
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  D = 
       u1
   y1   0
   y2   0
 
  K = 
       y1  y2
   x1   0   0
   x2   0   0
 
  Model parameters:
   G = 2.138
   Tau = 0.5745
 
Parameterization:
   ODE Function: @DCMotorODE
   (parametrizes both continuous- and discrete-time equations)
   Disturbance component: none
   Initial state: 'auto'
   Number of free coefficients: 2
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                 
Estimated using GREYEST on time domain data "motorData".
Fit to estimation data: [29.46;4.167]%                  
FPE: 6.074e+06, MSE: 4908                               

The model m has the parameters  = 0.57 and G = 2.14 and reproduces the data is shown in Figure
16.

copt = compareOptions('InitialCondition', 'z');
[ymi, fiti] = compare(motorData, mi, copt);
[ym, fit] = compare(motorData, m, copt);
t = motorData.SamplingInstants;
subplot(211)
plot(t, [motorData.y(:,1), ymi.y(:,1), ym.y(:,1)])
axis tight
ylabel('Output 1')
legend({'Measured output',...
   sprintf('Initial: %2.4g%%',fiti(1)),...
   sprintf('Estimated: %2.4g%%',fit(1))},...
   'Location','BestOutside')
subplot(212)
plot(t, [motorData.y(:,2), ymi.y(:,2), ym.y(:,2)])
ylabel('Output 2')
axis tight
legend({'Measured output',...
   sprintf('Initial: %2.4g%%',fiti(2)),...
   sprintf('Estimated: %2.4g%%',fit(2))},...
   'Location','BestOutside')
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Figure 16: Measured output and model outputs for initial and estimated models.

In this simulated case we have also access to the noise-free data (motorData_NoiseFree) and
depict the fit to the noise-free data in Figure 17.

[ymi, fiti] = compare(motorData_NoiseFree, mi, copt);
[ym, fit] = compare(motorData_NoiseFree, m, copt);
subplot(211)
plot(t, [motorData_NoiseFree.y(:,1), ymi.y(:,1), ym.y(:,1)])
axis tight
ylabel('Output 1')
legend({'Noise-free output',...
   sprintf('Initial: %2.4g%%',fiti(1)),...
   sprintf('Estimated: %2.4g%%',fit(1))},...
   'Location','BestOutside')
subplot(212)
plot(t, [motorData_NoiseFree.y(:,2), ymi.y(:,2), ym.y(:,2)])
ylabel('Output 2')
axis tight
legend({'Noise-free output',...
   sprintf('Initial: %2.4g%%',fiti(2)),...
   sprintf('Estimated: %2.4g%%',fit(2))},...
   'Location','BestOutside')
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Figure 17: Noise-free output and model outputs for initial and estimated models.

We can look at the parameter estimates and see that the noisy data themselves give estimates that
not quite agree with our prior physical information. To merge the data information with the prior
information we use regularization:

opt = greyestOptions;
opt.Regularization.Lambda = 100;
opt.Regularization.R = [1, 1000]; % second parameter better known than first
opt.Regularization.Nominal = 'model';
mr = greyest(motorData, mi, opt)

mr =
  Continuous-time linear grey box model defined by @DCMotorODE function:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
           x1      x2
   x1       0       1
   x2       0  -1.119
 
  B = 
          u1
   x1      0
   x2  2.447
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  C = 
       x1  x2
   y1   1   0
   y2   0   1
 
  D = 
       u1
   y1   0
   y2   0
 
  K = 
       y1  y2
   x1   0   0
   x2   0   0
 
  Model parameters:
   G = 2.187
   Tau = 0.8938
 
Parameterization:
   ODE Function: @DCMotorODE
   (parametrizes both continuous- and discrete-time equations)
   Disturbance component: none
   Initial state: 'auto'
   Number of free coefficients: 2
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                 
Estimated using GREYEST on time domain data "motorData".
Fit to estimation data: [29.34;3.848]%                  
FPE: 6.135e+06, MSE: 4933                               

We have here told the estimation process that we have some confidence in the initial parameter
values, and believe more in our guess of  than in our guess of G. The resulting regularized estimate
mr considers this information together with the information in measured data. They are weighed
together with the help of Lambda and R. In Figure 18 it is shown how the resulting model can
reproduce the output. Clearly, the regularized model does a better job than both the initial model (to
which the parameters are "attracted") and the unregularized model.

[ymr, fitr] = compare(motorData_NoiseFree, mr, copt);
subplot(211)
plot(t, [motorData_NoiseFree.y(:,1), ymi.y(:,1), ym.y(:,1), ymr.y(:,1)])
axis tight
ylabel('Output 1')
legend({'Noise-free output',...
   sprintf('Initial: %2.4g%%',fiti(1)),...
   sprintf('Estimated: %2.4g%%',fit(1)),...
   sprintf('Regularized: %2.4g%%',fitr(1))},...
   'Location','BestOutside')
subplot(212)
plot(t, [motorData_NoiseFree.y(:,2), ymi.y(:,2), ym.y(:,2), ymr.y(:,2)])
ylabel('Output 2')
axis tight
legend({'Noise-free output',...
   sprintf('Initial: %2.4g%%',fiti(2)),...
   sprintf('Estimated: %2.4g%%',fit(2)),...
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   sprintf('Regularized: %2.4g%%',fitr(2))},...
   'Location','BestOutside')

Figure 18: Noise-Free measured output and model outputs for initial, estimated and regularized
models.

The regularized estimation also has reduced parameter variance as compared to the unregularized
estimates. This is shown by tighter confidence bounds on the Bode plot of mr compare to that of m:

clf
showConfidence(bodeplot(m,mr,logspace(-1,1.4,100)),3) % 3 s.d. region
legend('show')
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Figure 19: Bode plot of m and mr with confidence bounds

This was an illustration of how the merging prior and measurement information works. In practice we
need a procedure to tune the size of Lambda to the existing information sources. A commonly used
method is to use cross validation. That is:

• Split the data into two parts - the estimation and the validation data
• Compute the regularized model using the estimation data for various values of Lambda
• Evaluate how well these models can reproduce the validation data: tabulate NRMSE fit values

delivered by the compare command or the goodnessOfFit command.
• Pick that Lambda which gives the model with the best fit to the validation data.

Use of Regularization to Robustify Large Nonlinear Models

Another use of regularization is to numerically stabilize the estimation of large (often nonlinear)
models. We have given a data record nldata that has nonlinear dynamics. We try nonlinear ARX-
model of neural network character, with more and more neurons:

load regularizationExampleData.mat nldata
opt = nlarxOptions('SearchMethod','lm');
m10 = nlarx(nldata, [1 2 1], sigmoidnet('NumberOfUnits',10),opt);
m20 = nlarx(nldata, [1 2 1], sigmoidnet('NumberOfUnits',20),opt);
m30 = nlarx(nldata, [1 2 1], sigmoidnet('NumberOfUnits',30),opt);

compare(nldata, m10, m20) % compare responses of m10, m20 to measured response
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Figure 20: Comparison plot for models m10 and m20.

fprintf('Number of parameters (m10, m20, m30): %s\n',...
   mat2str([nparams(m10),nparams(m20),nparams(m30)]))
compare(nldata, m30, m10, m20) % compare all three models
axis([1 800 -57 45])

Number of parameters (m10, m20, m30): [54 104 154]
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Figure 21: Comparison plot for models m10, m20 and m30.

The first two models show good and improving fits. But when estimating the 154 parameters of m30,
numerical problems seem to occur. We can then apply a small amount of regularization to get better
conditioned matrices:

opt.Regularization.Lambda = 1e-8;
m30r = nlarx(nldata, [1 2 1], sigmoidnet('num',30), opt);
compare(nldata, m30r, m10, m20)
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Figure 22: Comparison plot for models m10, m20 and regularized model m30r.

The fit to estimation data has significantly improved for the model with 30 neurons. As discussed
before, a systematic search for the Lambda value to use would require cross validation tests.

Conclusions

We discussed the benefit of regularization for estimation of FIR models, linear grey-box models and
Nonlinear ARX models. Regularization can have significant impact on the quality of the identified
model provided the regularization constants Lambda and R are chosen appropriately. For ARX
models, this can be done very easily using the arxRegul function. These automatic choices also feed
into the dedicated state-space estimation algorithm ssregest.

For other types of estimations, you must rely on cross validation based search to determine Lambda.
For structured models such as grey box models, R can be used to indicate the reliability of the
corresponding initial value of the parameter. Then, using the Nominal regularization option, you can
merge the prior knowledge of the parameter values with the information in the data.

Regularization options are available for all linear and nonlinear models including transfer functions
and process models, state-space and polynomial models, Nonlinear ARX, Hammerstein-Wiener and
linear/nonlinear grey box models.
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Supported Data
System Identification Toolbox software supports estimation of linear models from both time- and
frequency-domain data. For nonlinear models, this toolbox supports only time-domain data. For more
information, see “Supported Models for Time- and Frequency-Domain Data” on page 1-27.

The data can have single or multiple inputs and outputs, and can be either real or complex.

Your time-domain data should be sampled at discrete and uniformly spaced time instants to obtain an
input sequence

u={u(T),u(2T),...,u(NT)}

and a corresponding output sequence

y={y(T),y(2T),...,y(NT)}

u(t) and y(t) are the values of the input and output signals at time t, respectively.

This toolbox supports modeling both single- or multiple-channel input-output data or time-series data.

Supported Data Description
Time-domain I/O data One or more input variables u(t) and one or more output

variables y(t), sampled as a function of time. Time-domain
data can be either real or complex

Time-series data Contains one or more outputs y(t) and no measured input.
Can be time-domain or frequency-domain data.

Frequency-domain data Fourier transform of the input and output time-domain
signals. The data is the set of input and output signals in
frequency domain; the frequency grid need not be uniform.

Frequency-response data Complex frequency-response values for a linear system
characterized by its transfer function G, measurable
directly using a spectrum analyzer. Also called frequency
function data. Represented by frd or idfrd objects. The
data sample time may be zero or nonzero. The frequency
vector need not be uniformly spaced.

Note If your data is complex valued, see “Manipulating Complex-Valued Data” on page 2-102 for
information about supported operations for complex data.
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Ways to Obtain Identification Data
You can obtain identification data by:

• Measuring input and output signals from a physical system.

Your data must capture the important system dynamics, such as dominant time constants. After
measuring the signals, organize the data into variables, as described in “Representing Data in
MATLAB Workspace” on page 2-8. Then, import it in the System Identification app or represent
it as a data object for estimating models at the command line.

• Generating an input signal with desired characteristics, such as a random Gaussian or binary
signal or a sinusoid, using idinput. Then, generate an output signal using this input to simulate a
model with known coefficients. For more information, see “Generate Data Using Simulation” on
page 2-98.

Using input/output data thus generated helps you study the impact of input signal characteristics
and noise on estimation.

• Logging signals from Simulink models.

This technique is useful when you want to replace complex components in your model with
identified models to speed up simulations or simplify control design tasks. For more information
on how to log signals, see “Export Signal Data Using Signal Logging” (Simulink).
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Ways to Prepare Data for System Identification
Before you can perform any task in this toolbox, your data must be in the MATLAB workspace. You
can import the data from external data files or manually create data arrays at the command line. For
more information about importing data, see “Representing Data in MATLAB Workspace” on page 2-
8.

The following tasks help to prepare your data for identifying models from data:

Represent data for system identification

You can represent data in the format of this toolbox by doing one of the following:

• For working in the app, import data into the System Identification app.

See “Represent Data”.
• For working at the command line, create an iddata or idfrd object.

For time-domain or frequency-domain data, see “Representing Time- and Frequency-Domain Data
Using iddata Objects” on page 2-34.

For frequency-response data, see “Representing Frequency-Response Data Using idfrd Objects”
on page 2-61.

• To simulate data with and without noise, see “Generate Data Using Simulation” on page 2-98.

Analyze data quality

You can analyze your data by doing either of the following:

• Plotting data to examine both time- and frequency-domain behavior.

See “How to Plot Data in the App” on page 2-67 and “How to Plot Data at the Command Line” on
page 2-71.

• Using the advice command to analyze the data for the presence of constant offsets and trends,
delay, possible feedback, and signal excitation levels.

See “How to Analyze Data Using the advice Command” on page 2-73.

Preprocess data

Review the data characteristics for any of the following features to determine if there is a need for
preprocessing:

• Missing or faulty values (also known as outliers). For example, you might see gaps that indicate
missing data, values that do not fit with the rest of the data, or noninformative values.

See “Handling Missing Data and Outliers” on page 2-77.
• Offsets and drifts in signal levels (low-frequency disturbances).

See “Handling Offsets and Trends in Data” on page 2-81 for information about subtracting means
and linear trends, and “Filtering Data” on page 2-92 for information about filtering.

• High-frequency disturbances above the frequency interval of interest for the system dynamics.
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See “Resampling Data” on page 2-86 for information about decimating and interpolating values,
and “Filtering Data” on page 2-92 for information about filtering.

Select a subset of your data

You can use data selection as a way to clean the data and exclude parts with noisy or missing
information. You can also use data selection to create independent data sets for estimation and
validation.

To learn more about selecting data, see “Select Subsets of Data” on page 2-74.

Combine data from multiple experiments

You can combine data from several experiments into a single data set. The model you estimate from a
data set containing several experiments describes the average system that represents these
experiments.

To learn more about creating multiple-experiment data sets, see “Create Multiexperiment Data Sets
in the App” on page 2-26 or “Create Multiexperiment Data at the Command Line” on page 2-42.
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Requirements on Data Sampling
A sample time is the time between successive data samples. It is sometimes also referred to as
sampling time or sample interval.

The System Identification app only supports uniformly sampled data.

The System Identification Toolbox product provides limited support for nonuniformly sampled data.
For more information about specifying uniform and nonuniform time vectors, see “Constructing an
iddata Object for Time-Domain Data” on page 2-34.
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Representing Data in MATLAB Workspace

Time-Domain Data Representation
Time-domain data consists of one or more input variables u(t) and one or more output variables y(t),
sampled as a function of time. If there is no input variable, see “Time-Series Data Representation” on
page 2-8.

You must organize time-domain input/output data in the following format:

• For single-input/single-output (SISO) data, the sampled data values must be double column
vectors.

• For multi-input/multi-output (MIMO) data with Nu inputs and Ny outputs, and Ns number of data
samples (measurements):

• The input data must be an Ns-by-Nu matrix
• The output data must be an Ns-by-Ny matrix

To use time-domain data for identification, you must know the sample time. If you are working with
uniformly sampled data, use the actual sample time from your experiment. Each data value is
assigned a time instant, which is calculated from the start time and sample time. You can work with
nonuniformly sampled data only at the command line by specifying a vector of time instants using the
SamplingInstants property of iddata, as described in “Constructing an iddata Object for Time-
Domain Data” on page 2-34.

For continuous-time models, you must also know the input intersample behavior, such as zero-order
hold and first-order-hold.

For more information about importing data into MATLAB, see “Data Import and Export”.

After you have the variables in the MATLAB workspace, import them into the System Identification
app or create a data object for working at the command line. For more information, see “Import Time-
Domain Data into the App” on page 2-13 and “Representing Time- and Frequency-Domain Data
Using iddata Objects” on page 2-34.

Time-Series Data Representation
Time-series data is time-domain or frequency-domain data that consist of one or more outputs y(t)
with no corresponding input. For more information on how to obtain identification data, see “Ways to
Obtain Identification Data” on page 2-4.

You must organize time-series data in the following format:

• For single-input/single-output (SISO) data, the output data values must be a column vector.
• For data with Ny outputs, the output is an Ns-by-Ny matrix, where Ns is the number of output data

samples (measurements).

To use time-series data for identification, you also need the sample time. If you are working with
uniformly sampled data, use the actual sample time from your experiment. Each data value is
assigned a sample time, which is calculated from the start time and the sample time. If you are
working with nonuniformly sampled data at the command line, you can specify a vector of time
instants using the iddata SamplingInstants property, as described in “Constructing an iddata
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Object for Time-Domain Data” on page 2-34. Note that model estimation cannot be performed using
non-uniformly sampled data.

For more information about importing data into the MATLAB workspace, see “Data Import and
Export”.

After you have the variables in the MATLAB workspace, import them into the System Identification
app or create a data object for working at the command line. For more information, see “Import Time-
Domain Data into the App” on page 2-13 and “Representing Time- and Frequency-Domain Data
Using iddata Objects” on page 2-34.

For information about estimating time-series model parameters, see “Time Series Analysis”.

Frequency-Domain Data Representation
Frequency-domain data consists of either transformed input and output time-domain signals on page
2-9 or system frequency response on page 2-10 sampled as a function of the independent variable
frequency.

Frequency-Domain Input/Output Signal Representation
What Is Frequency-Domain Input/Output Signal?

Frequency-domain data is the Fourier transform of the input and output time-domain signals. For
continuous-time signals, the Fourier transform over the entire time axis is defined as follows:

Y(iw) = ∫
−∞

∞
y(t)e−iwtdt

U(iw) = ∫
−∞

∞
u(t)e−iwtdt

In the context of numerical computations, continuous equations are replaced by their discretized
equivalents to handle discrete data values. For a discrete-time system with a sample time T, the
frequency-domain output Y(eiw) and input U(eiw) is the time-discrete Fourier transform (TDFT):

Y(eiwT) = T ∑
k = 1

N
y(kT)e−iwkT

In this example, k = 1,2,...,N, where N is the number of samples in the sequence.

Note This form only discretizes the time. The frequency is continuous.

In practice, the Fourier transform cannot be handled for all continuous frequencies and you must
specify a finite number of frequencies. The discrete Fourier transform (DFT) of time-domain data for
N equally spaced frequencies between 0 and the sampling frequency 2π/N is:

Y(eiwnT) = ∑
k = 1

N
y(kT)e−iwnkT

wn = 2πn
T     n = 0, 1, 2, …, N − 1
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The DFT is useful because it can be calculated very efficiently using the fast Fourier transform (FFT)
method. Fourier transforms of the input and output data are complex numbers.

For more information on how to obtain identification data, see “Ways to Obtain Identification Data”
on page 2-4.
How to Represent Frequency-Domain Data in MATLAB

You must organize frequency-domain data in the following format:

• Input and output

• For single-input/single-output (SISO) data:

• The input data must be a column vector containing the values u eiωkT

• The output data must be a column vector containing the values y eiωkT

k=1, 2, ..., Nf, where Nf is the number of frequencies.
• For multi-input/multi-output data with Nu inputs, Ny outputs and Nf frequency measurements:

• The input data must be an Nf-by-Nu matrix
• The output data must be an Nf-by-Ny matrix

• Frequencies

• Must be a column vector.

For more information about importing data into the MATLAB workspace, see “Data Import and
Export”.

After you have the variables in the MATLAB workspace, import them into the System Identification
app or create a data object for working at the command line. For more information, see “Importing
Frequency-Domain Input/Output Signals into the App” on page 2-15 and “Representing Time- and
Frequency-Domain Data Using iddata Objects” on page 2-34.

Frequency-Response Data Representation
What Is Frequency-Response Data?

Frequency-response data, also called frequency-function data, consists of complex frequency-
response values for a linear system characterized by its transfer function G. Frequency-response data
tells you how the system handles sinusoidal inputs. You can measure frequency-response data values
directly using a spectrum analyzer, for example, which provides a compact representation of the
input-output relationship (compared to storing input and output independently).

The transfer function G is an operator that takes the input u of a linear system to the output y:

y = Gu

For a continuous-time system, the transfer function relates the Laplace transforms of the input U(s)
and output Y(s):

Y(s) = G(s)U(s)

In this case, the frequency function G(iw) is the transfer function evaluated on the imaginary axis
s=iw.
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For a discrete-time system sampled with a time interval T, the transfer function relates the Z-
transforms of the input U(z) and output Y(z):

Y(z) = G(z)U(z)

In this case, the frequency function G(eiwT) is the transfer function G(z) evaluated on the unit circle.
The argument of the frequency function G(eiwT) is scaled by the sample time T to make the frequency
function periodic with the sampling frequency 2π T.

When the input to the system is a sinusoid of a specific frequency, the output is also a sinusoid with
the same frequency. The amplitude of the output is G  times the amplitude of the input. The phase of
the shifted from the input by φ = argG. G is evaluated at the frequency of the input sinusoid.

Frequency-response data represents a (nonparametric) model of the relationship between the input
and the outputs as a function of frequency. You might use such a model, which consists of a table or
plot of values, to study the system frequency response. However, this model is not suitable for
simulation and prediction. You should create parametric model from the frequency-response data.

For more information on how to obtain identification data, see “Ways to Obtain Identification Data”
on page 2-4.
How to Represent Frequency-Response Data in MATLAB

You can represent frequency-response data in two ways:

• Complex-values G(eiω) , for given frequencies ω
• Amplitude G  and phase shift φ = argG values

You can import both the formats directly in the System Identification app. At the command line, you
must represent complex data using an frd or idfrd object. If the data is in amplitude and phase
format, convert it to complex frequency-response vector using h(ω) = A(ω)ejϕ(ω).

You must organize frequency-response data in the following format:

Frequency-Response
Data Representation

For Single-Input Single-Output
(SISO) Data

For Multi-Input Multi-Output (MIMO)
Data

Complex Values • Frequency function must be a
column vector.

• Frequency values must be a column
vector.

• Frequency function must be an Ny-by-Nu-
by-Nf array, where Nu is the number of
inputs, Ny is the number of outputs, and
Nf is the number of frequency
measurements.

• Frequency values must be a column
vector.

Amplitude and phase
shift values

• Amplitude and phase must each be
a column vector.

• Frequency values must be a column
vector.

• Amplitude and phase must each be an Ny-
by-Nu-by-Nf array, where Nu is the
number of inputs, Ny is the number of
outputs, and Nf is the number of
frequency measurements.

• Frequency values must be a column
vector.

For more information about importing data into the MATLAB workspace, see “Data Import and
Export”.
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After you have the variables in the MATLAB workspace, import them into the System Identification
app or create a data object for working at the command line. For more information about importing
data into the app, see “Importing Frequency-Response Data into the App” on page 2-16. To learn
more about creating a data object, see “Representing Frequency-Response Data Using idfrd Objects”
on page 2-61.
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Import Time-Domain Data into the App
Before you can import time-domain data into the System Identification app, you must import the
data into the MATLAB workspace, as described in “Time-Domain Data Representation” on page 2-8.

Note Your time-domain data must be sampled at equal time intervals. The input and output signals
must have the same number of data samples.

To import data into the app:

1 Type the following command in the MATLAB Command Window to open the app:

systemIdentification
2 In the System Identification app window, select Import data > Time domain data. This action

opens the Import Data dialog box.

3 Specify the following options:

Note For time series, only import the output signal and enter [] for the input.

• Input — Enter the MATLAB variable name (column vector or matrix) or a MATLAB expression
that represents the input data. The expression must evaluate to a column vector or matrix.

• Output — Enter the MATLAB variable name (column vector or matrix) or a MATLAB
expression that represents the output data. The expression must evaluate to a column vector
or matrix.

• Data name — Enter the name of the data set, which appears in the System Identification app
window after the import operation is completed.

• Starting time — Enter the starting value of the time axis for time plots.
• Sample time — Enter the actual sample time in the experiment. For more information about

this setting, see “Specifying the Data Sample Time” on page 2-21.

Tip The System Identification Toolbox product uses the sample time during model estimation
and to set the horizontal axis on time plots. If you transform a time-domain signal to a
frequency-domain signal, the Fourier transforms are computed as discrete Fourier transforms
(DFTs) using this sample time.

4 (Optional) In the Data Information area, click More to expand the dialog box and enter the
following settings:

Input Properties

 Import Time-Domain Data into the App

2-13



• InterSample — This options specifies the behavior of the input signals between samples
during data acquisition. It is used when transforming models from discrete-time to
continuous-time and when resampling the data.

• zoh (zero-order hold) indicates that the input was piecewise-constant during data
acquisition.

• foh (first-order hold) indicates that the output was piecewise-linear during data
acquisition.

• bl (bandwidth-limited behavior) specifies that the continuous-time input signal has zero
power above the Nyquist frequency (equal to the inverse of the sample time).

Note See the d2c and c2d reference pages for more information about transforming
between discrete-time and continuous-time models.

• Period — Enter Inf to specify a nonperiodic input. If the underlying time-domain data was
periodic over an integer number of periods, enter the period of the input signal.

Note If your data is periodic, always include a whole number of periods for model estimation.

Channel Names

• Input — Enter the name of one or more input channels.

Tip Naming channels helps you to identify data in plots. For multivariable input-output
signals, you can specify the names of individual Input and Output channels, separated by
commas.

• Output — Enter the name of one or more output channels.

Physical Units of Variables

• Input — Enter the input units.

Tip When you have multiple inputs and outputs, enter a comma-separated list of Input and
Output units corresponding to each channel.

• Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might enter the
experiment name, date, and a description of experimental conditions. Models you estimate from
this data inherit your data notes.

5 Click Import. This action adds a new data icon to the System Identification app window.
6 Click Close to close the Import Data dialog box.
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Import Frequency-Domain Data into the App
Importing Frequency-Domain Input/Output Signals into the App
Frequency-domain data consists of Fourier transforms of time-domain data (a function of frequency).

Before you can import frequency-domain data into the System Identification app, you must import
the data into the MATLAB workspace, as described in “Frequency-Domain Input/Output Signal
Representation” on page 2-9.

Note The input and output signals must have the same number of data samples.

To import data into the app:

1 Type the following command in the MATLAB Command Window to open the app:

systemIdentification
2 In the System Identification app window, select Import data > Freq. domain data. This action

opens the Import Data dialog box.
3 Specify the following options:

• Input — Enter the MATLAB variable name (column vector or matrix) or a MATLAB expression
that represents the input data. The expression must evaluate to a column vector or matrix.

• Output — Enter the MATLAB variable name (column vector or matrix) or a MATLAB
expression that represents the output data. The expression must evaluate to a column vector
or matrix.

• Frequency — Enter the MATLAB variable name of a vector or a MATLAB expression that
represents the frequencies. The expression must evaluate to a column vector.

The frequency vector must have the same number of rows as the input and output signals.
• Data name — Enter the name of the data set, which appears in the System Identification app

window after the import operation is completed.
• Frequency unit — Enter Hz for Hertz or keep the rad/s default value.
• Sample time — Enter the actual sample time in the experiment. For continuous-time data,

enter 0. For more information about this setting, see “Specifying the Data Sample Time” on
page 2-21.

4 (Optional) In the Data Information area, click More to expand the dialog box and enter the
following optional settings:

Input Properties

• InterSample — This options specifies the behavior of the input signals between samples
during data acquisition. It is used when transforming models from discrete-time to
continuous-time and when resampling the data.

• zoh (zero-order hold) indicates that the input was piecewise-constant during data
acquisition.

• foh (first-order hold) indicates that the output was piecewise-linear during data
acquisition.
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• bl (bandwidth-limited behavior) specifies that the continuous-time input signal has zero
power above the Nyquist frequency (equal to the inverse of the sample time).

Note See the d2c and c2d reference page for more information about transforming between
discrete-time and continuous-time models.

• Period — Enter Inf to specify a nonperiodic input. If the underlying time-domain data was
periodic over an integer number of periods, enter the period of the input signal.

Note If your data is periodic, always include a whole number of periods for model estimation.

Channel Names

• Input — Enter the name of one or more input channels.

Tip Naming channels helps you to identify data in plots. For multivariable input and output
signals, you can specify the names of individual Input and Output channels, separated by
commas.

• Output — Enter the name of one or more output channels.

Physical Units of Variables

• Input — Enter the input units.

Tip When you have multiple inputs and outputs, enter a comma-separated list of Input and
Output units corresponding to each channel.

• Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might enter the
experiment name, date, and a description of experimental conditions. Models you estimate from
this data inherit your data notes.

5 Click Import. This action adds a new data icon to the System Identification app window.
6 Click Close to close the Import Data dialog box.

Importing Frequency-Response Data into the App
Prerequisite

Before you can import frequency-response data into the System Identification app, you must import
the data into the MATLAB workspace, as described in “Frequency-Response Data Representation” on
page 2-10.

Importing Complex-Valued Frequency-Response Data

To import frequency-response data consisting of complex-valued frequency values at specified
frequencies:

1 Type the following command in the MATLAB Command Window to open the app:

systemIdentification
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2 In the System Identification app window, select Import data > Freq. domain data. This action
opens the Import Data dialog box.

3 In the Data Format for Signals list, select Freq. Function (Complex).
4 Specify the following options:

• Response — Enter the MATLAB variable name or a MATLAB expression that represents the
complex frequency-response data G(eiw).

• Frequency — Enter the MATLAB variable name of a vector or a MATLAB expression that
represents the frequencies. The expression must evaluate to a column vector.

• Data name — Enter the name of the data set, which appears in the System Identification app
window after the import operation is completed.

• Frequency unit — Enter Hz for Hertz or keep the rad/s default value.
• Sample time — Enter the actual sample time in the experiment. For continuous-time data,

enter 0. For more information about this setting, see “Specifying the Data Sample Time” on
page 2-21.

5 (Optional) In the Data Information area, click More to expand the dialog box and enter the
following optional settings:

Channel Names

• Input — Enter the name of one or more input channels.

Tip Naming channels helps you to identify data in plots. For multivariable input and output
signals, you can specify the names of individual Input and Output channels, separated by
commas.

• Output — Enter the name of one or more output channels.

Physical Units of Variables

• Input — Enter the input units.

Tip When you have multiple inputs and outputs, enter a comma-separated list of Input and
Output units corresponding to each channel.

• Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might enter the
experiment name, date, and a description of experimental conditions. Models you estimate from
this data inherit your data notes.

6 Click Import. This action adds a new data icon to the System Identification app window.
7 Click Close to close the Import Data dialog box.

Importing Amplitude and Phase Frequency-Response Data

To import frequency-response data consisting of amplitude and phase values at specified frequencies:

1 Type the following command in the MATLAB Command Window to open the app:

systemIdentification
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2 In the System Identification app window, select Import data > Freq. domain data. This action
opens the Import Data dialog box.

3 In the Data Format for Signals list, select Freq. Function (Amp/Phase).
4 Specify the following options:

• Amplitude — Enter the MATLAB variable name or a MATLAB expression that represents the
amplitude G .

• Phase (deg) — Enter the MATLAB variable name or a MATLAB expression that represents
the phase φ = argG.

• Frequency — Enter the MATLAB variable name of a vector or a MATLAB expression that
represents the frequencies. The expression must evaluate to a column vector.

• Data name — Enter the name of the data set, which appears in the System Identification app
window after the import operation is completed.

• Frequency unit — Enter Hz for Hertz or keep the rad/s default value.
• Sample time — Enter the actual sample time in the experiment. For continuous-time data,

enter 0. For more information about this setting, see “Specifying the Data Sample Time” on
page 2-21.

5 (Optional) In the Data Information area, click More to expand the dialog box and enter the
following optional settings:

Channel Names

• Input — Enter the name of one or more input channels.

Tip Naming channels helps you to identify data in plots. For multivariable input and output
signals, you can specify the names of individual Input and Output channels, separated by
commas.

• Output — Enter the name of one or more output channels.

Physical Units of Variables

• Input — Enter the input units.

Tip When you have multiple inputs and outputs, enter a comma-separated list of Input and
Output units corresponding to each channel.

• Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might enter the
experiment name, date, and a description of experimental conditions. Models you estimate from
this data inherit your data notes.

6 Click Import. This action adds a new data icon to the System Identification app window.
7 Click Close to close the Import Data dialog box.
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Import Data Objects into the App
You can import the System Identification Toolbox iddata and idfrd data objects into the System
Identification app.

Before you can import a data object into the System Identification app, you must create the data
object in the MATLAB workspace, as described in “Representing Time- and Frequency-Domain Data
Using iddata Objects” on page 2-34 or “Representing Frequency-Response Data Using idfrd
Objects” on page 2-61.

Note You can also import a Control System Toolbox frd object. Importing an frd object converts it
to an idfrd object.

Select Import data > Data object to open the Import Data dialog box.

Import iddata, idfrd, or frd data object in the MATLAB workspace.

To import a data object into the app:

1 Type the following command in the MATLAB Command Window to open the app:

systemIdentification
2 In the System Identification app window, select Import data > Data object.

This action opens the Import Data dialog box. IDDATA or IDFRD/FRD is already selected in the
Data Format for Signals list.

3 Specify the following options:

• Object — Enter the name of the MATLAB variable that represents the data object in the
MATLAB workspace. Press Enter.

• Data name — Enter the name of the data set, which appears in the System Identification app
window after the import operation is completed.

• (Only for time-domain iddata object) Starting time — Enter the starting value of the time
axis for time plots.

• (Only for frequency domain iddata or idfrd object) Frequency unit — Enter the frequency
unit for response plots.

• Sample time — Enter the actual sample time in the experiment. For more information about
this setting, see “Specifying the Data Sample Time” on page 2-21.

Tip The System Identification Toolbox product uses the sample time during model estimation
and to set the horizontal axis on time plots. If you transform a time-domain signal to a
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frequency-domain signal, the Fourier transforms are computed as discrete Fourier transforms
(DFTs) using this sample time.

4 (Optional) In the Data Information area, click More to expand the dialog box and enter the
following optional settings:

(Only for iddata object) Input Properties

• InterSample — This options specifies the behavior of the input signals between samples
during data acquisition. It is used when transforming models from discrete-time to
continuous-time and when resampling the data.

• zoh (zero-order hold) indicates that the input was piecewise-constant during data
acquisition.

• foh (first-order hold) indicates that the input was piecewise-linear during data acquisition.
• bl (bandwidth-limited behavior) specifies that the continuous-time input signal has zero

power above the Nyquist frequency (equal to the inverse of the sample time).

Note See the d2c and c2d reference page for more information about transforming between
discrete-time and continuous-time models.

• Period — Enter Inf to specify a nonperiodic input. If the underlying time-domain data was
periodic over an integer number of periods, enter the period of the input signal.

Note If your data is periodic, always include a whole number of periods for model estimation.

Channel Names

• Input — Enter the name of one or more input channels.

Tip Naming channels helps you to identify data in plots. For multivariable input and output
signals, you can specify the names of individual Input and Output channels, separated by
commas.

• Output — Enter the name of one or more output channels.

Physical Units of Variables

• Input — Enter the input units.

Tip When you have multiple inputs and outputs, enter a comma-separated list of Input and
Output units corresponding to each channel.

• Output — Enter the output units.

Notes — Enter comments about the experiment or the data. For example, you might enter the
experiment name, date, and a description of experimental conditions. Models you estimate from
this data inherit your data notes.

5 Click Import. This action adds a new data icon to the System Identification app window.
6 Click Close to close the Import Data dialog box.
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Specifying the Data Sample Time
When you import data into the app, you must specify the data sample time.

The sample time is the time between successive data samples in your experiment and must be the
numerical time interval at which your data is sampled in any units. For example, enter 0.5 if your
data was sampled every 0.5 s, and enter 1 if your data was sampled every 1 s.

You can also use the sample time as a flag to specify continuous-time data. When importing
continuous-time frequency domain or frequency-response data, set the Sample time to 0.

The sample time is used during model estimation. For time-domain data, the sample time is used
together with the start time to calculate the sampling time instants. When you transform time-domain
signals to frequency-domain signals (see the fft reference page), the Fourier transforms are
computed as discrete Fourier transforms (DFTs) for this sample time. In addition, the sampling
instants are used to set the horizontal axis on time plots.

Sample Time in the Import Data dialog box
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Specify Estimation and Validation Data in the App
You should use different data sets to estimate and validate your model for best validation results.

In the System Identification app, Working Data refers to estimation data. Similarly, Validation Data
refers to the data set you use to validate a model. For example, when you plot the model output, the
input to the model is the input signal from the validation data set. This plot compares model output to
the measured output in the validation data set. Selecting Model resids performs residual analysis
using the validation data.

To specify Working Data, drag and drop the corresponding data icon into the Working Data
rectangle, as shown in the following figure. Similarly, to specify Validation Data, drag and drop the
corresponding data icon into the Validation Data rectangle. Alternatively, right-click the icon to
open the Data/model Info dialog box. Select the Use as Working Data or Use as Validation Data
and click Apply to specify estimation and validation data, respectively.

See Also

More About
• “Select Subsets of Data” on page 2-74
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Preprocess Data Using Quick Start
As a preprocessing shortcut for time-domain data, select Preprocess > Quick start to
simultaneously perform the following four actions:

• Subtract the mean value from each channel.

Note For information about when to subtract mean values from the data, see “Handling Offsets
and Trends in Data” on page 2-81.

• Split data into two parts.
• Specify the first part as estimation data for models (or Working Data).
• Specify the second part as Validation Data.
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Create Data Sets from a Subset of Signal Channels
You can create a new data set in the System Identification app by extracting subsets of input and
output channels from an existing data set.

To create a new data set from selected channels:

1 In the System Identification app, drag the icon of the data from which you want to select
channels to the Working Data rectangle.

2 Select Preprocess > Select channels to open the Select Channels dialog box.

The Inputs list displays the input channels and the Outputs list displays the output channels in
the selected data set.

3 In the Inputs list, select one or more channels in any of following ways:

• Select one channel by clicking its name.
• Select adjacent channels by pressing the Shift key while clicking the first and last channel

names.
• Select nonadjacent channels by pressing the Ctrl key while clicking each channel name.

Tip To exclude input channels and create time-series data, clear all selections by holding down
the Ctrl key and clicking each selection. To reset selections, click Revert.

4 In the Outputs list, select one or more channels in any of following ways:

• Select one channel by clicking its name.
• Select adjacent channels by pressing the Shift key while clicking the first and last channel

names.
• Select nonadjacent channels by pressing the Ctrl key while clicking each channel name.

Tip To reset selections, click Revert.

2 Data Import and Processing

2-24



5 In the Data name field, type the name of the new data set. Use a name that is unique in the Data
Board.

6 Click Insert to add the new data set to the Data Board in the System Identification app.
7 Click Close.
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Create Multiexperiment Data Sets in the App

Why Create Multiexperiment Data?
You can create a time-domain or frequency-domain data set in the System Identification app that
includes several experiments. Identifying models for multiexperiment data results in an average
model.

Experiments can mean data that was collected during different sessions, or portions of the data
collected during a single session. In the latter situation, you can create multiexperiment data by
splitting a single data set into multiple segments that exclude corrupt data, and then merge the good
data segments.

Limitations on Data Sets
You can only merge data sets that have all of the following characteristics:

• Same number of input and output channels.
• Different names. The name of each data set becomes the experiment name in the merged data set.
• Same input and output channel names.
• Same data domain (that is, time-domain data or frequency-domain data only).

Merging Data Sets
You can merge data sets using the System Identification app.

For example, suppose that you want to combine the data sets tdata, tdata2, tdata3, tdata4
shown in the following figure.

App Contains Four Data Sets to Merge
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To merge data sets in the app:

1 In the Operations area, select <--Preprocess > Merge experiments from the drop-down menu
to open the Merge Experiments dialog box.

2 In the System Identification app window, drag a data set icon to the Merge Experiments dialog
box, to the drop them here to be merged rectangle.

The name of the data set is added to the List of sets. Repeat for each data set you want to
merge.

tdata and tdata2 to Be Merged

Tip To empty the list, click Revert.
3 In the Data name field, type the name of the new data set. This name must be unique in the

Data Board.
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4 Click Insert to add the new data set to the Data Board in the System Identification app window.

Data Board Now Contains tdatam with Merged Experiments
5 Click Close to close the Merge Experiments dialog box.

Tip To get information about a data set in the System Identification app, right-click the data icon to
open the Data/model Info dialog box.

Extracting Specific Experiments from a Multiexperiment Data Set into
a New Data Set
When a data set already consists of several experiments, you can extract one or more of these
experiments into a new data set, using the System Identification app.

For example, suppose that tdatam consists of four experiments.

To create a new data set that includes only the first and third experiments in this data set:

1 In the System Identification app window, drag and drop the tdatam data icon to the Working
Data rectangle.

tdatam Is Set to Working Data
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2 In the Operations area, select Preprocess > Select experiments from the drop-down menu to
open the Select Experiment dialog box.

3 In the Experiments list, select one or more data sets in either of the following ways:

• Select one data set by clicking its name.
• Select adjacent data sets by pressing the Shift key while clicking the first and last names.
• Select nonadjacent data sets by pressing the Ctrl key while clicking each name.

4 In the Data name field, type the name of the new data set. This name must be unique in the
Data Board.

5 Click Insert to add the new data set to the Data Board in the System Identification app.
6 Click Close to close the Select Experiment dialog box.

See Also

More About
• “Select Subsets of Data” on page 2-74
• “Create Multiexperiment Data at the Command Line” on page 2-42
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Managing Data in the App

Viewing Data Properties
You can get information about each data set in the System Identification app by right-clicking the
corresponding data icon.

The Data/model Info dialog box opens. This dialog box describes the contents and the properties of
the corresponding data set. It also displays any associated notes and the command-line equivalent of
the operations you used to create this data.

Tip To view or modify properties for several data sets, keep this window open and right-click each
data set in the System Identification app. The Data/model Info dialog box updates as you select each
data set.

To displays the data properties in the MATLAB Command Window, click Present.

Renaming Data and Changing Display Color
You can rename data and change its display color by double-clicking the data icon in the System
Identification app.

The Data/model Info dialog box opens. This dialog box describes both the contents and the properties
of the data. The object description area displays the syntax of the operations you used to create the
data in the app.

The Data/model Info dialog box also lets you rename the data by entering a new name in the Data
name field.

You can also specify a new display color using three RGB values in the Color field. Each value is
between 0 to 1 and indicates the relative presence of red, green, and blue, respectively. For more
information about specifying default data color, see “Customizing the System Identification App” on
page 21-11.

Tip As an alternative to using three RGB values, you can enter any one of the following:

'y' 'r' 'b' 'c' 'g' 'm' 'k'

These represent yellow, red, blue, cyan, green, magenta, and black, respectively.

Information About the Data

You can enter comments about the origin and state of the data in the Diary And Notes area. For
example, you might want to include the experiment name, date, and the description of experimental
conditions. When you estimate models from this data, these notes are associated with the models.
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Clicking Present display portions of this information in the MATLAB Command Window.

Distinguishing Data Types
The background color of a data icon is color-coded, as follows:

• White background represents time-domain data.
• Blue background represents frequency-domain data.
• Yellow background represents frequency-response data.

Colors Representing Type of Data

Organizing Data Icons
You can rearrange data icons in the System Identification app by dragging and dropping the icons to
empty Data Board rectangles in the app.

Note You cannot drag and drop a data icon into the model area on the right.

When you need additional space for organizing data or model icons, select Options > Extra model/
data board in the System Identification app. This action opens an extra session window with blank
rectangles for data and models. The new window is an extension of the current session and does not
represent a new session.

Tip When you import or create data sets and there is insufficient space for the icons, an additional
session window opens automatically.

You can drag and drop data between the main System Identification app and any extra session
windows.

Type comments in the Notes field to describe the data sets. When you save a session, as described in
“Saving, Merging, and Closing Sessions” on page 21-4, all additional windows and notes are also
saved.
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Deleting Data Sets
To delete data sets in the System Identification app, drag and drop the corresponding icon into
Trash. You can also use the Delete key on your keyboard to move items to the Trash. Moving items
to Trash does not permanently delete these items.

Note You cannot delete a data set that is currently designated as Working Data or Validation
Data. You must first specify a different data set in the System Identification app to be Working Data
or Validation Data, as described in “Specify Estimation and Validation Data in the App” on page 2-
22.

To restore a data set from Trash, drag its icon from Trash to the Data or Model Board in the System
Identification app window. You can view the Trash contents by double-clicking the Trash icon.

Note You must restore data to the Data Board; you cannot drag data icons to the Model Board.

To permanently delete all items in Trash, select Options > Empty trash.

Exiting a session empties the Trash automatically.

Exporting Data to the MATLAB Workspace
The data you create in the System Identification app is not available in the MATLAB workspace until
you export the data set. Exporting to the MATLAB workspace is necessary when you need to perform
an operation on the data that is only available at the command line.

To export a data set to the MATLAB workspace, do one of the following:

• Drag and drop the corresponding icon to the To Workspace rectangle.
• Right-click the icon to open the Data/model Info dialog box. Click Export.

When you export data to the MATLAB workspace, the resulting variables have the same name as in
the System Identification app. For example, the following figure shows how to export the time-domain
data object datad.
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Exporting Data to the MATLAB Workspace

In this example, the MATLAB workspace contains a variable named data after export.
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Representing Time- and Frequency-Domain Data Using iddata
Objects

iddata Constructor
Requirements for Constructing an iddata Object

To construct an iddata object, you must have already imported data into the MATLAB workspace, as
described in “Representing Data in MATLAB Workspace” on page 2-8.

Constructing an iddata Object for Time-Domain Data

Use the following syntax to create a time-domain iddata object data:

data = iddata(y,u,Ts)

You can also specify additional properties, as follows:

data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)

For more information about accessing object properties, see “Properties”.

In this example, Ts is the sample time, or the time interval, between successive data samples. For
uniformly sampled data, Ts is a scalar value equal to the sample time of your experiment. The default
time unit is seconds, but you can set it to a new value using the TimeUnit property. For more
information about iddata time properties, see “Modifying Time and Frequency Vectors” on page 2-
57.

For nonuniformly sampled data, specify Ts as [], and set the value of the SamplingInstants
property as a column vector containing individual time values. For example:

data = iddata(y,u,[],'SamplingInstants',TimeVector)

Where TimeVector represents a vector of time values.

Note  You can modify the property SamplingInstants by setting it to a new vector with the length
equal to the number of data samples.

To represent time-series data, use the following syntax:

ts_data = iddata(y,[],Ts)

where y is the output data, [] indicates empty input data, and Ts is the sample time.

The following example shows how to create an iddata object using single-input/single-output (SISO)
data from dryer2.mat. The input and output each contain 1000 samples with the sample time of
0.08 second.

% Load input u2 and output y2 .
load dryer2                 
% Create iddata object.
data = iddata(y2,u2,0.08)
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data =

Time domain data set with 1000 samples.
Sample time: 0.08 seconds               
                                        
Outputs      Unit (if specified)        
   y1                                   
                                        
Inputs       Unit (if specified)        
   u1                                   
                                        

The default channel name 'y1' is assigned to the first and only output channel. When y2 contains
several channels, the channels are assigned default names 'y1','y2','y2',...,'yn'. Similarly,
the default channel name 'u1' is assigned to the first and only input channel. For more information
about naming channels, see “Naming, Adding, and Removing Data Channels” on page 2-59.

Constructing an iddata Object for Frequency-Domain Data

Frequency-domain data is the Fourier transform of the input and output signals at specific frequency
values. To represent frequency-domain data, use the following syntax to create the iddata object:

data = iddata(y,u,Ts,'Frequency',w)

'Frequency' is an iddata property that specifies the frequency values w, where w is the frequency
column vector that defines the frequencies at which the Fourier transform values of y and u are
computed. Ts is the time interval between successive data samples in seconds for the original time-
domain data. w, y, and u have the same number of rows.

Note You must specify the frequency vector for frequency-domain data.

For more information about iddata time and frequency properties, see “Modifying Time and
Frequency Vectors” on page 2-57.

To specify a continuous-time system, set Ts to 0.

You can specify additional properties when you create the iddata object, as follows:

data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)

For more information about accessing object properties, see “Properties”.

iddata Properties
To view the properties of the iddata object, use the get command. For example, type the following
commands at the prompt:

% Load input u2 and output y2.
load dryer2                 
% Create iddata object.
data = iddata(y2,u2,0.08);  
% Get property values of data.
get(data)
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ans = struct with fields:
              Domain: 'Time'
                Name: ''
          OutputData: [1000x1 double]
                   y: 'Same as OutputData'
          OutputName: {'y1'}
          OutputUnit: {''}
           InputData: [1000x1 double]
                   u: 'Same as InputData'
           InputName: {'u1'}
           InputUnit: {''}
              Period: Inf
         InterSample: 'zoh'
                  Ts: 0.0800
              Tstart: []
    SamplingInstants: [1000x0 double]
            TimeUnit: 'seconds'
      ExperimentName: 'Exp1'
               Notes: {}
            UserData: []

For a complete description of all properties, see the iddata reference page.

You can specify properties when you create an iddata object using the constructor syntax:

data = iddata(y,u,Ts,'Property1',Value1,...,'PropertyN',ValueN)

To change property values for an existing iddata object, use the set command or dot notation. For
example, to change the sample time to 0.05, type the following at the prompt:

set(data,'Ts',0.05)

or equivalently:

data.ts = 0.05

Property names are not case sensitive. You do not need to type the entire property name if the first
few letters uniquely identify the property.

Tip You can use data.y as an alternative to data.OutputData to access the output values, or use
data.u as an alternative to data.InputData to access the input values.

An iddata object containing frequency-domain data includes frequency-specific properties, such as
Frequency for the frequency vector and Units for frequency units (instead of Tstart and
SamplingInstants).

To view the property list, type the following command sequence at the prompt:

% Load input u2 and output y2.
  load dryer2;
% Create iddata object.
  data = iddata(y2,u2,0.08);
% Take the Fourier transform of the data
% transforming it to frequency domain.
  data = fft(data)           
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data =

Frequency domain data set with responses at 501 frequencies.
Frequency range: 0 to 39.27 rad/seconds
Sample time: 0.08 seconds                                                                            
                                                                                                     
Outputs      Unit (if specified)                                                                     
   y1                                                                                                
                                                                                                     
Inputs       Unit (if specified)                                                                     
   u1                                                                                                
                                                                                                     

% Get property values of data.
  get(data)

ans = struct with fields:
            Domain: 'Frequency'
              Name: ''
        OutputData: [501x1 double]
                 y: 'Same as OutputData'
        OutputName: {'y1'}
        OutputUnit: {''}
         InputData: [501x1 double]
                 u: 'Same as InputData'
         InputName: {'u1'}
         InputUnit: {''}
            Period: Inf
       InterSample: 'zoh'
                Ts: 0.0800
     FrequencyUnit: 'rad/TimeUnit'
         Frequency: [501x1 double]
          TimeUnit: 'seconds'
    ExperimentName: 'Exp1'
             Notes: {}
          UserData: []

Select Data Channels, I/O Data and Experiments in iddata Objects
Subreferencing Input and Output Data

Subreferencing data and its properties lets you select data values and assign new data and property
values.

Use the following general syntax to subreference specific data values in iddata objects:

data(samples,outputchannels,inputchannels,experimentname)

In this syntax, samples specify one or more sample indexes, outputchannels and inputchannels
specify channel indexes or channel names, and experimentname specifies experiment indexes or
names.

For example, to retrieve samples 5 through 30 in the iddata object data and store them in a new
iddata object data_sub, use the following syntax:

data_sub = data(5:30)
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You can also use logical expressions to subreference data. For example, to retrieve all data values
from a single-experiment data set that fall between sample instants 1.27 and 9.3 in the iddata
object data and assign them to data_sub, use the following syntax:

data_sub = data(data.sa>1.27&data.sa<9.3)

Note You do not need to type the entire property name. In this example, sa in data.sa uniquely
identifies the SamplingInstants property.

You can retrieve the input signal from an iddata object using the following commands:

u = get(data,'InputData')

or

data.InputData

or

data.u    % u is the abbreviation for InputData

Similarly, you can retrieve the output data using

data.OutputData 

or

data.y    % y is the abbreviation for OutputData

Subreferencing Data Channels

Use the following general syntax to subreference specific data channels in iddata objects:

data(samples,outputchannels,inputchannels,experiment)

In this syntax, samples specify one or more sample indexes, outputchannels and inputchannels
specify channel indexes or channel names, and experimentname specifies experiment indexes or
names.

To specify several channel names, you must use a cell array of character vectors of names.

For example, suppose the iddata object data contains three output channels (named y1, y2, and
y3), and four input channels (named u1, u2, u3, and u4). To select all data samples in y3, u1, and u4,
type the following command at the prompt:

% Use a cell array to reference
% input channels 'u1' and 'u4'
data_sub = data(:,'y3',{'u1','u4'})

or equivalently

% Use channel indexes 1 and 4
% to reference the input channels
  data_sub = data(:,3,[1 4])
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Tip Use a colon (:) to specify all samples or all channels, and the empty matrix ([]) to specify no
samples or no channels.

If you want to create a time-series object by extracting only the output data from an iddata object,
type the following command:

data_ts = data(:,:,[])

You can assign new values to subreferenced variables. For example, the following command assigns
the first 10 values of output channel 1 of data to values in samples 101 through 110 in the output
channel 2 of data1. It also assigns the values in samples 101 through 110 in the input channel 3 of
data1 to the first 10 values of input channel 1 of data.

data(1:10,1,1) = data1(101:110,2,3)

Subreferencing Experiments

Use the following general syntax to subreference specific experiments in iddata objects:

data(samples,outputchannels,inputchannels,experimentname)

In this syntax, samples specify one or more sample indexes, outputchannels and inputchannels
specify channel indexes or channel names, and experimentname specifies experiment indexes or
names.

When specifying several experiment names, you must use a cell array of character vectors of names.
The iddata object stores experiments name in the ExperimentName property.

For example, suppose the iddata object data contains five experiments with default names, Exp1,
Exp2, Exp3, Exp4, and Exp5. Use the following syntax to subreference the first and fifth experiment
in data:

data_sub = data(:,:,:,{'Exp1','Exp5'}) % Using experiment name

or

data_sub = data(:,:,:,[1 5])           % Using experiment index

Tip Use a colon (:) to denote all samples and all channels, and the empty matrix ([]) to specify no
samples and no channels.

Alternatively, you can use the getexp command. The following example shows how to subreference
the first and fifth experiment in data:

data_sub = getexp(data,{'Exp1','Exp5'}) % Using experiment name

or

data_sub = getexp(data,[1 5])           % Using experiment index

The following example shows how to retrieve the first 100 samples of output channels 2 and 3 and
input channels 4 to 8 of Experiment 3:

dat(1:100,[2,3],[4:8],3)
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Increasing Number of Channels or Data Points of iddata Objects
iddata Properties Storing Input and Output Data

The InputData iddata property stores column-wise input data, and the OutputData property
stores column-wise output data. For more information about accessing iddata properties, see
“iddata Properties” on page 2-35.

Horizontal Concatenation

Horizontal concatenation of iddata objects creates a new iddata object that appends all
InputData information and all OutputData. This type of concatenation produces a single object
with more input and output channels. For example, the following syntax performs horizontal
concatenation on the iddata objects data1,data2,...,dataN:

data = [data1,data2,...,dataN]

This syntax is equivalent to the following longer syntax:

data.InputData =
     [data1.InputData,data2.InputData,...,dataN.InputData]
data.OutputData =
     [data1.OutputData,data2.OutputData,...,dataN.OutputData]

For horizontal concatenation, data1,data2,...,dataN must have the same number of samples and
experiments , and the sameTs and Tstart values.

The channels in the concatenated iddata object are named according to the following rules:

• Combining default channel names — If you concatenate iddata objects with default channel
names, such as u1 and y1, channels in the new iddata object are automatically renamed to avoid
name duplication.

• Combining duplicate input channels — If data1,data2,...,dataN have input channels with
duplicate user-defined names, such that dataK contains channel names that are already present
in dataJ with J < K, the dataK channels are ignored.

• Combining duplicate output channels — If data1,data2,...,dataN have input channels with
duplicate user-defined names, only the output channels with unique names are added during the
concatenation.

Vertical Concatenation

Vertical concatenation of iddata objects creates a new iddata object that vertically stacks the input
and output data values in the corresponding data channels. The resulting object has the same number
of channels, but each channel contains more data points. For example, the following syntax creates a
data object such that its total number of samples is the sum of the samples in
data1,data2,...,dataN.

data = [data1;data2;... ;dataN]

This syntax is equivalent to the following longer syntax:

data.InputData =
     [data1.InputData;data2.InputData;...;dataN.InputData]
data.OutputData =
     [data1.OutputData;data2.OutputData;...;dataN.OutputData]
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For vertical concatenation, data1,data2,...,dataN must have the same number of input
channels, output channels, and experiments.

See Also
iddata

More About
• “Representing Data in MATLAB Workspace” on page 2-8
• “Managing iddata Objects” on page 2-57
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Create Multiexperiment Data at the Command Line

Why Create Multiexperiment Data Sets?
You can create iddata objects that contain several experiments. Identifying models for an iddata
object with multiple experiments results in an average model.

In the System Identification Toolbox product, experiments can either mean data collected during
different sessions, or portions of the data collected during a single session. In the latter situation, you
can create a multiexperiment iddata object by splitting the data from a single session into multiple
segments to exclude bad data, and merge the good data portions.

Note The idfrd object does not support the iddata equivalent of multiexperiment data.

Limitations on Data Sets
You can only merge data sets that have all of the following characteristics:

• Same number of input and output channels.
• Same input and output channel names.
• Same data domain (that is, time-domain data or frequency-domain data).

Entering Multiexperiment Data Directly
To construct an iddata object that includes N data sets, you can use this syntax:

data = iddata(y,u,Ts)

where y, u, and Ts are 1-by-N cell arrays containing data from the different experiments. Similarly,
when you specify Tstart, Period, InterSample, and SamplingInstants properties of the
iddata object, you must assign their values as 1-by-N cell arrays.

Merging Data Sets
This example shows how to create a multiexperiment iddata object by merging iddata objects,
where each contains data from a single experiment or is a multiexperiment data set.

Load iddata objects z1 and z3.

load iddata1     
load iddata3

Merge experiments z1 and z3 into the iddata object z.

z = merge(z1,z3)

z =
Time domain data set containing 2 experiments.

Experiment   Samples      Sample Time          
   Exp1         300            0.1             
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   Exp2         300            1               
                                               
Outputs      Unit (if specified)               
   y1                                          
                                               
Inputs       Unit (if specified)               
   u1                                          
                                               

These commands create an iddata object that contains two experiments, where the experiments are
assigned default names 'Exp1' and 'Exp2', respectively.

Adding Experiments to an Existing iddata Object
You can add experiments individually to an iddata object as an alternative approach to merging data
sets.

For example, to add the experiments in the iddata object dat4 to data, use the following syntax:

data(:,:,:,'Run4') = dat4

This syntax explicitly assigns the experiment name 'Run4' to the new experiment. The Experiment
property of the iddata object stores experiment names.

For more information about subreferencing experiments in a multiexperiment data set, see
“Subreferencing Experiments” on page 2-39.

See Also

More About
• “Select Subsets of Data” on page 2-74
• “Dealing with Multi-Experiment Data and Merging Models” on page 2-44
• “Create Multiexperiment Data Sets in the App” on page 2-26
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Dealing with Multi-Experiment Data and Merging Models
This example shows how to deal with multiple experiments and merging models when working with
System Identification Toolbox™ for estimating and refining models.

Introduction

The analysis and estimation functions in System Identification Toolbox let you work with multiple
batches of data. Essentially, if you have performed multiple experiments and recorded several input-
output datasets, you can group them up into a single IDDATA object and use them with any
estimation routine.

In some cases, you may want to "split up" your (single) measurement dataset to remove portions
where the data quality is not good. For example, portion of data may be unusable due to external
disturbance or a sensor failure. In those cases, each good portion of data may be separated out and
then combined into a single multi-experiment IDDATA object.

For example, let us look at the dataset iddemo8.mat:

load iddemo8

The name of the data object is dat, and let us view it.

dat

dat =

Time domain data set with 1000 samples.
Sample time: 1 seconds                  
                                        
Outputs      Unit (if specified)        
   y1                                   
                                        
Inputs       Unit (if specified)        
   u1                                   
                                        

plot(dat)
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We see that there are some problems with the output around sample 250-280 and around samples
600 to 650. These might have been sensor failures.

Therefore split the data into three separate experiments and put then into a multi-experiment data
object:

d1 = dat(1:250);
d2 = dat(281:600);
d3 = dat(651:1000);
d = merge(d1,d2,d3) % merge lets you create multi-exp IDDATA object

d =
Time domain data set containing 3 experiments.

Experiment   Samples      Sample Time          
   Exp1         250            1               
   Exp2         320            1               
   Exp3         350            1               
                                               
Outputs      Unit (if specified)               
   y1                                          
                                               
Inputs       Unit (if specified)               
   u1                                          
                                               

The different experiments can be given other names, for example:
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d.exp = {'Period 1';'Day 2';'Phase 3'}

d =
Time domain data set containing 3 experiments.

Experiment     Samples      Sample Time        
   Period 1       250            1             
   Day 2          320            1             
   Phase 3        350            1             
                                               
Outputs        Unit (if specified)             
   y1                                          
                                               
Inputs         Unit (if specified)             
   u1                                          
                                               

To examine it, use plot, as in plot(d).

Performing Estimation Using Multi-Experiment Data

As mentioned before, all model estimation routines accept multi-experiment data and take into
account that they are recorded at different periods. Let us use the two first experiments for
estimation and the third one for validation:

de = getexp(d,[1,2]);      % subselection is done using  the command GETEXP 
dv = getexp(d,'Phase 3');  % using numbers or names.
m1 = arx(de,[2 2 1]);
m2 = n4sid(de,2);
m3 = armax(de,[2 2 2 1]);
compare(dv,m1,m2,m3)
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The compare command also accepts multiple experiments. Use the right click menu to pick the
experiment to use, one at a time.

compare(d,m1,m2,m3)
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Also, spa, etfe, resid, predict, sim operate in the same way for multi-experiment data, as they do
for single experiment data.

Merging Models After Estimation

There is another way to deal with separate data sets: a model can be computed for each set, and then
the models can be merged:

m4 = armax(getexp(de,1),[2 2 2 1]);
m5 = armax(getexp(de,2),[2 2 2 1]);
m6 = merge(m4,m5); % m4 and m5 are merged into m6

This is conceptually the same as computing m from the merged set de, but it is not numerically the
same. Working on de assumes that the signal-to-noise ratios are (about) the same in the different
experiments, while merging separate models makes independent estimates of the noise levels. If the
conditions are about the same for the different experiments, it is more efficient to estimate directly
on the multi-experiment data.

We can check the models m3 and m6 that are both ARMAX models obtained on the same data in two
different ways:

[m3.a;m6.a]

ans = 2×3

    1.0000   -1.5034    0.7008
    1.0000   -1.5022    0.7000
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[m3.b;m6.b]

ans = 2×3

         0    1.0023    0.5029
         0    1.0035    0.5028

[m3.c;m6.c]

ans = 2×3

    1.0000   -0.9744    0.1578
    1.0000   -0.9751    0.1584

compare(dv,m3,m6)

Case Study: Concatenating Vs. Merging Independent Datasets

We now turn to another situation. Let us consider two data sets generated by the system m0. The
system is given by:

m0

m0 =
  Discrete-time identified state-space model:
    x(t+Ts) = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
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  A = 
             x1        x2        x3
   x1    0.5296    -0.476    0.1238
   x2    -0.476  -0.09743    0.1354
   x3    0.1238    0.1354   -0.8233
 
  B = 
             u1        u2
   x1    -1.146  -0.03763
   x2     1.191    0.3273
   x3         0         0
 
  C = 
            x1       x2       x3
   y1  -0.1867  -0.5883  -0.1364
   y2   0.7258        0   0.1139
 
  D = 
          u1     u2
   y1  1.067      0
   y2      0      0
 
  K = 
       y1  y2
   x1   0   0
   x2   0   0
   x3   0   0
 
Sample time: 1 seconds
  
Parameterization:
   STRUCTURED form (some fixed coefficients in  A, B, C).
   Feedthrough: on some input channels
   Disturbance component: none
   Number of free coefficients: 23
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

The data sets that have been collected are z1 and z2, obtained from m0 with different inputs, noise
and initial conditions. These datasets are obtained from iddemo8.mat that was loaded earlier.

pause off

First data set:

plot(z1) %generates a separate plot for each I/O pair if pause is on; showing only the last one here
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The second set:

plot(z2) %generates a separate plot for each I/O pair if pause is on; showing only the last one here
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If we just concatenate the data we obtained:

zzl = [z1;z2]

zzl =

Time domain data set with 400 samples.
Sample time: 1 seconds                 
                                       
Outputs      Unit (if specified)       
   y1                                  
   y2                                  
                                       
Inputs       Unit (if specified)       
   u1                                  
   u2                                  
                                       

plot(zzl)
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pause on

A discrete-time state-space model can be obtained by using ssest:

ml = ssest(zzl,3,'Ts',1, 'Feedthrough', [true, false]);

Compare the bode response for models m0 and ml:

clf
bode(m0,ml)
legend('show')
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This is not a very good model, as observed from the four Bode plots above.

Now, instead treat the two data sets as different experiments:

zzm = merge(z1,z2)

zzm =
Time domain data set containing 2 experiments.

Experiment   Samples      Sample Time          
   Exp1         200            1               
   Exp2         200            1               
                                               
Outputs      Unit (if specified)               
   y1                                          
   y2                                          
                                               
Inputs       Unit (if specified)               
   u1                                          
   u2                                          
                                               

% The model for this data can be estimated as before (watching progress this time)
mm = ssest(zzm,3,'Ts',1,'Feedthrough',[true, false], ssestOptions('Display', 'on'));

Let us compare the Bode plots of the true system (blue)

the model from concatenated data (green) and the model from the
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merged data set (red):

clf
bode(m0,'b',ml,'g',mm,'r')
legend('show')

The merged data give a better model, as observed from the plot above.

Conclusions

In this example we analyzed how to use multiple data sets together for estimation of one model. This
technique is useful when you have multiple datasets from independent experiment runs or when you
segment data into multiple sets to remove bad segments. Multiple experiments can be packaged into
a single IDDATA object, which is then usable for all estimation and analysis requirements. This
technique works for both time and frequency domain iddata.

It is also possible to merge models after estimation. This technique can be used to "average out"
independently estimated models. If the noise characteristics on multiple datasets are different,
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merging models after estimation works better than merging the datasets themselves before
estimation.

See Also

More About
• “Select Subsets of Data” on page 2-74
• “Create Multiexperiment Data Sets in the App” on page 2-26
• “Create Multiexperiment Data at the Command Line” on page 2-42
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Managing iddata Objects

Modifying Time and Frequency Vectors
The iddata object stores time-domain data or frequency-domain data and has several properties that
specify the time or frequency values. To modify the time or frequency values, you must change the
corresponding property values.

Note  You can modify the property SamplingInstants by setting it to a new vector with the length
equal to the number of data samples. For more information, see “Constructing an iddata Object for
Time-Domain Data” on page 2-34.

The following tables summarize time-vector and frequency-vector properties, respectively, and
provides usage examples. In each example, data is an iddata object.

Note Property names are not case sensitive. You do not need to type the entire property name if the
first few letters uniquely identify the property.
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iddata Time-Vector Properties

Property Description Syntax Example
Ts Sample time.

• For a single experiment, Ts is a
scalar value.

• For multiexperiment data with
Ne experiments, Ts is a 1-by-Ne
cell array, and each cell
contains the sample time of the
corresponding experiment.

To set the sample time to 0.05:

set(data,'ts',0.05)

or

data.ts = 0.05

Tstart Starting time of the experiment.

• For a single experiment, Ts is a
scalar value.

• For multiexperiment data with
Ne experiments, Ts is a 1-by-Ne
cell array, and each cell
contains the sample time of the
corresponding experiment.

To change starting time of the first
data sample to 24:

data.Tstart = 24

Time units are set by the property
TimeUnit.

SamplingInstants Time values in the time vector,
computed from the properties
Tstart and Ts.

• For a single experiment,
SamplingInstants is an N-
by-1 vector.

• For multiexperiment data with
Ne experiments, this property is
a 1-by-Ne cell array, and each
cell contains the sampling
instants of the corresponding
experiment.

To retrieve the time vector for
iddata object data, use:

get(data,'sa')

To plot the input data as a function
of time:

plot(data.sa,data.u)

Note sa is the first two letters of
the SamplingInstants property
that uniquely identifies this
property.

TimeUnit Unit of time. Specify as one of the
following: 'nanoseconds',
'microseconds',
'milliseconds', 'seconds',
'minutes', 'hours', 'days',
'weeks', 'months', and
'years'.

To change the unit of the time
vector to milliseconds:

data.ti = 'milliseconds'
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iddata Frequency-Vector Properties

Property Description Syntax Example
Frequency Frequency values at which the

Fourier transforms of the signals
are defined.

• For a single experiment,
Frequency is a scalar value.

• For multiexperiment data with
Ne experiments, Frequency is
a 1-by-Ne cell array, and each
cell contains the frequencies of
the corresponding experiment.

To specify 100 frequency values in
log space, ranging between 0.1
and 100, use the following syntax:

data.freq =
 logspace(-1,2,100)

FrequencyUnit Unit of Frequency. Specify as one
of the following: be one of the
following: 'rad/TimeUnit',
'cycles/TimeUnit', 'rad/s',
'Hz', 'kHz', 'MHz', 'GHz', and,
'rpm'. Default: 'rad/TimeUnit'

For multi-experiment data with Ne
experiments, Units is a 1-by-Ne
cell array, and each cell contains
the frequency unit for each
experiment.

Set the frequency unit to Hz:

data.FrequencyUnit = 'Hz'

Note that changing the frequency
unit does not scale the frequency
vector. For a proper translation of
units, use chgFreqUnit.

Naming, Adding, and Removing Data Channels
What Are Input and Output Channels?

A multivariate system might contain several input variables or several output variables, or both.
When an input or output signal includes several measured variables, these variables are called
channels.

Naming Channels

The iddata properties InputName and OutputName store the channel names for the input and
output signals. When you plot the data, you use channel names to select the variable displayed on the
plot. If you have multivariate data, it is helpful to assign a name to each channel that describes the
measured variable. For more information about selecting channels on a plot, see “Selecting Measured
and Noise Channels in Plots” on page 21-10.

You can use the set command to specify the names of individual channels. For example, suppose
data contains two input channels (voltage and current) and one output channel (temperature). To set
these channel names, use the following syntax:

set(data,'InputName',{'Voltage','Current'},
         'OutputName','Temperature')

Tip You can also specify channel names as follows:
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data.una = {'Voltage','Current')
data.yna = 'Temperature'

una is equivalent to the property InputName, and yna is equivalent to OutputName.

If you do not specify channel names when you create the iddata object, the toolbox assigns default
names. By default, the output channels are named 'y1','y2',...,'yn', and the input channels
are named 'u1','u2',...,'un'.

Adding Channels

You can add data channels to an iddata object.

For example, consider an iddata object named data that contains an input signal with four
channels. To add a fifth input channel, stored as the vector Input5, use the following syntax:

data.u(:,5) = Input5;

Input5 must have the same number of rows as the other input channels. In this example,
data.u(:,5) references all samples as (indicated by :) of the input signal u and sets the values of
the fifth channel. This channel is created when assigning its value to Input5.

You can also combine input channels and output channels of several iddata objects into one iddata
object using concatenation. For more information, see “Increasing Number of Channels or Data
Points of iddata Objects” on page 2-40.

Modifying Channel Data

After you create an iddata object, you can modify or remove specific input and output channels, if
needed. You can accomplish this by subreferencing the input and output matrices and assigning new
values.

For example, suppose the iddata object data contains three output channels (named y1, y2, and
y3), and four input channels (named u1, u2, u3, and u4). To replace data such that it only contains
samples in y3, u1, and u4, type the following at the prompt:

data = data(:,3,[1 4])

The resulting data object contains one output channel and two input channels.

Subreferencing iddata Objects
See “Select Data Channels, I/O Data and Experiments in iddata Objects” on page 2-37.

Concatenating iddata Objects
See “Increasing Number of Channels or Data Points of iddata Objects” on page 2-40.
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Representing Frequency-Response Data Using idfrd Objects

idfrd Constructor
The idfrd represents complex frequency-response data. Before you can create an idfrd object, you
must import your data as described in “Frequency-Response Data Representation” on page 2-10.

Note The idfrd object can only encapsulate one frequency-response data set. It does not support
the iddata equivalent of multiexperiment data.

Use the following syntax to create the data object fr_data:

fr_data = idfrd(response,f,Ts)

Suppose that ny is the number of output channels, nu is the number of input channels, and nf is a
vector of frequency values. response is an ny-by-nu-by-nf 3-D array. f is the frequency vector that
contains the frequencies of the response.Ts is the sample time, which is used when measuring or
computing the frequency response. If you are working with a continuous-time system, set Ts to 0.

response(ky,ku,kf), where ky, ku, and kf reference the kth output, input, and frequency value,
respectively, is interpreted as the complex-valued frequency response from input ku to output ky at
frequency f(kf).

Note When you work at the command line, you can only create idfrd objects from complex values
of G(eiw). For a SISO system, response can be a vector.

You can specify object properties when you create the idfrd object using the constructor syntax:

fr_data = idfrd(response,f,Ts,
               'Property1',Value1,...,'PropertyN',ValueN)

idfrd Properties
To view the properties of the idfrd object, you can use the get command. The following example
shows how to create an idfrd object that contains 100 frequency-response values with a sample
time of 0.1 s and get its properties:

f = logspace(-1,1,100);
[mag, phase] = bode(idtf([1 .2],[1 2 1 1]),f);
response = mag.*exp(1j*phase*pi/180);
fr_data = idfrd(response,f,0.1);
get(fr_data)

      FrequencyUnit: 'rad/TimeUnit'
             Report: [1x1 idresults.frdest]
       SpectrumData: []
     CovarianceData: []
    NoiseCovariance: []
        InterSample: {'zoh'}
       ResponseData: [1x1x100 double]
            IODelay: 0

 Representing Frequency-Response Data Using idfrd Objects

2-61



         InputDelay: 0
        OutputDelay: 0
                 Ts: 0.1000
           TimeUnit: 'seconds'
          InputName: {''}
          InputUnit: {''}
         InputGroup: [1x1 struct]
         OutputName: {''}
         OutputUnit: {''}
        OutputGroup: [1x1 struct]
              Notes: [0x1 string]
           UserData: []
               Name: ''
       SamplingGrid: [1x1 struct]
          Frequency: [100x1 double]

For a complete description of all idfrd object properties, see the idfrd reference page.

To change property values for an existing idfrd object, use the set command or dot notation. For
example, to change the name of the idfrd object, type the following command sequence at the
prompt:

fr_data.Name = 'DC_Converter';

Select I/O Channels and Data in idfrd Objects
You can reference specific data values in the idfrd object using the following syntax:

fr_data(outputchannels,inputchannels)

Reference specific channels by name or by channel index.

Tip Use a colon (:) to specify all channels, and use the empty matrix ([]) to specify no channels.

For example, the following command references frequency-response data from input channel 3 to
output channel 2:

fr_data(2,3) 

You can also access the data in specific channels using channel names. To list multiple channel
names, use a cell array. For example, to retrieve the power output, and the voltage and speed inputs,
use the following syntax:

fr_data('power',{'voltage','speed'})

To retrieve only the responses corresponding to frequency values between 200 and 300, use the
following command:

fr_data_sub = fselect(fr_data,[200:300])

You can also use logical expressions to subreference data. For example, to retrieve all frequency-
response values between frequencies 1.27 and 9.3 in the idfrd object fr_data, use the following
syntax:

fr_data_sub = fselect(fr_data,fr_data.f>1.27&fr_data.f<9.3)
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Tip Use end to reference the last sample number in the data. For example, data(77:end).

Note You do not need to type the entire property name. In this example, f in fr_data.f uniquely
identifies the Frequency property of the idfrd object.

Adding Input or Output Channels in idfrd Objects
About Concatenating idfrd Objects

The horizontal and vertical concatenation of idfrd objects combine information in the
ResponseData properties of these objects. ResponseData is an ny-by-nu-by-nf array that stores
the response of the system, where ny is the number of output channels, nu is the number of input
channels, and nf is a vector of frequency values (see the ResponseData property description in
idfrd).

Horizontal Concatenation of idfrd Objects

The following syntax creates a new idfrd object data that contains the horizontal concatenation of
data1,data2,...,dataN:

data = [data1,data2,...,dataN]

data contains the frequency responses from all of the inputs in data1,data2,...,dataN to the
same outputs. The following diagram is a graphical representation of horizontal concatenation of
frequency-response data. The (j,i,:) vector of the resulting response data represents the
frequency response from the ith input to the jth output at all frequencies.

Note Horizontal concatenation of idfrd objects requires that they have the same outputs and
frequency vectors. If the output channel names are different and their dimensions are the same, the
concatenation operation resets the output names to their default values.

Vertical Concatenation of idfrd Objects

The following syntax creates a new idfrd object data that contains the vertical concatenation of
data1,data2,...,dataN:

data = [data1;data2;... ;dataN]

The resulting idfrd object data contains the frequency responses from the same inputs in
data1,data2,...,dataN to all the outputs. The following diagram is a graphical representation of
vertical concatenation of frequency-response data. The (j,i,:) vector of the resulting response
data represents the frequency response from the ith input to the jth output at all frequencies.

Note Vertical concatenation of idfrd objects requires that they have the same inputs and frequency
vectors. If the input channel names are different and their dimensions are the same, the
concatenation operation resets the input names to their default values.
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Concatenating Noise Spectrum Data of idfrd Objects

When the SpectrumData property of individual idfrd objects is not empty, horizontal and vertical
concatenation handle SpectrumData, as follows.

In case of horizontal concatenation, there is no meaningful way to combine the SpectrumData of
individual idfrd objects and the resulting SpectrumData property is empty. An empty property
results because each idfrd object has its own set of noise channels, where the number of noise
channels equals the number of outputs. When the resulting idfrd object contains the same output
channels as each of the individual idfrd objects, it cannot accommodate the noise data from all the
idfrd objects.

In case of vertical concatenation, the toolbox concatenates individual noise models diagonally. The
following shows that data.SpectrumData is a block diagonal matrix of the power spectra and cross
spectra of the output noise in the system:

data . s =
data1.s 0

⋱
0 dataN . s

s in data.s is the abbreviation for the SpectrumData property name.

Managing idfrd Objects
Subreferencing idfrd Objects

See “Select I/O Channels and Data in idfrd Objects” on page 2-62.

Concatenating idfrd Objects

See “Adding Input or Output Channels in idfrd Objects” on page 2-63.

Operations that Create idfrd Objects
The following operations create idfrd objects:

• Constructing idfrd objects.
• Estimating nonparametric models using etfe, spa, and spafdr. For more information, see

“Frequency-Response Models”.
• Converting the Control System Toolbox frd object. For more information, see “Using Identified

Models for Control Design Applications” on page 19-2.
• Converting any linear dynamic system using the idfrd command.

For example:

sys_idpoly = idpoly([1 2 1],[0 2],'Ts',1);
G = idfrd(sys_idpoly,linspace(0,pi,128))

G =
IDFRD model.
Contains Frequency Response Data for 1 output(s) and 1 input(s), and the spectra for disturbances at the outputs.
Response data and disturbance spectra are available at 128 frequency points, ranging from 0 rad/s to 3.142 rad/s.
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Sample time: 1 seconds
Status:                                                         
Created by direct construction or transformation. Not estimated.
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Is Your Data Ready for Modeling?
Before you start estimating models from data, you should check your data for the presence of any
undesirable characteristics. For example, you might plot the data to identify drifts and outliers. You
plot analysis might lead you to preprocess your data before model estimation.

The following data plots are available in the toolbox:

• Time plot — Shows data values as a function of time.

Tip You can infer time delays from time plots, which are required inputs to most parametric
models. A time delay is the time interval between the change in input and the corresponding
change in output.

• Spectral plot — Shows a periodogram that is computed by taking the absolute squares of the
Fourier transforms of the data, dividing by the number of data points, and multiplying by the
sample time.

• Frequency-response plot — For frequency-response data, shows the amplitude and phase of the
frequency-response function on a Bode plot. For time- and frequency-domain data, shows the
empirical transfer function estimate (see etfe) .

See Also

Related Examples
• “How to Analyze Data Using the advice Command” on page 2-73
• “How to Plot Data in the App” on page 2-67
• “How to Plot Data at the Command Line” on page 2-71

More About
• “Ways to Prepare Data for System Identification” on page 2-5
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How to Plot Data in the App

How to Plot Data in the App
After importing data into the System Identification app, as described in “Represent Data”, you can
plot the data.

To create one or more plots, select the corresponding check box in the Data Views area of the
System Identification app.

An active data icon has a thick line in the icon, while an inactive data set has a thin line. Only active
data sets appear on the selected plots. To toggle including and excluding data on a plot, click the
corresponding icon in the System Identification app. Clicking the data icon updates any plots that are
currently open.

When you have several data sets, you can view different input-output channel pair by selecting that
pair from the Channel menu. For more information about selecting different input and output pairs,
see “Selecting Measured and Noise Channels in Plots” on page 21-10.

In this example, data and dataff are active and appear on the three selected plots.

To close a plot, clear the corresponding check box in the System Identification app.

Tip To get information about working with a specific plot, select a help topic from the Help menu in
the plot window.

The plots you create using the System Identification app provide options that are specific to the
System Identification Toolbox product, such as selecting specific channel pairs in a multivariate
signals or converting frequency units between Hertz and radians per second.

Manipulating a Time Plot
The Time plot only shows time-domain data. In this example, data1 is displayed on the time plot
because, of the three data sets, it is the only one that contains time-domain input and output.
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Time Plot of data1

The following table summarizes options that are specific to time plots, which you can select from the
plot window menus. For general information about working with System Identification Toolbox plots,
see “Working with Plots” on page 21-8.

Time Plot Options

Action Command
Toggle input display between piece-wise
continuous (zero-order hold) and linear
interpolation (first-order hold) between samples.

Note This option only affects the display and not
the intersample behavior specified when
importing the data.

Select Style > Staircase input for zero-order
hold or Style > Regular input for first-order
hold.

Manipulating Data Spectra Plot
The Data spectra plot shows a periodogram or a spectral estimate of data1 and data3fd.

The periodogram is computed by taking the absolute squares of the Fourier transforms of the data,
dividing by the number of data points, and multiplying by the sample time. The spectral estimate for
time-domain data is a smoothed spectrum calculated using spa. For frequency-domain data, the Data
spectra plot shows the square of the absolute value of the actual data, normalized by the sample
time.

The top axes show the input and the bottom axes show the output. The vertical axis of each plot is
labeled with the corresponding channel name.
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Periodograms of data1 and data3fd

Data Spectra Plot Options

Action Command
Toggle display between periodogram and spectral
estimate.

Select Options > Periodogram or Options >
Spectral analysis.

Change frequency units. Select Style > Frequency (rad/s) or Style >
Frequency (Hz).

Toggle frequency scale between linear and
logarithmic.

Select Style > Linear frequency scale or Style
> Log frequency scale.

Toggle amplitude scale between linear and
logarithmic.

Select Style > Linear amplitude scale or Style
> Log amplitude scale.

Manipulating a Frequency Function Plot
For time-domain data, the Frequency function plot shows the empirical transfer function estimate
(etfe). For frequency-domain data, the plot shows the ratio of output to input data.

The frequency-response plot shows the amplitude and phase plots of the corresponding frequency
response. For more information about frequency-response data, see “Frequency-Response Data
Representation” on page 2-10.
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Frequency Functions of data1 and data3fd

Frequency Function Plot Options

Action Command
Change frequency units. Select Style > Frequency (rad/s) or Style >

Frequency (Hz).
Toggle frequency scale between linear and
logarithmic.

Select Style > Linear frequency scale or Style
> Log frequency scale.

Toggle amplitude scale between linear and
logarithmic.

Select Style > Linear amplitude scale or Style
> Log amplitude scale.

See Also

Related Examples
• “How to Plot Data at the Command Line” on page 2-71
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How to Plot Data at the Command Line
The following table summarizes the commands available for plotting time-domain, frequency-domain,
and frequency-response data.

Commands for Plotting Data

Command Description Example
bode, bodeplot For frequency-response data only.

Shows the magnitude and phase of the
frequency response on a logarithmic
frequency scale of a Bode plot.

To plot idfrd data:

bode(idfrd_data)

or:

bodeplot(idfrd_data)

plot The type of plot corresponds to the
type of data. For example, plotting
time-domain data generates a time
plot, and plotting frequency-response
data generates a frequency-response
plot.

When plotting time- or frequency-
domain inputs and outputs, the top
axes show the output and the bottom
axes show the input.

To plot iddata or idfrd data:

plot(data)

All plot commands display the data in the standard MATLAB Figure window, which provides options
for formatting, saving, printing, and exporting plots to a variety of file formats.

To plot portions of the data, you can subreference specific samples (see “Select Data Channels, I/O
Data and Experiments in iddata Objects” on page 2-37 and “Select I/O Channels and Data in idfrd
Objects” on page 2-62. For example:

plot(data(1:300))

For time-domain data, to plot only the input data as a function of time, use the following syntax:

plot(data(:,[],:)

When data.intersample = 'zoh', the input is piece-wise constant between sampling points on
the plot. For more information about properties, see the iddata reference page.

You can generate plots of the input data in the time domain using:

plot(data.SamplingInstants,data.u)

To plot frequency-domain data, you can use the following syntax:

semilogx(data.Frequency,abs(data.u))

When you specify to plot a multivariable iddata object, each input-output combination is displayed
one at a time in the same MATLAB Figure window. You must press Enter to update the Figure
window and view the next channel combination. To cancel the plotting operation, press Ctrl+C.
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Tip To plot specific input and output channels, use plot(data(:,ky,ku)), where ky and ku are
specific output and input channel indexes or names. For more information about subreferencing
channels, see “Subreferencing Data Channels” on page 2-38.

To plot several iddata sets d1,...,dN, use plot(d1,...,dN). Input-output channels with the
same experiment name, input name, and output name are always plotted in the same plot.

See Also

Related Examples
• “How to Plot Data in the App” on page 2-67
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How to Analyze Data Using the advice Command
You can use the advice command to analyze time- or frequency- domain data before estimating a
model. The resulting report informs you about the possible need to preprocess the data and identifies
potential restrictions on the model accuracy. You should use these recommendations in combination
with plotting the data and validating the models estimated from this data.

Note advice does not support frequency-response data.

Before applying the advice command to your data, you must have represented your data as an
iddata object. For more information, see “Representing Time- and Frequency-Domain Data Using
iddata Objects” on page 2-34.

If you are using the System Identification app, you must export your data to the MATLAB workspace
before you can use the advice command on this data. For more information about exporting data,
see “Exporting Models from the App to the MATLAB Workspace” on page 21-8.

Use the following syntax to get advice about an iddata object data:

advice(data)

For more information about the advice syntax, see the advice reference page.

Advice provide guidance for these kinds of questions:

• Does it make sense to remove constant offsets and linear trends from the data?
• What are the excitation levels of the signals and how does this affects the model orders?
• Is there an indication of output feedback in the data? When feedback is present in the system, only

prediction-error methods work well for estimating closed-loop data.
• Is there an indication of nonlinearity in the process that generated the data?

See Also
advice | delayest | detrend | feedback | pexcit

Related Examples
• “How to Plot Data in the App” on page 2-67
• “How to Plot Data at the Command Line” on page 2-71
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Select Subsets of Data

Why Select Subsets of Data?
You can use data selection to create independent data sets for estimation and validation.

You can also use data selection as a way to clean the data and exclude parts with noisy or missing
information. For example, when your data contains missing values, outliers, level changes, and
disturbances, you can select one or more portions of the data that are suitable for identification and
exclude the rest.

If you only have one data set and you want to estimate linear models, you should split the data into
two portions to create two independent data sets for estimation and validation, respectively. Splitting
the data is selecting parts of the data set and saving each part independently.

You can merge several data segments into a single multiexperiment data set and identify an average
model. For more information, see “Create Data Sets from a Subset of Signal Channels” on page 2-24
or “Representing Time- and Frequency-Domain Data Using iddata Objects” on page 2-34.

Note Subsets of the data set must contain enough samples to adequately represent the system, and
the inputs must provide suitable excitation to the system.

Selecting portions of frequency-domain data is equivalent to filtering the data. For more information
about filtering, see “Filtering Data” on page 2-92.

Extract Subsets of Data Using the App
Ways to Select Data in the App

You can use System Identification app to select ranges of data on a time-domain or frequency-domain
plot. Selecting data in the frequency domain is equivalent to passband-filtering the data.

After you select portions of the data, you can specify to use one data segment for estimating models
and use the other data segment for validating models. For more information, see “Specify Estimation
and Validation Data in the App” on page 2-22.

Note Selecting <--Preprocess > Quick start performs the following actions simultaneously:

• Remove the mean value from each channel.
• Split the data into two parts.
• Specify the first part as estimation data (or Working Data).
• Specify the second part as Validation Data.

Selecting a Range for Time-Domain Data

You can select a range of data values on a time plot and save it as a new data set in the System
Identification app.
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Note Selecting data does not extract experiments from a data set containing multiple experiments.
For more information about multiexperiment data, see “Create Multiexperiment Data Sets in the
App” on page 2-26.

To extract a subset of time-domain data and save it as a new data set:

1 Import time-domain data into the System Identification app, as described in “Create Data Sets
from a Subset of Signal Channels” on page 2-24.

2 Drag the data set you want to subset to the Working Data area.
3 If your data contains multiple I/O channels, in the Channel menu, select the channel pair you

want to view. The upper plot corresponds to the input signal, and the lower plot corresponds to
the output signal.

Although you view only one I/O channel pair at a time, your data selection is applied to all
channels in this data set.

4 Select the data of interest in either of the following ways:

• Graphically — Draw a rectangle on either the input-signal or the output-signal plot with the
mouse to select the desired time interval. Your selection appears on both plots regardless of
the plot on which you draw the rectangle. The Time span and Samples fields are updated to
match the selected region.

• By specifying the Time span — Edit the beginning and the end times in seconds. The
Samples field is updated to match the selected region. For example:

28.5 56.8
• By specifying the Samples range — Edit the beginning and the end indices of the sample

range. The Time span field is updated to match the selected region. For example:

342 654

Note To clear your selection, click Revert.
5 In the Data name field, enter the name of the data set containing the selected data.
6 Click Insert. This action saves the selection as a new data set and adds it to the Data Board.
7 To select another range, repeat steps 4 to 6.

Selecting a Range of Frequency-Domain Data

Selecting a range of values in frequency domain is equivalent to filtering the data. For more
information about data filtering, see “Filtering Frequency-Domain or Frequency-Response Data in the
App” on page 2-94.

Extract Subsets of Data at the Command Line
Selecting ranges of data values is equivalent to subreferencing the data.

For more information about subreferencing time-domain and frequency-domain data, see “Select
Data Channels, I/O Data and Experiments in iddata Objects” on page 2-37.

For more information about subreferencing frequency-response data, see “Select I/O Channels and
Data in idfrd Objects” on page 2-62.
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See Also

More About
• “Create Multiexperiment Data Sets in the App” on page 2-26
• “Create Multiexperiment Data at the Command Line” on page 2-42
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Handling Missing Data and Outliers

Handling Missing Data
Data acquisition failures sometimes result in missing measurements both in the input and the output
signals. When you import data that contains missing values using the MATLAB Import Wizard, these
values are automatically set to NaN. NaN serves as a flag for nonexistent or undefined data. When you
plot data on a time-plot that contains missing values, gaps appear on the plot where missing data
exists.

You can use misdata to estimate missing values. This command linearly interpolates missing values
to estimate the first model. Then, it uses this model to estimate the missing data as parameters by
minimizing the output prediction errors obtained from the reconstructed data. You can specify the
model structure you want to use in the misdata argument or estimate a default-order model using
the n4sid method. For more information, see the misdata reference page.

Note You can only use misdata on time-domain data stored in an iddata object. For more
information about creating iddata objects, see “Representing Time- and Frequency-Domain Data
Using iddata Objects” on page 2-34.

For example, suppose y and u are output and input signals that contain NaNs. This data is sampled at
0.2 s. The following syntax creates a new iddata object with these input and output signals.

dat = iddata(y,u,0.2) % y and u contain NaNs 
                      % representing missing data

Apply the misdata command to the new data object. For example:

dat1 = misdata(dat);
plot(dat,dat1)        % Check how the missing data
                      % was estimated on a time plot

Handling Outliers
Malfunctions can produce errors in measured values, called outliers. Such outliers might be caused
by signal spikes or by measurement malfunctions. If you do not remove outliers from your data, this
can adversely affect the estimated models.

To identify the presence of outliers, perform one of the following tasks:

• Before estimating a model, plot the data on a time plot and identify values that appear out of
range.

• After estimating a model, plot the residuals and identify unusually large values. For more
information about plotting residuals, see topics on the “Residual Analysis” page. Evaluate the
original data that is responsible for large residuals. For example, for the model Model and
validation data Data, you can use the following commands to plot the residuals:

% Compute the residuals
  E = resid(Data,Model)
% Plot the residuals
  plot(E)
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Next, try these techniques for removing or minimizing the effects of outliers:

• Extract the informative data portions into segments and merge them into one multiexperiment
data set (see “Extract and Model Specific Data Segments” on page 2-79). For more information
about selecting and extracting data segments, see “Select Subsets of Data” on page 2-74.

Tip The inputs in each of the data segments must be consistently exciting the system. Splitting
data into meaningful segments for steady-state data results in minimum information loss. Avoid
making data segments too small.

• Manually replace outliers with NaNs and then use the misdata command to reconstruct flagged
data. This approach treats outliers as missing data and is described in “Handling Missing Data” on
page 2-77. Use this method when your data contains several inputs and outputs, and when you
have difficulty finding reliable data segments in all variables.

• Remove outliers by prefiltering the data for high-frequency content because outliers often result
from abrupt changes. For more information about filtering, see “Filtering Data” on page 2-92.

Note The estimation algorithm can handle outliers by assigning a smaller weight to outlier data. A
robust error criterion applies an error penalty that is quadratic for small and moderate prediction
errors, and is linear for large prediction errors. Because outliers produce large prediction errors, this
approach gives a smaller weight to the corresponding data points during model estimation. Set the
ErrorThreshold estimation option (see Advanced.ErrorThreshold in, for example,
polyestOptions) to a nonzero value to activate the correction for outliers in the estimation
algorithm.

See Also
To learn more about the theory of handling missing data and outliers, see the chapter on
preprocessing data in System Identification: Theory for the User, Second Edition, by Lennart Ljung,
Prentice Hall PTR, 1999.
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Extract and Model Specific Data Segments
This example shows how to create a multi-experiment, time-domain data set by merging only the
accurate data segments and ignoring the rest.

Load and plot the data.

load iddemo8;
plot(dat);

The data has poor or no measurements from samples 251 to 280 and 601 to 650. You cannot simply
concatenate the good data segments because the transients at the connection points compromise the
model. Instead, you must create a multiexperiment iddata object, where each experiment
corresponds to a good segment of data.

Create multiexperiment data set by merging data segments.

datam = merge(dat(1:250),dat(281:600),dat(651:1000));

Estimate a state-space model using the multiexperiment data set using experiments 1 and 2.

data_est = getexp(datam,[1,2]);
m = ssest(data_est,2);

Validate the model by comparing its output to the output data of experiment 3.
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data_val = getexp(datam,3);
compare(data_val,m)
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Handling Offsets and Trends in Data
When to Detrend Data
Detrending is removing means, offsets, or linear trends from regularly sampled time-domain input-
output data signals. This data processing operation helps you estimate more accurate linear models
because linear models cannot capture arbitrary differences between the input and output signal
levels. The linear models you estimate from detrended data describe the relationship between the
change in input signals and the change in output signals.

For steady-state data, you should remove mean values and linear trends from both input and output
signals.

For transient data, you should remove physical-equilibrium offsets measured prior to the excitation
input signal.

Remove one linear trend or several piecewise linear trends when the levels drift during the
experiment. Signal drift is considered a low-frequency disturbance and can result in unstable models.

You should not detrend data before model estimation when you want:

• Linear models that capture offsets essential for describing important system dynamics. For
example, when a model contains integration behavior, you could estimate a low-order transfer
function (process model) from nondetrended data. For more information, see “Process Models”.

• Nonlinear black-box models, such as nonlinear ARX or Hammerstein-Wiener models. For more
information, see “Nonlinear Model Identification”.

Tip When signals vary around a large signal level, you can improve computational accuracy of
nonlinear models by detrending the signal means.

• Nonlinear ODE parameters (nonlinear grey-box models). For more information, see “Estimate
Nonlinear Grey-Box Models” on page 13-25.

To simulate or predict the linear model response at the system operating conditions, you can restore
the removed trend to the simulated or predicted model output using the retrend command.

For more information about handling drifts in the data, see the chapter on preprocessing data in
System Identification: Theory for the User, Second Edition, by Lennart Ljung, Prentice Hall PTR,
1999.

Alternatives for Detrending Data in App or at the Command-Line
You can detrend data using the System Identification app and at the command line using the
detrend command.

Both the app and the command line let you subtract the mean values and one linear trend from
steady-state time-domain signals.

However, the detrend command provides the following additional functionality (not available in the
app):

• Subtracting piecewise linear trends at specified breakpoints. A breakpoint is a time value that
defines the discontinuities between successive linear trends.
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• Subtracting arbitrary offsets and linear trends from transient data signals.
• Saving trend information to a variable so that you can apply it to multiple data sets.

As an alternative to detrending data beforehand, you can specify the offsets levels as estimation
options and use them directly with the estimation command.

For example, suppose your data has an input offset, u0, and an output offset, y0. There are two ways
to perform a linear model estimation (say, a transfer function model estimation) using this data:

• Using detrend:

T=getTrend(data)
T.InputOffset = u0;
T.OutputOffset = y0;
datad = detrend(data, T);

model = tfest(datad, np);
• Specify offsets as estimation options:

opt = tfestOptions('InputOffset',u0, 'OutputOffset', y0);

model = tfest(data, np, opt)

The advantage of this approach is that there is a record of offset levels in the model in
model.Report.OptionsUsed. The limitation of this approach is that it cannot handle linear
trends, which can only be removed from the data by using detrend.

Next Steps After Detrending
After detrending your data, you might do the following:

• Perform other data preprocessing operations. See “Ways to Prepare Data for System
Identification” on page 2-5.

• Estimate a linear model. See “Linear Model Identification”.

See Also

Related Examples
• “How to Detrend Data Using the App” on page 2-83
• “How to Detrend Data at the Command Line” on page 2-84
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How to Detrend Data Using the App
Before you can perform this task, you must have regularly-sampled, steady-state time-domain data
imported into the System Identification app. See “Import Time-Domain Data into the App” on page 2-
13). For transient data, see “How to Detrend Data at the Command Line” on page 2-84.

Tip You can use the shortcut Preprocess > Quick start to perform several operations: remove the
mean value from each signal, split data into two halves, specify the first half as model estimation data
(or Working Data), and specify the second half as model Validation Data.

1 In the System Identification app, drag the data set you want to detrend to the Working Data
rectangle.

2 Detrend the data.

• To remove linear trends, select Preprocess > Remove trends.
• To remove mean values from each input and output data signal, select Preprocess > Remove

means.

See Also

More About
• “Handling Offsets and Trends in Data” on page 2-81
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How to Detrend Data at the Command Line

Detrending Steady-State Data
Before you can perform this task, you must have time-domain data as an iddata object. See
“Representing Time- and Frequency-Domain Data Using iddata Objects” on page 2-34.

Note If you plan to estimate models from this data, your data must be regularly sampled.

Use the detrend command to remove the signal means or linear trends:

[data_d,T]=detrend(data,Type)

where data is the data to be detrended. The second input argument Type=0 removes signal means
or Type=1 removes linear trends. data_d is the detrended data. T is a TrendInfo object that stores
the values of the subtracted offsets and slopes of the removed trends.

Detrending Transient Data
Before you can perform this task, you must have

• Time-domain data as an iddata object. See “Representing Time- and Frequency-Domain Data
Using iddata Objects” on page 2-34.

Note If you plan to estimate models from this data, your data must be regularly sampled.
• Values of the offsets you want to remove from the input and output data. If you do not know these

values, visually inspect a time plot of your data. For more information, see “How to Plot Data at
the Command Line” on page 2-71.

1 Create a default object for storing input-output offsets that you want to remove from the data.

T = getTrend(data)

where T is a TrendInfo object.
2 Assign offset values to T.

T.InputOffset=I_value;
T.OutputOffset=O_value;

where I_value is the input offset value, and O_value is the input offset value.
3 Remove the specified offsets from data.

data_d = detrend(data,T)

where the second input argument T stores the offset values as its properties.

See Also
TrendInfo | detrend
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More About
• “Handling Offsets and Trends in Data” on page 2-81
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Resampling Data

What Is Resampling?
Resampling data signals in the System Identification Toolbox product applies an antialiasing
(lowpass) FIR filter to the data and changes the sampling rate of the signal by decimation or
interpolation.

If your data is sampled faster than needed during the experiment, you can decimate it without
information loss. If your data is sampled more slowly than needed, there is a possibility that you miss
important information about the dynamics at higher frequencies. Although you can resample the data
at a higher rate, the resampled values occurring between measured samples do not represent new
measured information about your system. Instead of resampling, repeat the experiment using a
higher sampling rate.

Tip You should decimate your data when it contains high-frequency noise outside the frequency
range of the system dynamics.

Resampling takes into account how the data behaves between samples, which you specify when you
import the data into the System Identification app (zero-order or first-order hold). For more
information about the data properties you specify before importing the data, see “Represent Data”.

You can resample data using the System Identification app or the resample command. You can only
resample time-domain data at uniform time intervals.

For a detailed discussion about handling disturbances, see the chapter on preprocessing data in
System Identification: Theory for the User, Second Edition, by Lennart Ljung, Prentice Hall PTR,
1999.

Resampling Data Without Aliasing Effects
Typically, you decimate a signal to remove the high-frequency contributions that result from noise
from the total energy. Ideally, you want to remove the energy contribution due to noise and preserve
the energy density of the signal.

The command resample performs the decimation without aliasing effects. This command includes a
factor of T to normalize the spectrum and preserve the energy density after decimation. For more
information about spectrum normalization, see “Spectrum Normalization” on page 9-10.

If you use manual decimation instead of resample—by picking every fourth sample from the signal,
for example—the energy contributions from higher frequencies are folded back into the lower
frequencies("aliasing"). Because the total signal energy is preserved by this operation and this energy
must now be squeezed into a smaller frequency range, the amplitude of the spectrum at each
frequency increases. Thus, the energy density of the decimated signal is not constant.

This example shows how resample avoids folding effects.

Construct a fourth-order moving-average process.

m0 = idpoly(1,[ ],[1 1 1 1]);
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m0 is a time-series model with no inputs.

Generate error signal.

e = idinput(2000,'rgs');

Simulate the output using the error signal.

sim_opt = simOptions('AddNoise',true,'NoiseData',e);
y = sim(m0,zeros(2000,0),sim_opt);
y = iddata(y,[],1);

Estimate the signal spectrum.

g1 = spa(y);

Estimate the spectrum of the modified signal including every fourth sample of the original signal.
This command automatically sets Ts to 4.

g2 = spa(y(1:4:2000));

Plot the frequency response to view folding effects.

h = spectrumplot(g1,g2,g1.Frequency);
opt = getoptions(h);
opt.FreqScale = 'linear';
opt.FreqUnits = 'Hz';
setoptions(h,opt);
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Estimate the spectrum after prefiltering that does not introduce folding effects.

g3 = spa(resample(y,1,4));
figure
spectrumplot(g1,g3,g1.Frequency,opt)

Use resample to decimate the signal before estimating the spectrum and plot the frequency
response.

g3 = spa(resample(y,1,4));
figure
spectrumplot(g1,g3,g1.Frequency,opt)
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The plot shows that the estimated spectrum of the resampled signal has the same amplitude as the
original spectrum. Thus, there is no indication of folding effects when you use resample to eliminate
aliasing.

See Also

Related Examples
• “Resampling Data Using the App” on page 2-90
• “Resampling Data at the Command Line” on page 2-91
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Resampling Data Using the App
Use the System Identification app to resample time-domain data. To specify additional options, such
as the prefilter order, see “Resampling Data at the Command Line” on page 2-91.

The System Identification app uses idresamp to interpolate or decimate the data. For more
information about this command, type help idresamp at the prompt.

To create a new data set by resampling the input and output signals:

1 Import time-domain data into the System Identification app, as described in “Create Data Sets
from a Subset of Signal Channels” on page 2-24.

2 Drag the data set you want to resample to the Working Data area.
3 In the Resampling factor field, enter the factor by which to multiply the current sample time:

• For decimation (fewer samples), enter a factor greater than 1 to increase the sample time by
this factor.

• For interpolation (more samples), enter a factor less than 1 to decrease the sample time by
this factor.

Default = 1.
4 In the Data name field, type the name of the new data set. Choose a name that is unique in the

Data Board.
5 Click Insert to add the new data set to the Data Board in the System Identification Toolbox

window.
6 Click Close to close the Resample dialog box.

See Also

Related Examples
• “Resampling Data at the Command Line” on page 2-91

More About
• “Resampling Data” on page 2-86
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Resampling Data at the Command Line
Use resample to decimate and interpolate time-domain iddata objects. You can specify the order of
the antialiasing filter as an argument.

Note resample uses the Signal Processing Toolbox™ command, when this toolbox is installed on
your computer. If this toolbox is not installed, use idresamp instead. idresamp only lets you specify
the filter order, whereas resample also lets you specify filter coefficients and the design parameters
of the Kaiser window.

To create a new iddata object datar by resampling data, use the following syntax:

datar = resample(data,P,Q,filter_order)

In this case, P and Q are integers that specify the new sample time: the new sample time is Q/P times
the original one. You can also specify the order of the resampling filter as a fourth argument
filter_order, which is an integer (default is 10). For detailed information about resample, see the
corresponding reference page.

For example, resample(data,1,Q) results in decimation with the sample time modified by a factor
Q.

The next example shows how you can increase the sampling rate by a factor of 1.5 and compare the
signals:

plot(u)
ur = resample(u,3,2);
plot(u,ur)

When the Signal Processing Toolbox product is not installed, using resample calls idresamp
instead.

idresamp uses the following syntax:

datar = idresamp(data,R,filter_order)

In this case, R=Q/P, which means that data is interpolated by a factor P and then decimated by a
factor Q. To learn more about idresamp, type help idresamp.

The data.InterSample property of the iddata object is taken into account during resampling (for
example, first-order hold or zero-order hold). For more information, see “iddata Properties” on page
2-35.

See Also

Related Examples
• “Resampling Data Using the App” on page 2-90

More About
• “Resampling Data” on page 2-86
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Filtering Data

Supported Filters
You can filter the input and output signals through a linear filter before estimating a model in the
System Identification app or at the command line. How you want to handle the noise in the system
determines whether it is appropriate to prefilter the data.

The filter available in the System Identification app is a fifth-order (passband) Butterworth filter. If
you need to specify a custom filter, use the idfilt command.

Choosing to Prefilter Your Data
Prefiltering data can help remove high-frequency noise or low-frequency disturbances (drift). The
latter application is an alternative to subtracting linear trends from the data, as described in
“Handling Offsets and Trends in Data” on page 2-81.

In addition to minimizing noise, prefiltering lets you focus your model on specific frequency bands.
The frequency range of interest often corresponds to a passband over the breakpoints on a Bode plot.
For example, if you are modeling a plant for control-design applications, you might prefilter the data
to specifically enhance frequencies around the desired closed-loop bandwidth.

Prefiltering the input and output data through the same filter does not change the input-output
relationship for a linear system. However, prefiltering does change the noise characteristics and
affects the estimated noise model of the system.

To get a reliable noise model in the app, instead of prefiltering the data, set Focus to Filter, and
specify the filter. To get a reliable noise model at the command line, instead of prefiltering the data,
specify the filter in the WeightingFilter estimation option of the estimation command. If the
Focus option is available, specify it as 'simulation'.

For more information about prefiltering data, see the chapter on preprocessing data in System
Identification: Theory for the User, Second Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

For practical examples of prefiltering data, see the section on posttreatment of data in Modeling of
Dynamic Systems, by Lennart Ljung and Torkel Glad, Prentice Hall PTR, 1994.

See Also

Related Examples
• “How to Filter Data Using the App” on page 2-93
• “How to Filter Data at the Command Line” on page 2-96
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How to Filter Data Using the App

Filtering Time-Domain Data in the App
The System Identification app lets you filter time-domain data using a fifth-order Butterworth filter by
enhancing or selecting specific passbands.

To create a filtered data set:

1 Import time-domain data into the System Identification app, as described in “Represent Data”.
2 Drag the data set you want to filter to the Working Data area.
3 Select <--Preprocess > Filter. By default, this selection shows a periodogram of the input and

output spectra (see the etfe reference page).

Note To display smoothed spectral estimates instead of the periodogram, select Options >
Spectral analysis. This spectral estimate is computed using spa and your previous settings in
the Spectral Model dialog box. To change these settings, select <--Estimate > Spectral model
in the System Identification app, and specify new model settings.

4 If your data contains multiple input/output channels, in the Channel menu, select the channel
pair you want to view. Although you view only one channel pair at a time, the filter applies to all
input/output channels in this data set.

5 Select the data of interest using one of the following ways:

• Graphically — Draw a rectangle with the mouse on either the input-signal or the output-signal
plot to select the desired frequency interval. Your selection is displayed on both plots
regardless of the plot on which you draw the rectangle. The Range field is updated to match
the selected region. If you need to clear your selection, right-click the plot.

• Specify the Range — Edit the beginning and the end frequency values.

For example:

8.5 20.0 (rad/s).

Tip To change the frequency units from rad/s to Hz, select Style > Frequency (Hz). To
change the frequency units from Hz to rad/s, select Style > Frequency (rad/s).

6 In the Range is list, select one of the following:

• Pass band — Allows data in the selected frequency range.
• Stop band — Excludes data in the selected frequency range.

7 Click Filter to preview the filtered results. If you are satisfied, go to step 8. Otherwise, return to
step 5.

8 In the Data name field, enter the name of the data set containing the selected data.
9 Click Insert to save the selection as a new data set and add it to the Data Board.
10 To select another range, repeat steps 5 to 9.
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Filtering Frequency-Domain or Frequency-Response Data in the App
For frequency-domain and frequency-response data, filtering is equivalent to selecting specific data
ranges.

To select a range of data in frequency-domain or frequency-response data:

1 Import data into the System Identification app, as described in “Represent Data”.
2 Drag the data set you want you want to filter to the Working Data area.
3 Select <--Preprocess > Select range. This selection displays one of the following plots:

• Frequency-domain data — Plot shows the absolute of the squares of the input and output
spectra.

• Frequency-response data — Top axes show the frequency response magnitude equivalent to
the ratio of the output to the input, and the bottom axes show the ratio of the input signal to
itself, which has the value of 1 at all frequencies.

4 If your data contains multiple input/output channels, in the Channel menu, select the channel
pair you want to view. Although you view only one channel pair at a time, the filter applies to all
input/output channels in this data set.

5 Select the data of interest using one of the following ways:

• Graphically — Draw a rectangle with the mouse on either the input-signal or the output-signal
plot to select the desired frequency interval. Your selection is displayed on both plots
regardless of the plot on which you draw the rectangle. The Range field is updated to match
the selected region.

If you need to clear your selection, right-click the plot.
• Specify the Range — Edit the beginning and the end frequency values.

For example:

8.5 20.0 (rad/s).

Tip If you need to change the frequency units from rad/s to Hz, select Style > Frequency
(Hz). To change the frequency units from Hz to rad/s, select Style > Frequency (rad/s).

6 In the Range is list, select one of the following:

• Pass band — Allows data in the selected frequency range.
• Stop band — Excludes data in the selected frequency range.

7 In the Data name field, enter the name of the data set containing the selected data.
8 Click Insert. This action saves the selection as a new data set and adds it to the Data Board.
9 To select another range, repeat steps 5 to 8.

See Also

Related Examples
• “How to Filter Data at the Command Line” on page 2-96
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More About
• “Filtering Data” on page 2-92
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How to Filter Data at the Command Line

Simple Passband Filter
Use idfilt to apply passband and other custom filters to a time-domain or a frequency-domain
iddata object.

In general, you can specify any custom filter. Use this syntax to filter an iddata object data using
the filter called filter:

fdata = idfilt(data,filter)

In the simplest case, you can specify a passband filter for time-domain data using the following
syntax:

fdata = idfilt(data,[wl wh])

In this case, w1 and wh represent the low and high frequencies of the passband, respectively.

You can specify several passbands, as follows:

filter=[[w1l,w1h];[ w2l,w2h]; ....;[wnl,wnh]]

The filter is an n-by-2 matrix, where each row defines a passband in radians per second.

To define a stopband between ws1 and ws2, use

filter = [0 ws1; ws2 Nyqf]

where, Nyqf is the Nyquist frequency.

For time-domain data, the passband filtering is cascaded Butterworth filters of specified order. The
default filter order is 5. The Butterworth filter is the same as butter in the Signal Processing
Toolbox product. For frequency-domain data, select the indicated portions of the data to perform
passband filtering.

Defining a Custom Filter
Use idfilt to apply passband and other custom filters to a time-domain or a frequency-domain
iddata object.

In general, you can specify any custom filter. Use this syntax to filter an iddata object data using
the filter called filter:

fdata = idfilt(data,filter)

You can define a general single-input/single-output (SISO) system for filtering time-domain or
frequency-domain data. For frequency-domain only, you can specify the (nonparametric) frequency
response of the filter.

You use this syntax to filter an iddata object data using a custom filter specified by filter:

fdata = idfilt(data,filter)

filter can be also any of the following:
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filter = idm
filter = {num,den}
filter = {A,B,C,D}

idm is a SISO identified linear model on page 1-10 or LTI object. For more information about LTI
objects, see the Control System Toolbox documentation.

{num,den} defines the filter as a transfer function as a cell array of numerator and denominator
filter coefficients.

{A,B,C,D} is a cell array of SISO state-space matrices.

Specifically for frequency-domain data, you specify the frequency response of the filter:

filter = Wf

Here, Wf is a vector of real or complex values that define the filter frequency response, where the
inputs and outputs of data at frequency data.Frequency(kf) are multiplied by Wf(kf). Wf is a
column vector with the length equal to the number of frequencies in data.

When data contains several experiments, Wf is a cell array with the length equal to the number of
experiments in data.

Causal and Noncausal Filters
For time-domain data, the filtering is causal by default. Causal filters typically introduce a phase shift
in the results. To use a noncausal zero-phase filter (corresponding to filtfilt in the Signal
Processing Toolbox product), specify a third argument in idfilt:

fdata = idfilt(data,filter,'noncausal')

For frequency-domain data, the signals are multiplied by the frequency response of the filter. With the
filters defined as passband filters, this calculation gives ideal, zero-phase filtering (“brick wall
filters”). Frequencies that have been assigned zero weight by the filter (outside the passband or via
frequency response) are removed.

When you apply idfilt to an idfrd data object, the data is first converted to a frequency-domain
iddata object (see “Transforming Between Frequency-Domain and Frequency-Response Data” on
page 3-14). The result is an iddata object.

See Also

More About
• “Filtering Data” on page 2-92
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Generate Data Using Simulation

Commands for Generating Data Using Simulation
You can generate input data and then use it with a model to create output data.

Simulating output data requires that you have a model with known coefficients. For more information
about commands for constructing models, see “Commands for Constructing Linear Model Structures”
on page 1-16.

To generate input data, use idinput to construct a signal with the desired characteristics, such as a
random Gaussian or binary signal or a sinusoid. idinput returns a matrix of input values.

The following table lists the commands you can use to simulate output data. For more information
about these commands, see the corresponding reference pages.

Commands for Generating Data

Command Description Example
idinput Constructs a signal with the

desired characteristics, such
as a random Gaussian or
binary signal or a sinusoid,
and returns a matrix of input
values.

u = iddata([],...
    idinput(400,'rbs',[0 0.3])); 

sim Simulates response data
based on existing linear or
nonlinear parametric model in
the MATLAB workspace.

To simulate the model output y for a given input,
use the following command:

y = sim(m,data)

m is the model object name, and data is input data
matrix or iddata object.

Create Periodic Input Data
This example shows how to create a periodic random Gaussian input signal using idinput.

Create a periodic input for one input and consisting of five periods, where each period is 300
samples.

per_u = idinput([300 1 5]);

Create an iddata object using the periodic input and leaving the output empty.

u = iddata([],per_u,'Period',.300);

View the data characteristics in time- and frequency-domain.

% Plot data in time-domain.
plot(u)
% Plot the spectrum.
spectrum(spa(u))
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(Optional) Simulate model output using the data.

% Construct a polynomial model.
m0 = idpoly([1 -1.5 0.7],[0 1 0.5]);
% Simulate model output with Gaussian noise.
sim_opt = simOptions('AddNoise',true);
sim(m0,u,sim_opt)
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Generate Output Data Using Simulation
This example shows how to generate output data by simulating a model using an input signal created
using idinput.

You use the generated data to estimate a model of the same order as the model used to generate the
data. Then, you check how closely both models match to understand the effects of input data
characteristics and noise on the estimation.

Create an ARMAX model with known coefficients.

A = [1 -1.2 0.7];
B = {[0 1 0.5 0.1],[0 1.5 -0.5],[0 -0.1 0.5 -0.1]}; 
C = [1 0 0 0 0];
Ts = 1;   
m0 = idpoly(A,B,C,'Ts',1);

The leading zeros in the B matrix indicate the input delay (nk), which is 1 for each input channel.

Construct a pseudorandom binary input data.

u = idinput([255,3],'prbs');

Simulate model output with noise using the input data.

y = sim(m0,u,simOptions('AddNoise',true));
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Represent the simulation data as an iddata object.

iodata = iddata(y,u,m0.Ts);

(Optional) Estimate a model of the same order as m0 using iodata.

na = 2;
nb = [3 2 3];
nc = 4;
nk = [1 1 1];
me = armax(iodata,[na,nb,nc,nk]);

Use bode(m0,me) and compare(iodata,me) to check how closely me and m0 match.

compare(iodata,me);

Simulating Data Using Other MathWorks Products
You can also simulate data using the Simulink and Signal Processing Toolbox software. Data
simulated outside the System Identification Toolbox product must be in the MATLAB workspace as
double matrices. For more information about simulating models using the Simulink software, see
“Simulate Identified Model in Simulink” on page 20-5.
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Manipulating Complex-Valued Data

Supported Operations for Complex Data
System Identification Toolbox estimation algorithms support complex data. For example, the following
estimation commands estimate complex models from complex data: ar, armax, arx, bj, ivar, iv4,
oe, pem, spa, tfest, ssest, and n4sid.

Model transformation routines, such as freqresp and zpkdata, work for complex-valued models.
However, they do not provide pole-zero confidence regions. For complex models, the parameter
variance-covariance information refers to the complex-valued parameters and the accuracy of the real
and imaginary is not computed separately.

The display commands compare and plot also work with complex-valued data and models. To plot
the real and imaginary parts of the data separately, use plot(real(data)) and
plot(imag(data)), respectively.

Processing Complex iddata Signals at the Command Line
If the iddata object data contains complex values, you can use the following commands to process
the complex data and create a new iddata object.

Command Description
abs(data) Absolute value of complex signals in iddata object.
angle(data) Phase angle (in radians) of each complex signals in iddata object.
complex(data) For time-domain data, this command makes the iddata object complex—

even when the imaginary parts are zero. For frequency-domain data that
only stores the values for nonnegative frequencies, such that
realdata(data)=1, it adds signal values for negative frequencies using
complex conjugation.

imag(data) Selects the imaginary parts of each signal in iddata object.
isreal(data) 1 when data (time-domain or frequency-domain) contains only real input

and output signals, and returns 0 when data (time-domain or frequency-
domain) contains complex signals.

real(data) Real part of complex signals in iddata object.
realdata(data) Returns a value of 1 when data is a real-valued, time-domain signal, and

returns 0 otherwise.

For example, suppose that you create a frequency-domain iddata object Datf by applying fft to a
real-valued time-domain signal to take the Fourier transform of the signal. The following is true for
Datf:

isreal(Datf) = 0
realdata(Datf) = 1
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Transform Data

• “Supported Data Transformations” on page 3-2
• “Transform Time-Domain Data in the App” on page 3-3
• “Transform Frequency-Domain Data in the App” on page 3-5
• “Transform Frequency-Response Data in the App” on page 3-6
• “Transform Between Time-Domain and Frequency-Domain Data” on page 3-8
• “Transforming Between Frequency-Domain and Frequency-Response Data” on page 3-14
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Supported Data Transformations
The following table shows the different ways you can transform data from one data domain to
another. If the transformation is supported for a given row and column combination in the table, the
command used by the software is listed in the cell at their intersection.

Original Data
Format

To Time-Domain
Data
(iddata object)

To Frequency-
Domain Data
(iddata object)

To Frequency-Response Data
(idfrd object)

Time-Domain
Data
(iddata object)

N/A Use fft • Use etfe, spa, or spafdr.
• Estimate a linear parametric

model from the iddata object,
and use idfrd to compute
frequency-response data.

Frequency-
Domain Data
(iddata object)

Use ifft (works only
for evenly spaced
frequency-domain
data).

N/A • Use etfe, spa, or spafdr.
• Estimate a linear parametric

model from the iddata object,
and use idfrd to compute
frequency-response data.

Frequency-
Response Data
(idfrd object)

Not supported Use iddata. The
software creates a
frequency-domain
iddata object that
has the same ratio
between output and
input as the original
idfrd object
frequency-response
data.

• Use spafdr. The software
calculates frequency-response
data with a different resolution
(number and spacing of
frequencies) than the original
data.

Transforming from time-domain or frequency-domain data to frequency-response data is equivalent to
creating a frequency-response model from the data. For more information, see “Frequency-Response
Models”.

See Also

Related Examples
• “Transform Between Time-Domain and Frequency-Domain Data” on page 3-8
• “Transform Time-Domain Data in the App” on page 3-3
• “Transform Frequency-Domain Data in the App” on page 3-5
• “Transform Frequency-Response Data in the App” on page 3-6

More About
• “Representing Data in MATLAB Workspace” on page 2-8
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Transform Time-Domain Data in the App
In the System Identification app, time-domain data has an icon with a white background. You can
transform time-domain data to frequency-domain or frequency-response data. The frequency values
of the resulting frequency vector range from 0 to the Nyquist frequency fS = π Ts, where Ts is the
sample time.

Transforming from time-domain to frequency-response data is equivalent to estimating a model from
the data using the spafdr method.

1 In the System Identification app, drag the icon of the data you want to transform to the Working
Data rectangle.

2 In the Operations area, select <--Preprocess > Transform data in the drop-down menu to
open the Transform Data dialog box.

3 In the Transform to list, select one of the following:

• Frequency Function — Create a new idfrd object using the spafdr method. Go to step 4.

• Frequency Domain Data — Create a new iddata object using the fft method. Go to step
6.

4 In the Frequency Spacing list, select the spacing of the frequencies at which the frequency
function is estimated:

• linear — Uniform spacing of frequency values between the endpoints.
• logarithmic — Base-10 logarithmic spacing of frequency values between the endpoints.

5 In the Number of Frequencies field, enter the number of frequency values.
6 In the Name of new data field, type the name of the new data set. This name must be unique in

the Data Board.
7 Click Transform to add the new data set to the Data Board in the System Identification app.
8 Click Close to close the Transform Data dialog box.

See Also

Related Examples
• “Transform Between Time-Domain and Frequency-Domain Data” on page 3-8
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• “Transform Frequency-Domain Data in the App” on page 3-5
• “Transform Frequency-Response Data in the App” on page 3-6

More About
• “Representing Data in MATLAB Workspace” on page 2-8
• “Supported Data Transformations” on page 3-2
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Transform Frequency-Domain Data in the App
In the System Identification app, frequency-domain data has an icon with a green background. You
can transform frequency-domain data to time-domain or frequency-response (frequency-function)
data.

Transforming from time-domain or frequency-domain data to frequency-response data is equivalent to
estimating a nonparametric model of the data using the spafdr method.

1 In the System Identification app, drag the icon of the data you want to transform to the Working
Data rectangle.

2 Select <--Preprocess > Transform data.
3 In the Transform to list, select one of the following:

• Frequency Function — Create a new idfrd object using the spafdr method. Go to step 4.
• Time Domain Data — Create a new iddata object using the ifft (inverse fast Fourier

transform) method. Go to step 6.
4 In the Frequency Spacing list, select the spacing of the frequencies at which the frequency

function is estimated:

• linear — Uniform spacing of frequency values between the endpoints.
• logarithmic — Base-10 logarithmic spacing of frequency values between the endpoints.

5 In the Number of Frequencies field, enter the number of frequency values.
6 In the Name of new data field, type the name of the new data set. This name must be unique in

the Data Board.
7 Click Transform to add the new data set to the Data Board in the System Identification app.
8 Click Close to close the Transform Data dialog box.

See Also

Related Examples
• “Transform Between Time-Domain and Frequency-Domain Data” on page 3-8
• “Transform Time-Domain Data in the App” on page 3-3
• “Transform Frequency-Response Data in the App” on page 3-6

More About
• “Representing Data in MATLAB Workspace” on page 2-8
• “Supported Data Transformations” on page 3-2

 Transform Frequency-Domain Data in the App

3-5



Transform Frequency-Response Data in the App
In the System Identification app, frequency-response data has an icon with a yellow background. You
can transform frequency-response data to frequency-domain data (iddata object) or to frequency-
response data with a different frequency resolution.

When you select to transform single-input/single-output (SISO) frequency-response data to frequency-
domain data, the toolbox creates outputs that equal the frequency responses, and inputs equal to 1.
Therefore, the ratio between the Fourier transform of the output and the Fourier transform of the
input is equal to the system frequency response.

For the multiple-input case, the toolbox transforms the frequency-response data to frequency-domain
data as if each input contributes independently to the entire output of the system and then combines
information. For example, if a system has three inputs, u1, u2, and u3 and two frequency samples,
the input matrix is set to:

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

In general, for nu inputs and ns samples (the number of frequencies), the input matrix has nu
columns and (ns⋅ nu) rows.

Note To create a separate experiment for the response from each input, see “Transforming Between
Frequency-Domain and Frequency-Response Data” on page 3-14.

When you transform frequency-response data by changing its frequency resolution, you can modify
the number of frequency values by changing between linear or logarithmic spacing. You might specify
variable frequency spacing to increase the number of data points near the system resonance
frequencies, and also make the frequency vector coarser in the region outside the system dynamics.
Typically, high-frequency noise dominates away from frequencies where interesting system dynamics
occur. The System Identification app lets you specify logarithmic frequency spacing, which results in
a variable frequency resolution.

Note The spafdr command lets you lets you specify any variable frequency resolution.

1 In the System Identification app, drag the icon of the data you want to transform to the Working
Data rectangle.

2 Select <--Preprocess > Transform data.
3 In the Transform to list, select one of the following:

• Frequency Domain Data — Create a new iddata object. Go to step 6.
• Frequency Function — Create a new idfrd object with different resolution (number and

spacing of frequencies) using the spafdr method. Go to step 4.
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4 In the Frequency Spacing list, select the spacing of the frequencies at which the frequency
function is estimated:

• linear — Uniform spacing of frequency values between the endpoints.
• logarithmic — Base-10 logarithmic spacing of frequency values between the endpoints.

5 In the Number of Frequencies field, enter the number of frequency values.
6 In the Name of new data field, type the name of the new data set. This name must be unique in

the Data Board.
7 Click Transform to add the new data set to the Data Board in the System Identification app.
8 Click Close to close the Transform Data dialog box.

See Also

Related Examples
• “Transform Between Time-Domain and Frequency-Domain Data” on page 3-8
• “Transform Time-Domain Data in the App” on page 3-3
• “Transform Frequency-Domain Data in the App” on page 3-5

More About
• “Representing Data in MATLAB Workspace” on page 2-8
• “Supported Data Transformations” on page 3-2
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Transform Between Time-Domain and Frequency-Domain Data
System Identification Toolbox provides tools for analyzing data and for estimating and evaluating
models in both the time and the frequency domains. To use tools and methods that are not in the
same domain as your measured data, you can transform your data between the time domain and the
frequency domain.

The iddata object stores time-domain or frequency-domain data.

• Time-domain data consists of one or more input variables u(t) and one or more output variables
y(t), sampled as a function of time.

• Frequency-domain data consists of either transformed input and output time-domain signals or
system frequency response sampled as a function of the independent variable frequency.

For detailed information about representing time-domain and frequency-domain data in MATLAB, see
“Representing Data in MATLAB Workspace” on page 2-8.

You can transform your data from one domain to the other. The table summarizes the commands for
transforming data between the time and frequency domains. For more command information, see the
corresponding command reference pages.

Command Description Syntax Example
fft Transform time-domain data to the

frequency domain.

You can specify N, the number of
frequency values.

To transform time-domain iddata
object t_data to frequency-domain
iddata object f_data with N
frequency points, use:

f_data = 
  fft(t_data,N)

ifft Transform frequency-domain data to
the time domain. Frequencies are
linear and equally spaced.

To transform frequency-
domainiddata object f_data to
time-domain iddata object
t_data, use:

t_data = 
  ifft(f_data)

Converting iddata data into the form of an idfrd frequency response is a type of estimation. If you
want to estimate the frequency response using an iddata object, see “Transforming Between
Frequency-Domain and Frequency-Response Data” on page 3-14.

Transform Data Between Time and Frequency Domains
Transform data from the time domain to the frequency domain and back to the time domain, and
compare performance for models estimated from the original and transformed data.

Load and plot the time-domain data z1, which contains 300 samples.

load iddata1 z1
plot(z1)
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Find the sample time Ts of z1.

Ts = z1.Ts

Ts = 0.1000

The sample time is 0.1 s.

Transform z1 into the frequency domain.

z1f = fft(z1)

z1f =

Frequency domain data set with responses at 151 frequencies.
Frequency range: 0 to 31.416 rad/seconds
Sample time: 0.1 seconds                                                                              
                                                                                                      
Outputs      Unit (if specified)                                                                      
   y1                                                                                                 
                                                                                                      
Inputs       Unit (if specified)                                                                      
   u1                                                                                                 
                                                                                                      

The frequency range extends to 31.416 rad/s, which is equal to the Nyquist frequency of pi/Ts.

Plot the frequency-domain data.
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plot(z1f)

Transform z1f back to the time domain and plot the two time-domain signals together..

z1t = ifft(z1f)

z1t =

Time domain data set with 300 samples.
Sample time: 0.1 seconds               
                                       
Outputs      Unit (if specified)       
   y1                                  
                                       
Inputs       Unit (if specified)       
   u1                                  
                                       

plot(z1t,z1)
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The signals line up precisely.

Estimate second-order state-space models for z1 and z1t.

sys1 = ssest(z1,2);
sys1t = ssest(z1t,2);
compare(z1,sys1,sys1t)
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Estimate a state-space model for z1f.

sys1f = ssest(z1f,2);
compare(z1f,sys1f)
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The fit percentages for the time-domain and frequency-domain models are similar.

See Also
etfe | fft | iddata | ifft | spa | spafdr

More About
• “Representing Data in MATLAB Workspace” on page 2-8
• “Supported Data Transformations” on page 3-2
• “Transforming Between Frequency-Domain and Frequency-Response Data” on page 3-14
• “Transform Time-Domain Data in the App” on page 3-3
• “Transform Frequency-Domain Data in the App” on page 3-5
• “Transform Frequency-Response Data in the App” on page 3-6
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Transforming Between Frequency-Domain and Frequency-
Response Data

You can transform frequency-response data to frequency-domain data (iddata object). The idfrd
object represents complex frequency-response of the system at different frequencies. For a
description of this type of data, see “Frequency-Response Data Representation” on page 2-10.

When you select to transform single-input/single-output (SISO) frequency-response data to frequency-
domain data, the toolbox creates outputs that equal the frequency responses, and inputs equal to 1.
Therefore, the ratio between the Fourier transform of the output and the Fourier transform of the
input is equal to the system frequency response.

For information about changing the frequency resolution of frequency-response data to a new
constant or variable (frequency-dependent) resolution, see the spafdr reference page. You might use
this feature to increase the number of data points near the system resonance frequencies and make
the frequency vector coarser in the region outside the system dynamics. Typically, high-frequency
noise dominates away from frequencies where interesting system dynamics occur.

Note You cannot transform an idfrd object to a time-domain iddata object.

To transform an idfrd object with the name idfrdobj to a frequency-domain iddata object, use
the following syntax:

dataf = iddata(idfrdobj)

The resulting frequency-domain iddata object contains values at the same frequencies as the
original idfrd object.

For the multiple-input case, the toolbox represents frequency-response data as if each input
contributes independently to the entire output of the system and then combines information. For
example, if a system has three inputs, u1, u2, and u3 and two frequency samples, the input matrix is
set to:

1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

In general, for nu inputs and ns samples, the input matrix has nu columns and (ns⋅ nu) rows.

If you have ny outputs, the transformation operation produces an output matrix has ny columns and
(ns⋅ nu) rows using the values in the complex frequency response G(iw) matrix (ny-by-nu-by-ns). In
this example, y1 is determined by unfolding G(1,1,:), G(1,2,:), and G(1,3,:) into three column
vectors and vertically concatenating these vectors into a single column. Similarly, y2 is determined by
unfolding G(2,1,:), G(2,2,:), and G(2,3,:) into three column vectors and vertically
concatenating these vectors.

If you are working with multiple inputs, you also have the option of storing the contribution by each
input as an independent experiment in a multiexperiment data set. To transform an idfrd object
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with the name idfrdobj to a multiexperiment data set datf, where each experiment corresponds to
each of the inputs in idfrdobj

datf = iddata(idfrdobj,'me')

In this example, the additional argument 'me' specifies that multiple experiments are created.

By default, transformation from frequency-response to frequency-domain data strips away
frequencies where the response is inf or NaN. To preserve the entire frequency vector, use datf =
iddata(idfrdobj,'inf'). For more information, type help idfrd/iddata.

See Also

Related Examples
• “Transform Between Time-Domain and Frequency-Domain Data” on page 3-8
• “Transform Time-Domain Data in the App” on page 3-3
• “Transform Frequency-Domain Data in the App” on page 3-5
• “Transform Frequency-Response Data in the App” on page 3-6

More About
• “Representing Data in MATLAB Workspace” on page 2-8
• “Supported Data Transformations” on page 3-2
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Linear Model Identification

• “Black-Box Modeling” on page 4-2
• “Refine Linear Parametric Models” on page 4-5
• “Refine ARMAX Model with Initial Parameter Guesses at Command Line” on page 4-8
• “Refine Initial ARMAX Model at Command Line” on page 4-10
• “Extracting Numerical Model Data” on page 4-12
• “Transforming Between Discrete-Time and Continuous-Time Representations” on page 4-15
• “Continuous-Discrete Conversion Methods” on page 4-18
• “Effect of Input Intersample Behavior on Continuous-Time Models” on page 4-26
• “Transforming Between Linear Model Representations” on page 4-29
• “Subreferencing Models” on page 4-32
• “Treating Noise Channels as Measured Inputs” on page 4-34
• “Concatenating Models” on page 4-36
• “Merging Models” on page 4-38
• “Determining Model Order and Delay” on page 4-39
• “Model Structure Selection: Determining Model Order and Input Delay” on page 4-40
• “Frequency Domain Identification: Estimating Models Using Frequency Domain Data”

on page 4-52
• “Building Structured and User-Defined Models Using System Identification Toolbox™”

on page 4-73
• “Estimating Simple Models from Real Laboratory Process Data” on page 4-94
• “Data and Model Objects in System Identification Toolbox™” on page 4-113
• “Comparison of Various Model Identification Methods” on page 4-128
• “Estimating Continuous-Time Models using Simulink Data” on page 4-149
• “Linear Approximation of Complex Systems by Identification” on page 4-153
• “Dealing with Multi-Variable Systems: Identification and Analysis” on page 4-166
• “Glass Tube Manufacturing Process” on page 4-181
• “Modal Analysis of a Flexible Flying Wing Aircraft” on page 4-195
• “Use LSTM Network for Linear System Identification” on page 4-210
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Black-Box Modeling

Selecting Black-Box Model Structure and Order
Black-box modeling is useful when your primary interest is in fitting the data regardless of a
particular mathematical structure of the model. The toolbox provides several linear and nonlinear
black-box model structures, which have traditionally been useful for representing dynamic systems.
These model structures vary in complexity depending on the flexibility you need to account for the
dynamics and noise in your system. You can choose one of these structures and compute its
parameters to fit the measured response data.

Black-box modeling is usually a trial-and-error process, where you estimate the parameters of various
structures and compare the results. Typically, you start with the simple linear model structure and
progress to more complex structures. You might also choose a model structure because you are more
familiar with this structure or because you have specific application needs.

The simplest linear black-box structures require the fewest options to configure:

• Transfer function on page 8-2, with a given number of poles and zeros
• Linear ARX model on page 6-3, which is the simplest input-output polynomial model
• State-space model on page 7-2, which you can estimate by specifying the number of model

states

Estimation of some of these structures also uses noniterative estimation algorithms, which further
reduces complexity.

You can configure a model structure using the model order. The definition of model order varies
depending on the type of model you select. For example, if you choose a transfer function
representation, the model order is related to the number of poles and zeros. For state-space
representation, the model order corresponds to the number of states. In some cases, such as for
linear ARX and state-space model structures, you can estimate the model order from the data.

If the simple model structures do not produce good models, you can select more complex model
structures by:

• Specifying a higher model order for the same linear model structure. A higher model order
increases the model flexibility for capturing complex phenomena. However, an unnecessarily high
order can make the model less reliable.

• Explicitly modeling the noise by including the He(t) term, as shown in the following equation.

y(t) = Gu(t) + He(t)

Here, H models the additive disturbance by treating the disturbance as the output of a linear
system driven by a white noise source e(t).

Using a model structure that explicitly models the additive disturbance can help to improve the
accuracy of the measured component G. Furthermore, such a model structure is useful when your
main interest is using the model for predicting future response values.

• Using a different linear model structure.

See “Linear Model Structures” on page 1-15.
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• Using a nonlinear model structure.

Nonlinear models have more flexibility in capturing complex phenomena than linear models of
similar orders. See “Nonlinear Model Structures” on page 11-6.

Ultimately, you choose the simplest model structure that provides the best fit to your measured data.
For more information, see “Estimating Linear Models Using Quick Start”.

Regardless of the structure you choose for estimation, you can simplify the model for your application
needs. For example, you can separate out the measured dynamics (G) from the noise dynamics (H) to
obtain a simpler model that represents just the relationship between y and u. You can also linearize a
nonlinear model about an operating point.

When to Use Nonlinear Model Structures?
A linear model is often sufficient to accurately describe the system dynamics and, in most cases, a
best practice is to first try to fit linear models. If the linear model output does not adequately
reproduce the measured output, you might need to use a nonlinear model.

You can assess the need to use a nonlinear model structure by plotting the response of the system to
an input. If you notice that the responses differ depending on the input level or input sign, try using a
nonlinear model. For example, if the output response to an input step up is faster than the response
to a step down, you might need a nonlinear model.

Before building a nonlinear model of a system that you know is nonlinear, try transforming the input
and output variables such that the relationship between the transformed variables is linear. For
example, consider a system that has current and voltage as inputs to an immersion heater, and the
temperature of the heated liquid as an output. The output depends on the inputs through the power
of the heater, which is equal to the product of current and voltage. Instead of building a nonlinear
model for this two-input and one-output system, you can create a new input variable by taking the
product of the current and voltage and building a linear model that describes the relationship
between power and temperature.

If you cannot determine variable transformations that yield a linear relationship between input and
output variables, you can use nonlinear structures such as nonlinear ARX or Hammerstein-Wiener
models. For a list of supported nonlinear model structures and when to use them, see “Nonlinear
Model Structures” on page 11-6.

Black-Box Estimation Example
You can use the System Identification app or commands to estimate linear and nonlinear models of
various structures. In most cases, you choose a model structure and estimate the model parameters
using a single command.

Consider the mass-spring-damper system described in “Dynamic Systems and Models”. If you do not
know the equation of motion of this system, you can use a black-box modeling approach to build a
model. For example, you can estimate transfer functions or state-space models by specifying the
orders of these model structures.

A transfer function is a ratio of polynomials:

G(s) =
b0 + b1s + b2s2 + ...
1 + f1s + f2s2 + ...
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For the mass-spring damper system, this transfer function is

G(s) = 1
ms2 + cs + k

which is a system with no zeros and 2 poles.

In discrete-time, the transfer function of the mass-spring-damper system can be

G z−1 = bz−1

1 + f1z−1 + f2z−2

where the model orders correspond to the number of coefficients of the numerator and the
denominator (nb = 1 and nf = 2) and the input-output delay equals the lowest order exponent of z–1

in the numerator (nk = 1).

In continuous time, you can build a linear transfer function model using the tfest command.

m = tfest(data,2,0)

Here, data is your measured input-output data, represented as an iddata object, and the model
order is the set of number of poles (2) and the number of zeros (0).

Similarly, you can build a discrete-time model Output Error structure using the oe command.

m = oe(data,[1 2 1])

The model order is [nb nf nk] = [1 2 1]. Usually, you do not know the model orders in advance.
Try several model order values until you find the orders that produce an acceptable model.

Alternatively, you can choose a state-space structure to represent the mass-spring-damper system
and estimate the model parameters using the ssest or the n4sid command.

m = ssest(data,2)

Here, the second argument 2 represents the order, or the number of states in the model.

In black-box modeling, you do not need the equation of motion for the system — only a guess of the
model orders.

For more information about building models, see “Steps for Using the System Identification App” on
page 21-2 and “Model Estimation Commands” on page 1-31.
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Refine Linear Parametric Models

When to Refine Models
There are two situations where you can refine estimates of linear parametric models.

In the first situation, you have already estimated a parametric model and wish to update the values of
its free parameters to improve the fit to the estimation data. This is useful if your previous estimation
terminated because of search algorithm constraints such as maximum number of iterations or
function evaluations allowed reached. However, if your model captures the essential dynamics, it is
usually not necessary to continue improving the fit—especially when the improvement is a fraction of
a percent.

In the second situation, you might have constructed a model using one of the model constructors
described in “Commands for Constructing Linear Model Structures” on page 1-16. In this case, you
built initial parameter guesses into the model structure and wish to refine these parameter values.

What You Specify to Refine a Model
When you refine a model, you must provide two inputs:

• Parametric model
• Data — You can either use the same data set for refining the model as the one you originally used

to estimate the model, or you can use a different data set.

Refine Linear Parametric Models Using System Identification App
The following procedure assumes that the model you want to refine is already in the System
Identification app. You might have estimated this model in the current session or imported the model
from the MATLAB workspace. For information about importing models into the app, see “Importing
Models into the App” on page 21-5.

To refine your model:

1 In the System Identification app, verify that you have the correct data set in the Working Data
area for refining your model.

If you are using a different data set than the one you used to estimate the model, drag the correct
data set into the Working Data area. For more information about specifying estimation data, see
“Specify Estimation and Validation Data in the App” on page 2-22.

2 Select Estimate > Refine Existing Models to open the Model Refinement dialog box.
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For more information on the options in the dialog box, click Help.
3 Select the model you want to refine in the Initial model drop-down list or type the model

name.

The model name must be in the Model Board of the System Identification app or a variable in the
MATLAB workspace. The model can be a state-space, polynomial, process, transfer function or
linear grey-box model. The input-output dimensions of the model must match that of the working
data.

4 (Optional) Modify the options in the Estimation Options tab.

When you enter the model name, the estimation options in the Model Refinement dialog box
override the initial model settings.

• Expand Fit Frequency Range to specify a frequency range over which to fit the data.
• Expand Search options to specify a search method and other search criteria.
• Expand Regularization to obtain regularized estimates of model parameters. Specify the

regularization constants in the Regularization Options dialog box. To learn more, see
“Regularized Estimates of Model Parameters” on page 1-34.

5 Click Estimate to refine the model.
6 Validate the new model. See “Ways to Validate Models” on page 17-2.
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Refine Linear Parametric Models at the Command Line
If you are working at the command line, you can use pem to refine parametric model estimates. You
can also use the various model-structure specific estimators — ssest for idss models, polyest for
idpoly models, tfest for idtf models, and greyest for idgrey models.

The general syntax for refining initial models is as follows:

m = pem(data,init_model)

pem uses the properties of the initial model.

You can also specify the estimation options configuring the objective function and search algorithm
settings. For more information, see the reference page of the estimating function.
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Refine ARMAX Model with Initial Parameter Guesses at
Command Line

This example shows how to refine models for which you have initial parameter guesses.

Estimate an ARMAX model for the data by initializing the A , B , and C polynomials. You must first
create a model object and set the initial parameter values in the model properties. Next, you provide
this initial model as input to armax , polyest , or pem , which refine the initial parameter guesses
using the data.

Load estimation data.

load iddata8

Define model parameters.

Leading zeros in B indicate input delay (nk), which is 1 for each input channel.

A = [1 -1.2 0.7];
B{1} = [0 1 0.5 0.1]; % first input
B{2} = [0 1.5 -0.5]; % second input
B{3} = [0 -0.1 0.5 -0.1]; % third input
C = [1 0 0 0 0];
Ts = 1;

Create model object.

init_model = idpoly(A,B,C,'Ts',1);

Use polyest to update the parameters of the initial model.

model = polyest(z8,init_model);

Compare the two models.

compare(z8,init_model,model)
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See Also
“Input-Output Polynomial Models”
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Refine Initial ARMAX Model at Command Line
This example shows how to estimate an initial model and refine it using pem.

Load measured data.

load iddata8

Split the data into an initial estimation data set and a refinement data set.

init_data = z8(1:100);
refine_data = z8(101:end);

init_data is an iddata object containing the first 100 samples from z8 and refine_data is an
iddata object representing the remaining data in z8.

Estimate an ARMAX model.

na = 4;
nb = [3 2 3];
nc = 2;
nk = [0 0 0];

sys = armax(init_data,[na nb nc nk]);

armax uses the default algorithm properties to estimate sys.

Refine the estimated model by specifying the estimation algorithm options. Specify stricter tolerance
and increase the maximum iterations.

opt = armaxOptions;
opt.SearchOptions.Tolerance = 1e-5;
opt.SearchOptions.MaxIterations = 50;

refine_sys = pem(refine_data,sys,opt);

Compare the fit of the initial and refined models.

compare(refine_data,sys,refine_sys)
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refine_sys provides a closer fit to the data than sys.

You can similarly use polyest or armax to refine the estimated model.

See Also
Functions
armax | pem | polyest
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Extracting Numerical Model Data
You can extract the following numerical data from linear model objects:

• Coefficients and uncertainty

For example, extract state-space matrices (A, B, C, D and K) for state-space models, or polynomials
(A, B, C, D and F) for polynomial models.

If you estimated model uncertainty data, this information is stored in the model in the form of the
parameter covariance matrix. You can fetch the covariance matrix (in its raw or factored form)
using the getcov command. The covariance matrix represents uncertainties in parameter
estimates and is used to compute:

• Confidence bounds on model output plots, Bode plots, residual plots, and pole-zero plots
• Standard deviation in individual parameter values. For example, one standard deviation in the

estimated value of the A polynomial in an ARX model, returned by the polydata command and
displayed by the present command.

The following table summarizes the commands for extracting model coefficients and uncertainty.
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Commands for Extracting Model Coefficients and Uncertainty Data

Command Description Syntax
freqresp Extracts frequency-

response data (H) and
corresponding covariance
(CovH) from any linear
identified model.

[H,w,CovH] = freqresp(m)

polydata Extracts polynomials (such
as A) from any linear
identified model. The
polynomial uncertainties
(such as dA) are returned
only for idpoly models.

[A,B,C,D,F,dA,dB,dC,dD,dF] = ...
       polydata(m)

idssdata Extracts state-space
matrices (such as A) from
any linear identified model.
The matrix uncertainties
(such as dA) are returned
only for idss models.

[A,B,C,D,K,X0,...
 dA,dB,dC,dD,dK,dX0] = ...
       idssdata(m)

tfdata Extracts numerator and
denominator polynomials
(Num, Den) and their
uncertainties (dnum, dden)
from any linear identified
model.

[Num,Den,Ts,dNum,dDen] = ...
     tfdata(m)

zpkdata Extracts zeros, poles, and
gains (Z, P, K) and their
covariances (covZ, covP,
covK) from any linear
identified model.

[Z,P,K,Ts,covZ,covP,covK] = ...
     zpkdata(m)

getpvec Obtain a list of model
parameters and their
uncertainties.
To access parameter
attributes such as values,
free status, bounds or
labels, use getpar.

pvec = getpvec(m)                                                            

getcov Obtain parameter
covariance information

cov_data = getcov(m)                                                            

You can also extract numerical model data by using dot notation to access model properties. For
example, m.A displays the A polynomial coefficients from model m. Alternatively, you can use the
get command, as follows: get(m,'A').

Tip To view a list of model properties, type get(model).
• Dynamic and noise models

For linear models, the general symbolic model description is given by:
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y = Gu + He

G is an operator that takes the measured inputs u to the outputs and captures the system
dynamics, also called the measured model. H is an operator that describes the properties of the
additive output disturbance and takes the hypothetical (unmeasured) noise source inputs e to the
outputs, also called the noise model. When you estimate a noise model, the toolbox includes one
noise channel e for each output in your system.

You can operate on extracted model data as you would on any other MATLAB vectors, matrices and
cell arrays. You can also pass these numerical values to Control System Toolbox commands, for
example, or Simulink blocks.
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Transforming Between Discrete-Time and Continuous-Time
Representations

Why Transform Between Continuous and Discrete Time?
Transforming between continuous-time and discrete-time representations is useful, for example, if
you have estimated a discrete-time linear model and require a continuous-time model instead for your
application.

You can use c2d and d2c to transform any linear identified model between continuous-time and
discrete-time representations. d2d is useful is you want to change the sample time of a discrete-time
model. All of these operations change the sample time, which is called resampling the model.

These commands do not transform the estimated model uncertainty. If you want to translate the
estimated parameter covariance during the conversion, use translatecov.

Note c2d and d2d correctly approximate the transformation of the noise model only when the
sample time T is small compared to the bandwidth of the noise.

Using the c2d, d2c, and d2d Commands
The following table summarizes the commands for transforming between continuous-time and
discrete-time model representations.

Command Description Usage Example
c2d Converts continuous-time

models to discrete-time models.

You cannot use c2d for idproc
models and for idgrey models
whose FunctionType is not
'cd'. Convert these models into
idpoly, idtf, or idss models
before calling c2d.

To transform a continuous-time model
mod_c to a discrete-time form, use the
following command:

 mod_d = c2d(mod_c,T)

where T is the sample time of the discrete-
time model.

d2c Converts parametric discrete-
time models to continuous-time
models.

You cannot use d2c for idgrey
models whose FunctionType is
not 'cd'. Convert these models
into idpoly, idtf, or idss
models before calling d2c.

To transform a discrete-time model mod_d
to a continuous-time form, use the
following command:

 mod_c = d2c(mod_d)
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Command Description Usage Example
d2d Resample a linear discrete-time

model and produce an
equivalent discrete-time model
with a new sample time.

You can use the resampled
model to simulate or predict
output with a specified time
interval.

To resample a discrete-time model mod_d1
to a discrete-time form with a new sample
time Ts, use the following command:

 mod_d2 = d2d(mod_d1,Ts)

The following commands compare estimated model m and its continuous-time counterpart mc on a
Bode plot:

% Estimate discrete-time ARMAX model
% from the data
m = armax(data,[2 3 1 2]);
% Convert to continuous-time form
mc = d2c(m);
% Plot bode plot for both models
bode(m,mc)

Specifying Intersample Behavior
A sampled signal is characterized only by its values at the sampling instants. However, when you
apply a continuous-time input to a continuous-time system, the output values at the sampling instants
depend on the inputs at the sampling instants and on the inputs between these points. Thus, the
InterSample data property describes how the algorithms should handle the input between samples.
For example, you can specify the behavior between the samples to be piece-wise constant (zero-order
hold, zoh) or linearly interpolated between the samples (first order hold, foh). The transformation
formulas for c2d and d2c are affected by the intersample behavior of the input.

By default, c2d and d2c use the intersample behavior you assigned to the estimation data. To
override this setting during transformation, add an extra argument in the syntax. For example:

% Set first-order hold intersample behavior
mod_d = c2d(mod_c,T,'foh')

Effects on the Noise Model
c2d, d2c, and d2d change the sample time of both the dynamic model and the noise model.
Resampling a model affects the variance of its noise model.

A parametric noise model is a time-series model with the following mathematical description:

y(t) = H(q)e(t)
Ee2 = λ

The noise spectrum is computed by the following discrete-time equation:

Φv(ω) = λT H eiωT 2
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where λ is the variance of the white noise e(t), and λT represents the spectral density of e(t).
Resampling the noise model preserves the spectral density λT . The spectral density λT is invariant
up to the Nyquist frequency. For more information about spectrum normalization, see “Spectrum
Normalization” on page 9-10.

d2d resampling of the noise model affects simulations with noise using sim. If you resample a model
to a faster sampling rate, simulating this model results in higher noise level. This higher noise level
results from the underlying continuous-time model being subject to continuous-time white noise
disturbances, which have infinite, instantaneous variance. In this case, the underlying continuous-
time model is the unique representation for discrete-time models. To maintain the same level of noise
after interpolating the noise signal, scale the noise spectrum by TNew TOld, where Tnew is the new
sample time and Told is the original sample time. before applying sim.

See Also

More About
• “Continuous-Discrete Conversion Methods” on page 4-18
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Continuous-Discrete Conversion Methods
System Identification Toolbox offers several discretization and interpolation methods for converting
identified dynamic system models between continuous time and discrete time and for resampling
discrete-time models. Some methods tend to provide a better frequency-domain match between the
original and converted systems, while others provide a better match in the time domain. Use the
following table to help select the method that is best for your application.

Discretization Method Use When
“Zero-Order Hold” on page 4-18 You want an exact discretization in the time

domain for staircase inputs.
“First-Order Hold” on page 4-20 You want an exact discretization in the time

domain for piecewise linear inputs.
“Impulse-Invariant Mapping” on page 4-20
(continuous-to-discrete conversion only)

You want an exact discretization in the time
domain for impulse train inputs.

“Tustin Approximation” on page 4-21 • You want good matching in the frequency
domain between the continuous- and discrete-
time models.

• Your model has important dynamics at some
particular frequency.

“Zero-Pole Matching Equivalents” on page 4-24 • You have a SISO model.
• You want good matching in the frequency

domain between the continuous- and discrete-
time models.

“Least Squares” (Control System Toolbox)
(continuous-to-discrete conversion only)

• You have a SISO model.
• You want good matching in the frequency

domain between the continuous- and discrete-
time models.

• You want to capture fast system dynamics but
must use a larger sample time.

For information about how to specify a conversion method at the command line, see c2d, d2c, and
d2d. You can experiment interactively with different discretization methods in the Live Editor using
the Convert Model Rate task (requires a license).

Zero-Order Hold
The Zero-Order Hold (ZOH) method provides an exact match between the continuous- and discrete-
time systems in the time domain for staircase inputs.

The following block diagram illustrates the zero-order-hold discretization Hd(z) of a continuous-time
linear model H(s).
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The ZOH block generates the continuous-time input signal u(t) by holding each sample value u(k)
constant over one sample period:

u t = u k , kTs ≤ t ≤ k + 1 Ts

The signal u(t) is the input to the continuous system H(s). The output y[k] results from sampling y(t)
every Ts seconds.

Conversely, given a discrete system Hd(z), d2c produces a continuous system H(s). The ZOH
discretization of H(s) coincides with Hd(z).

The ZOH discrete-to-continuous conversion has the following limitations:

• d2c cannot convert LTI models with poles at z = 0.
• For discrete-time LTI models having negative real poles, ZOH d2c conversion produces a

continuous system with higher order. The model order increases because a negative real pole in
the z domain maps to a pure imaginary value in the s domain. Such mapping results in a
continuous-time model with complex data. To avoid this issue, the software instead introduces a
conjugate pair of complex poles in the s domain.

ZOH Method for Systems with Time Delays

You can use the ZOH method to discretize SISO or MIMO continuous-time models with time delays.
The ZOH method yields an exact discretization for systems with input delays, output delays, or
transport delays.

For systems with internal delays (delays in feedback loops), the ZOH method results in approximate
discretizations. The following figure illustrates a system with an internal delay.

For such systems, c2d performs the following actions to compute an approximate ZOH discretization:

1 Decomposes the delay τ as τ = kTs + ρ with 0 ≤ ρ < Ts.
2 Absorbs the fractional delay ρ into H(s).
3 Discretizes H(s) to H(z).
4 Represents the integer portion of the delay kTs as an internal discrete-time delay z–k. The final

discretized model appears in the following figure:
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First-Order Hold
The First-Order Hold (FOH) method provides an exact match between the continuous- and discrete-
time systems in the time domain for piecewise linear inputs.

FOH differs from ZOH by the underlying hold mechanism. To turn the input samples u[k] into a
continuous input u(t), FOH uses linear interpolation between samples:

u t = u k +
t − kTs

Ts
u k + 1 − u k , kTs ≤ t ≤ k + 1 Ts

In general, this method is more accurate than ZOH for systems driven by smooth inputs.

This FOH method differs from standard causal FOH and is more appropriately called triangle
approximation (see [2], p. 228). The method is also known as ramp-invariant approximation.

FOH Method for Systems with Time Delays

You can use the FOH method to discretize SISO or MIMO continuous-time models with time delays.
The FOH method handles time delays in the same way as the ZOH method. See “ZOH Method for
Systems with Time Delays” on page 4-19.

Impulse-Invariant Mapping
The impulse-invariant mapping produces a discrete-time model with the same impulse response as
the continuous time system. For example, compare the impulse response of a first-order continuous
system with the impulse-invariant discretization:

G = tf(1,[1,1]);
Gd1 = c2d(G,0.01,'impulse');
impulse(G,Gd1)
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The impulse response plot shows that the impulse responses of the continuous and discretized
systems match.

Impulse-Invariant Mapping for Systems with Time Delays

You can use impulse-invariant mapping to discretize SISO or MIMO continuous-time models with time
delays, except that the method does not support ss models with internal delays. For supported
models, impulse-invariant mapping yields an exact discretization of the time delay.

Tustin Approximation
The Tustin or bilinear approximation yields the best frequency-domain match between the
continuous-time and discretized systems. This method relates the s-domain and z-domain transfer
functions using the approximation:

z = esTs ≈
1 + sTs/2
1− sTs/2 .

In c2d conversions, the discretization Hd(z) of a continuous transfer function H(s) is:

Hd z = H s′ , s′ = 2
Ts

z − 1
z + 1

Similarly, the d2c conversion relies on the inverse correspondence

H s = Hd z′ , z′ =
1 + sTs/2
1− sTs/2
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When you convert a state-space model using the Tustin method, the states are not preserved. The
state transformation depends upon the state-space matrices and whether the system has time delays.
For example, for an explicit (E = I) continuous-time model with no time delays, the state vector w[k]
of the discretized model is related to the continuous-time state vector x(t) by:

w kTs = I − A
Ts
2 x kTs −

Ts
2 Bu kTs = x kTs −

Ts
2 Ax kTs + Bu kTs .

Ts is the sample time of the discrete-time model. A and B are state-space matrices of the continuous-
time model.

The Tustin approximation is not defined for systems with poles at z = –1 and is ill-conditioned for
systems with poles near z = –1.

Tustin Approximation with Frequency Prewarping

If your system has important dynamics at a particular frequency that you want the transformation to
preserve, you can use the Tustin method with frequency prewarping. This method ensures a match
between the continuous- and discrete-time responses at the prewarp frequency.

The Tustin approximation with frequency prewarping uses the following transformation of variables:

Hd z = H s′ , s′ = ω
tan ωTs/2

z − 1
z + 1

This change of variable ensures the matching of the continuous- and discrete-time frequency
responses at the prewarp frequency ω, because of the following correspondence:

H jω = Hd e jωTs

Tustin Approximation for Systems with Time Delays

You can use the Tustin approximation to discretize SISO or MIMO continuous-time models with time
delays.

By default, the Tustin method rounds any time delay to the nearest multiple of the sample time.
Therefore, for any time delay tau, the integer portion of the delay, k*Ts, maps to a delay of k
sampling periods in the discretized model. This approach ignores the residual fractional delay, tau -
k*Ts.

You can to approximate the fractional portion of the delay by a discrete all-pass filter (Thiran filter) of
specified order. To do so, use the FractDelayApproxOrder option of c2dOptions.

To understand how the Tustin method handles systems with time delays, consider the following SISO
state-space model G(s). The model has input delay τi, output delay τo, and internal delay τ.
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The following figure shows the general result of discretizing G(s) using the Tustin method.

By default, c2d converts the time delays to pure integer time delays. The c2d command computes the
integer delays by rounding each time delay to the nearest multiple of the sample time Ts. Thus, in the
default case, mi = round(τi/Ts), mo = round(τo/Ts), and m = round(τ/Ts).. Also in this case, Fi(z) =
Fo(z) = F(z) = 1.

If you set FractDelayApproxOrder to a non-zero value, c2d approximates the fractional portion of
the time delays by Thiran filters Fi(z), Fo(z), and F(z).

The Thiran filters add additional states to the model. The maximum number of additional states for
each delay is FractDelayApproxOrder.

For example, for the input delay τi, the order of the Thiran filter Fi(z) is:

order(Fi(z)) = max(ceil(τi/Ts), FractDelayApproxOrder).

If ceil(τi/Ts) < FractDelayApproxOrder, the Thiran filter Fi(z) approximates the entire input delay
τi. If ceil(τi/Ts) > FractDelayApproxOrder, the Thiran filter only approximates a portion of the
input delay. In that case, c2d represents the remainder of the input delay as a chain of unit delays z–
mi, where

mi = ceil(τi/Ts) – FractDelayApproxOrder

c2d uses Thiran filters and FractDelayApproxOrder in a similar way to approximate the output
delay τo and the internal delay τ.

When you discretizetf and zpk models using the Tustin method, c2d first aggregates all input,
output, and transport delays into a single transport delay τTOT for each channel. c2d then
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approximates τTOT as a Thiran filter and a chain of unit delays in the same way as described for each
of the time delays in ss models.

For more information about Thiran filters, see the thiran reference page and [4].

Zero-Pole Matching Equivalents
This method of conversion, which computes zero-pole matching equivalents, applies only to SISO
systems. The continuous and discretized systems have matching DC gains. Their poles and zeros are
related by the transformation:

zi = esiTs

where:

• zi is the ith pole or zero of the discrete-time system.
• si is the ith pole or zero of the continuous-time system.
• Ts is the sample time.

See [2] for more information.

Zero-Pole Matching for Systems with Time Delays

You can use zero-pole matching to discretize SISO continuous-time models with time delay, except
that the method does not support ss models with internal delays. The zero-pole matching method
handles time delays in the same way as the Tustin approximation. See “Tustin Approximation for
Systems with Time Delays” on page 4-22.

Least Squares
The least squares method minimizes the error between the frequency responses of the continuous-
time and discrete-time systems up to the Nyquist frequency using a vector-fitting optimization
approach. This method is useful when you want to capture fast system dynamics but must use a
larger sample time, for example, when computational resources are limited.

This method is supported only by the c2d function and only for SISO systems.

As with Tustin approximation and zero-pole matching, the least squares method provides a good
match between the frequency responses of the original continuous-time system and the converted
discrete-time system. However, when using the least squares method with:

• The same sample time as Tustin approximation or zero-pole matching, you get a smaller difference
between the continuous-time and discrete-time frequency responses.

• A lower sample time than what you would use with Tustin approximation or zero-pole matching,
you can still get a result that meets your requirements. Doing so is useful if computational
resources are limited, since the slower sample time means that the processor must do less work.

References
[1] Åström, K.J. and B. Wittenmark, Computer-Controlled Systems: Theory and Design, Prentice-Hall,

1990, pp. 48-52.
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Functions
c2d | c2dOptions | d2c | d2cOptions | d2d | d2dOptions | thiran
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Effect of Input Intersample Behavior on Continuous-Time
Models

The intersample behavior of the input signals influences the estimation, simulation and prediction of
continuous-time models. A sampled signal is characterized only by its values at the sampling instants.
However, when you apply a continuous-time input to a continuous-time system, the output values at
the sampling instants depend on the inputs at the sampling instants and on the inputs between these
points.

The iddata and idfrd objects have an InterSample property which stores how the input behaves
between the sampling instants. You can specify the behavior between the samples to be piecewise
constant (zero-order hold), linearly interpolated between the samples (first-order hold) or band-
limited. A band-limited intersample behavior of the input signal means:

• A filtered input signal (an input of finite bandwidth) was used to excite the system dynamics.
• The input was measured using a sampling device (A/D converter with antialiasing) that reported it

to be band-limited even though the true input entering the system was piecewise constant or
linear. In this case, the sampling devices can be assumed to be a part of the system being
modeled.

When the input signal is a band-limited discrete-time frequency-domain data (iddata with domain =
'frequency' or idfrd with sample time Ts≠0), the model estimation is performed by treating the
data as continuous-time data (Ts = 0). For more information, see Pintelon, R. and J. Schoukens,
System Identification. A Frequency Domain Approach, section 10.2, pp-352-356,Wiley-IEEE Press,
New York, 2001.

The intersample behavior of the input data also affects the results of simulation and prediction of
continuous-time models. sim and predict commands use the InterSample property to choose the
right algorithm for computing model response.

The following example simulates a system using first-order hold ( foh ) intersample behavior for
input signal.

sys = idtf([-1 -2],[1 2 1 0.5]);
rng('default')
u = idinput([100 1 5],'sine',[],[],[5 10 1]);
Ts = 2;
y = lsim(sys,u,(0:Ts:999)','foh');

Create an iddata object for the simulated input-output data.

data = iddata(y,u,Ts);

The default intersample behavior is zero-order hold ( zoh ).

data.InterSample

ans = 
'zoh'

Estimate a transfer function using this data.

np = 3; % number of poles
nz = 1; % number of zeros
opt = tfestOptions('InitializeMethod','all','Display','on');
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opt.SearchOptions.MaxIterations = 100;    
modelZOH = tfest(data,np,nz,opt)

modelZOH =
 
  From input "u1" to output "y1":
          -217.2 s - 391.6
  ---------------------------------
  s^3 + 354.4 s^2 + 140.2 s + 112.4
 
Continuous-time identified transfer function.

Parameterization:
   Number of poles: 3   Number of zeros: 1
   Number of free coefficients: 5
   Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using TFEST on time domain data "data".
Fit to estimation data: 81.38%                   
FPE: 0.1146, MSE: 0.111                          

The model gives about 80% fit to data. The sample time of the data is large enough that intersample
inaccuracy (using zoh rather than foh ) leads to significant modeling errors.

Re-estimate the model using foh intersample behavior.

data.InterSample = 'foh';
modelFOH = tfest(data,np,nz,opt)

modelFOH =
 
  From input "u1" to output "y1":
           -1.197 s - 0.06843
  -------------------------------------
  s^3 + 0.4824 s^2 + 0.3258 s + 0.01723
 
Continuous-time identified transfer function.

Parameterization:
   Number of poles: 3   Number of zeros: 1
   Number of free coefficients: 5
   Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using TFEST on time domain data "data".
Fit to estimation data: 97.7%                    
FPE: 0.001748, MSE: 0.001693                     

modelFOH is able to retrieve the original system correctly.

Compare the model outputs with data.

compare(data,modelZOH,modelFOH)
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modelZOH is compared to data whose intersample behavior is foh. Therefore, its fit decreases to
around 70%.

See Also
iddata | idfrd

More About
• “Frequency Domain Identification: Estimating Models Using Frequency Domain Data” on page

4-52
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Transforming Between Linear Model Representations
You can transform linear models between state-space and polynomial forms. You can also transform
between frequency-response, state-space, and polynomial forms.

If you used the System Identification app to estimate models, you must export the models to the
MATLAB workspace before converting models.

For detailed information about each command in the following table, see the corresponding reference
page.
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Commands for Transforming Model Representations

Command Model Type to Convert Usage Example
idfrd Converts any linear model to an

idfrd model.

If you have the Control System
Toolbox product, this command
converts any numeric LTI model
too.

To get frequency response of m at default
frequencies, use the following command:

m_f = idfrd(m)

To get frequency response at specific
frequencies, use the following command:

m_f = idfrd(m,f)

To get frequency response for a submodel from
input 2 to output 3, use the following command:

m_f = idfrd(m(2,3))

idpoly Converts any linear identified
model, except idfrd, to ARMAX
representation if the original model
has a nontrivial noise component,
or OE if the noise model is trivial (H
= 1).

If you have the Control System
Toolbox product, this command
converts any numeric LTI model,
except frd.

To get an ARMAX model from state-space model
m_ss, use the following command:

m_p = idpoly(m_ss)

idss Converts any linear identified
model, except idfrd, to state-
space representation.

If you have the Control System
Toolbox product, this command
converts any numeric LTI model,
except frd.

To get a state-space model from an ARX model
m_arx, use the following command:

m_ss = idss(m_arx)

idtf Converts any linear identified
model, except idfrd, to transfer
function representation. The noise
component of the original model is
lost since an idtf object has no
elements to model noise dynamics.

If you have the Control System
Toolbox product, this command
converts any numeric LTI model,
except frd.

To get a transfer function from a state-space
model m_ss, use the following command:

m_tf = idtf(m_ss)

Note Most transformations among identified models (among idss, idtf, idpoly) causes the
parameter covariance information to be lost, with few exceptions:

• Conversion of an idtf model to an idpoly model.
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• Conversion of an idgrey model to an idss model.

If you want to translate the estimated parameter covariance during conversion, use translatecov.
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Subreferencing Models

What Is Subreferencing?
You can use subreferencing to create models with subsets of inputs and outputs from existing
multivariable models. Subreferencing is also useful when you want to generate model plots for only
certain channels, such as when you are exploring multiple-output models for input channels that have
minimal effect on the output.

The toolbox supports subreferencing operations for idtf, idpoly, idproc, idss, and idfrd model
objects.

Subreferencing is not supported for idgrey models. If you want to analyze the sub-model, convert it
into an idss model first, and then subreference the I/Os of the idss model. If you want a grey-box
representation of a subset of I/Os, create a new idgrey model that uses an ODE function returning
the desired I/O dynamics.

In addition to subreferencing the model for specific combinations of measured inputs and output, you
can subreference dynamic and noise models individually.

Limitation on Supported Models
Subreferencing nonlinear models is not supported.

Subreferencing Specific Measured Channels
Use the following general syntax to subreference specific input and output channels in models:

model(outputs,inputs)

In this syntax, outputs and inputs specify channel indexes or channel names.

To select all output or all input channels, use a colon (:). To select no channels, specify an empty
matrix ([]). If you need to reference several channel names, use a cell array of character vectors.

For example, to create a new model m2 from m from inputs 1 ('power') and 4 ('speed') to output
number 3 ('position'), use either of the following equivalent commands:

m2 = m('position',{'power','speed'})

or

m2 = m(3,[1 4])

For a single-output model, you can use the following syntax to subreference specific input channels
without ambiguity:

m3 = m(inputs)

Similarly, for a single-input model, you can use the following syntax to subreference specific output
channels:

m4 = m(outputs)
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Separation of Measured and Noise Components of Models
For linear models, the general symbolic model description is given by:

y = Gu + He

G is an operator that takes the measured inputs u to the outputs and captures the system dynamics.

H is an operator that describes the properties of the additive output disturbance and takes the
hypothetical (unmeasured) noise source inputs to the outputs. H represents the noise model. When
you specify to estimate a noise model, the resulting model include one noise channel e at the input for
each output in your system.

Thus, linear, parametric models represent input-output relationships for two kinds of input channels:
measured inputs and (unmeasured) noise inputs. For example, consider the ARX model given by one
of the following equations:

A(q)y(t) = B(q)u t − nk + e(t)

or

y(t) = B(q)
A(q)u t + 1

A(q)e(t)

In this case, the dynamic model is the relationship between the measured input u and output y,
G = B(q) A(q). The noise model is the contribution of the input noise e to the output y, given by
H = 1 A(q).

Suppose that the model m contains both a dynamic model G and a noise model H. To create a new
model that only has G and no noise contribution, simply set its NoiseVariance property value to
zero value.

To create a new model by subreferencing H due to unmeasured inputs, use the following syntax:

m_H = m(:,[])

This operation creates a time-series model from m by ignoring the measured input.

The covariance matrix of e is given by the model property NoiseVariance, which is the matrix Λ:

Λ = LLT

The covariance matrix of e is related to v, as follows:

e = Lv

where v is white noise with an identity covariance matrix representing independent noise sources
with unit variances.

See Also

More About
• “Treating Noise Channels as Measured Inputs” on page 4-34
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Treating Noise Channels as Measured Inputs
A linear models is given by:

y = Gu + He

Where G is an operator that takes the measured inputs u to the outputs and captures the system
dynamics. H is an operator that describes the properties of the additive output disturbance and takes
the hypothetical (unmeasured) noise source inputs to the outputs. H represents the noise model.
When you specify to estimate a noise model, the resulting model include one noise channel e at the
input for each output in your system.

To study noise contributions in more detail, it might be useful to convert the noise channels to
measured channels using noisecnv:

m_GH = noisecnv(m)

This operation creates a model m_GH that represents both measured inputs u and noise inputs e,
treating both sources as measured signals. m_GH is a model from u and e to y, describing the transfer
functions G and H.

Converting noise channels to measured inputs loses information about the variance of the innovations
e. For example, step response due to the noise channels does not take into consideration the
magnitude of the noise contributions. To include this variance information, normalize e such that v
becomes white noise with an identity covariance matrix, where

e = Lv

To normalize e, use the following command:

m_GH = noisecnv(m,'Norm')

This command creates a model where u and v are treated as measured signals, as follows:

y(t) = Gu(t) + HLv = G HL
u
v

For example, the scaling by L causes the step responses from v to y to reflect the size of the
disturbance influence.

The converted noise sources are named in a way that relates the noise channel to the corresponding
output. Unnormalized noise sources e are assigned names such as 'e@y1', 'e@y2', ..., 'e@yn',
where 'e@yn' refers to the noise input associated with the output yn. Similarly, normalized noise
sources v, are named 'v@y1', 'v@y2', ..., 'v@yn'.

If you want to create a model that has only the noise channels of an identified model as its measured
inputs, use the noise2meas command. It results in a model with y(t) = He or y(t) = HLv, where e or
v is treated as a measured input.

Note When you plot models in the app that include noise sources, you can select to view the
response of the noise model corresponding to specific outputs. For more information, see “Selecting
Measured and Noise Channels in Plots” on page 21-10.

4 Linear Model Identification

4-34



See Also
noise2meas | noisecnv

More About
• “Subreferencing Models” on page 4-32
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Concatenating Models

About Concatenating Models
You can perform horizontal and vertical concatenation of linear model objects to grow the number of
inputs or outputs in the model.

When you concatenate identified models, such as idtf, idpoly, idproc, and idss model objects,
the resulting model combines the parameters of the individual models. However, the estimated
parameter covariance is lost. If you want to translate the covariance information during
concatenation, use translatecov.

Concatenation is not supported for idgrey models; convert them to idss models first if you want to
perform concatenation.

You can also concatenate nonparametric models, which contain the estimated impulse-response
(idtf object) and frequency-response (idfrd object) of a system.

In case of idfrd models, concatenation combines information in the ResponseData properties of
the individual model objects. ResponseData is an ny-by-nu-by-nf array that stores the response of
the system, where ny is the number of output channels, nu is the number of input channels, and nf is
the number of frequency values. The (j,i,:) vector of the resulting response data represents the
frequency response from the ith input to the jth output at all frequencies.

Limitation on Supported Models
Concatenation is supported for linear models only.

Horizontal Concatenation of Model Objects
Horizontal concatenation of model objects requires that they have the same outputs. If the output
channel names are different and their dimensions are the same, the concatenation operation resets
the output names to their default values.

The following syntax creates a new model object m that contains the horizontal concatenation of
m1,m2,...,mN:

m = [m1,m2,...,mN]

m takes all of the inputs of m1,m2,...,mN to the same outputs as in the original models. The
following diagram is a graphical representation of horizontal concatenation of the models.

Vertical Concatenation of Model Objects
Vertical concatenation combines output channels of specified models. Vertical concatenation of model
objects requires that they have the same inputs. If the input channel names are different and their
dimensions are the same, the concatenation operation resets the input channel names to their default
('') values.
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The following syntax creates a new model object m that contains the vertical concatenation of
m1,m2,...,mN:

m = [m1;m2;... ;mN]

m takes the same inputs in the original models to all of the output of m1,m2,...,mN. The following
diagram is a graphical representation of vertical concatenation of frequency-response data.

Concatenating Noise Spectrum Data of idfrd Objects
When idfrd models are obtained as a result of estimation (such as using spa), the SpectrumData
property is not empty and contains the power spectra and cross spectra of the output noise in the
system. For each output channel, this toolbox estimates one noise channel to explain the difference
between the output of the model and the measured output.

When the SpectrumData property of individual idfrd objects is not empty, horizontal and vertical
concatenation handle SpectrumData, as follows.

In case of horizontal concatenation, there is no meaningful way to combine the SpectrumData of
individual idfrd objects, and the resulting SpectrumData property is empty. An empty property
results because each idfrd object has its own set of noise channels, where the number of noise
channels equals the number of outputs. When the resulting idfrd object contains the same output
channels as each of the individual idfrd objects, it cannot accommodate the noise data from all the
idfrd objects.

In case of vertical concatenation, this toolbox concatenates individual noise models diagonally. The
following shows that m.SpectrumData is a block diagonal matrix of the power spectra and cross
spectra of the output noise in the system:

m . s =
m1.s 0

⋱
0 mN . s

s in m.s is the abbreviation for the SpectrumData property name.

See Also
If you have the Control System Toolbox product, see “Combining Model Objects” on page 19-4
about additional functionality for combining models.
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Merging Models
You can merge models of the same structure to obtain a single model with parameters that are
statistically weighed means of the parameters of the individual models. When computing the merged
model, the covariance matrices of the individual models determine the weights of the parameters.

You can perform the merge operation for the idtf, idgrey, idpoly, idproc, and idss model
objects.

Note Each merge operation merges the same type of model object.

Merging models is an alternative to merging data sets into a single multiexperiment data set, and
then estimating a model for the merged data. Whereas merging data sets assumes that the signal-to-
noise ratios are about the same in the two experiments, merging models allows greater variations in
model uncertainty, which might result from greater disturbances in an experiment.

When the experimental conditions are about the same, merge the data instead of models. This
approach is more efficient and typically involves better-conditioned calculations. For more
information about merging data sets into a multiexperiment data set, see “Create Multiexperiment
Data at the Command Line” on page 2-42.

For more information about merging models, see the merge reference page.
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Determining Model Order and Delay
Estimation requires you to specify the model order and delay. Many times, these values are not
known. You can determine the model order and delay in one of the following ways:

• Guess their values by visually inspecting the data or based on the prior knowledge of the system.
• Estimate delay as a part of idproc or idtf model estimation. These models treat delay as an

estimable parameter and you can determine their values by the estimation commands procest
and tfest, respectively. However automatic estimation of delays can cause errors. Therefore, it is
recommended that you analyze the data for delays in advance.

• To estimate delays, you can also use one of the following tools:

• Estimate delay using delayest. The choice of the order of the underlying ARX model and the
lower/upper bound on the value of the delay to be estimated influence the value returned by
delayest.

• Compute impulse response using impulseest. Plot the impulse response with a confidence
interval of sufficient standard deviations (usually 3). The delay is indicated by the number of
response samples that are inside the statistically zero region (marked by the confidence bound)
before the response goes outside that region.

• Select the model order in n4sid by specifying the model order as a vector.
• Choose the model order of an ARX model using arxstruc or ivstruc and selstruc. These

command select the number of poles, zeros and delay.

See “Model Structure Selection: Determining Model Order and Input Delay” on page 4-40 for an
example of using these tools.
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Model Structure Selection: Determining Model Order and Input
Delay

This example shows some methods for choosing and configuring the model structure. Estimation of a
model using measurement data requires selection of a model structure (such as state-space or
transfer function) and its order (e.g., number of poles and zeros) in advance. This choice is influenced
by prior knowledge about the system being modeled, but can also be motivated by an analysis of data
itself. This example describes some options for determining model orders and input delay.

Introduction

Choosing a model structure is usually the first step towards its estimation. There are various
possibilities for structure - state-space, transfer functions and polynomial forms such as ARX,
ARMAX, OE, BJ etc. If you do not have detailed prior knowledge of your system, such as its noise
characteristics and indication of feedback, the choice of a reasonable structure may not be obvious.
Also for a given choice of structure, the order of the model needs to be specified before the
corresponding parameters are estimated. System Identification Toolbox™ offers some tools to assist
in the task of model order selection.

The choice of a model order is also influenced by the amount of delay. A good idea of the input delay
simplifies the task of figuring out the orders of other model coefficients. Discussed below are some
options for input delay determination and model structure and order selection.

Choosing and Preparing Example Data for Analysis

This example uses the hair dryer data, also used by iddemo1 ("Estimating Simple Models from Real
Laboratory Process Data"). The process consists of air being fanned through a tube. The air is heated
at the inlet of the tube, and the input is the voltage applied to the heater. The output is the
temperature at the outlet of the tube.

Let us begin by loading the measurement data and doing some basic preprocessing:

load dry2

Form a data set for estimation of the first half, and a reference set for validation purposes of the
second half:

ze = dry2(1:500);
zr = dry2(501:1000);

Detrend each of the sets:

ze = detrend(ze);
zr = detrend(zr);

Let us look at a portion of the estimation data:

plot(ze(200:350))
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Estimating Input Delay

There are various options available for determining the time delay from input to output. These are:

• Using the DELAYEST utility.
• Using a non-parametric estimate of the impulse response, using IMPULSEEST.
• Using the state-space model estimator N4SID with a number of different orders and finding the

delay of the 'best' one.

Using delayest:

Let us discuss the above options in detail. Function delayest returns an estimate of the delay for a
given choice of orders of numerator and denominator polynomials. This function evaluates an ARX
structure:

y(t) + a1*y(t-1) + ... + ana*y(t-na) = b1*u(t-nk) + ...+bnb*u(t-nb-nk+1)

with various delays and chooses the delay value that seems to return the best fit. In this process,
chosen values of na and nb are used.

delay = delayest(ze) % na = nb = 2 is used, by default

delay =

     3
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A value of 3 is returned by default. But this value may change a bit if the assumed orders of
numerator and denominator polynomials (2 here) is changed. For example:

delay = delayest(ze,5,4)

delay =

     2

returns a value of 2. To gain insight into how delayest works, let us evaluate the loss function for
various choices of delays explicitly. We select a second order model (na=nb=2), which is the default
for delayest, and try out every time delay between 1 and 10. The loss function for the different
models are computed using the validation data set:

V = arxstruc(ze,zr,struc(2,2,1:10));

We now select that delay that gives the best fit for the validation data:

[nn,Vm] = selstruc(V,0); % nn is given as [na nb nk]

The chosen structure was:

nn

nn =

     2     2     3

which show the best model has a delay of nn(3) = 3.

We can also check how the fit depends on the delay. This information is returned in the second output
Vm. The logarithms of a quadratic loss function are given as the first row, while the indexes na, nb
and nk are given as a column below the corresponding loss function.

Vm

Vm =

  Columns 1 through 7

   -0.1480   -1.3275   -1.8747   -0.2403   -0.0056    0.0736    0.1763
    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000
    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000    2.0000
    1.0000    2.0000    3.0000    4.0000    5.0000    6.0000    7.0000

  Columns 8 through 10

    0.1906    0.1573    0.1474
    2.0000    2.0000    2.0000
    2.0000    2.0000    2.0000
    8.0000    9.0000   10.0000
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The choice of 3 delays is thus rather clear, since the corresponding
loss is minimum.

Using impulse

To gain a better insight into the dynamics, let us compute the impulse response of the system. We will
use the function impulseest to compute a non-parametric impulse response model. We plot this
response with a confidence interval represented by 3 standard deviations.

FIRModel = impulseest(ze);
clf
h = impulseplot(FIRModel);
showConfidence(h,3)

The filled light-blue region shows the confidence interval for the insignificant response in this
estimation. There is a clear indication that the impulse response "takes off" (leaves the uncertainty
region) after 3 samples. This points to a delay of three intervals.

Using n4sid based state-space evaluation

We may also estimate a family of parametric models to find the delay corresponding to the "best"
model. In case of state-space models, a range of orders may be evaluated simultaneously and the best
order picked from a Hankel Singular Value plot. Execute the following command to invoke n4sid in
an interactive mode:

m = n4sid(ze,1:15); % All orders between 1 and 15.
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The plot indicates an order of 3 as the best value. For this choice, let us compute the impulse
response of the model m:

m = n4sid(ze, 3);
showConfidence(impulseplot(m),3)

4 Linear Model Identification

4-44



As with non-parametric impulse response, there is a clear indication that the delay from input to
output is of three samples.

Choosing a Reasonable Model Structure

In lack of any prior knowledge, it is advisable to try out various available choices and use the one that
seems to work the best. State-space models may be a good starting point since only the number of
states needs to be specified in order to estimate a model. Also, a range of orders may be evaluated
quickly, using n4sid, for determining the best order, as described in the next section. For polynomial
models, a similar advantage is realized using the arx estimator. Output-error (OE) models may also
be good choice for a starting polynomial model because of their simplicity.

Determining Model Order

Once you have decided upon a model structure to use, the next task is to determine the order(s). In
general, the aim should be to not use a model order higher than necessary. This can be determined by
analyzing the improvement in %fit as a function of model order. When doing this, it is advisable to use
a separate, independent dataset for validation. Choosing an independent validation data set (zr in
our example) would improve the detection of over-fitting.

In addition to a progressive analysis of multiple model orders, explicit determination of optimum
orders can be performed for some model structures. Functions arxstruc and selstruc may be
used for choosing the best order for ARX models. For our example, let us check the fit for all 100
combinations of up to 10 b-parameters and up to 10 a-parameters, all with a delay value of 3:

V = arxstruc(ze,zr,struc(1:10,1:10,3));
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The best fit for the validation data set is obtained for:

nn = selstruc(V,0)

nn =

    10     4     3

Let us check how much the fit is improved for the higher order models. For this, we use the function
selstruc with only one input. In this case, a plot showing the fit as a function of the number of
parameters used is generated. The user is also prompted to enter the number of parameters. The
routine then selects a structure with these many parameters that gives the best fit. Note that several
different model structures use the same number of parameters. Execute the following command to
choose a model order interactively:

nns = selstruc(V) %invoke selstruc in an interactive mode
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The best fit is thus obtained for nn = [4 4 3], while we see that the improved fit compared to nn = [2
2 3] is rather marginal.

We may also approach this problem from the direction of reducing a higher order model. If the order
is higher than necessary, then the extra parameters are basically used to "model" the measurement
noise. These "extra" poles are estimated with a lower level of accuracy (large confidence interval). If
their are cancelled by a zero located nearby, then it is an indication that this pole-zero pair may not
be required to capture the essential dynamics of the system.

For our example, let us compute a 4th order model:

th4 = arx(ze,[4 4 3]);

Let us check the pole-zero configuration for this model. We can also include confidence regions for
the poles and zeros corresponding to 3 standard deviations, in order to determine how accurately
they are estimated and also how close the poles and zeros are to each other.

h = iopzplot(th4);
showConfidence(h,3)

The confidence intervals for the two complex-conjugate poles and zeros overlap, indicating they are
likely to cancel each other. Hence, a second order model might be adequate. Based on this evidence,
let us compute a 2nd order ARX model:

th2 = arx(ze,[2 2 3]);
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We can test how well this model (th2) is capable of reproducing the validation data set. To compare
the simulated output from the two models with the actual output (plotting the mid 200 data points)
we use the compare utility:

compare(zr(150:350),th2,th4)

The plot indicates that there was no significant loss of accuracy in reducing the order from 4 to 2. We
can also check the residuals ("leftovers") of this model, i.e., what is left unexplained by the model.

e = resid(ze,th2);
plot(e(:,1,[])), title('The residuals')
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We see that the residuals are quite small compared to the signal level of the output, that they are
reasonably well (although not perfectly) uncorrelated with the input and among themselves. We can
thus be (provisionally) satisfied with the model th2.

Let us now check if we can determine the model order for a state-space structure. As before, we
know the delay is 3 samples. We can try all orders from 1 to 15 with a total lag of 3 samples in n4sid.
Execute the following command to try various orders and choose one interactively.

ms = n4sid(ze,[1:15],'InputDelay',2); %n4sid estimation with variable orders
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The "InputDelay" was set to 2 because by default n4sid estimates a model with no feedthrough
(which accounts for one sample lag between input and output). The default order, indicated in the
figure above, is 3, that is in good agreement with our earlier findings. Finally, we compare how the
state-space model ms and the ARX model th2 compare in reproducing the measured output of the
validation data:

ms = n4sid(ze,3,'InputDelay',2);
compare(zr,ms,th2)
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The comparison plot indicates that the two models are practically identical.

Conclusions

This example described some options for choosing a reasonable model order. Determining delay in
advance can simplify the task of choosing orders. With ARX and state-space structures, we have some
special tools (arx and n4sid estimators) for automatically evaluating a whole set of model orders,
and choosing the best one among them. The information revealed by this exercise (using utilities such
as arxstruc, selstruc, n4sid and delayest) could be used as a starting point when estimating
models of other structures, such as BJ and ARMAX.
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Frequency Domain Identification: Estimating Models Using
Frequency Domain Data

This example shows how to estimate models using frequency domain data. The estimation and
validation of models using frequency domain data work the same way as they do with time domain
data. This provides a great amount of flexibility in estimation and analysis of models using time and
frequency domain as well as spectral (FRF) data. You may simultaneously estimate models using data
in both domains, compare and combine these models. A model estimated using time domain data may
be validated using spectral data or vice-versa.

Frequency domain data cannot be used for estimation or validation of nonlinear models.

Introduction

Frequency domain experimental data are common in many applications. It could be that the data was
collected as frequency response data (frequency functions: FRF) from the process using a frequency
analyzer. It could also be that it is more practical to work with the input's and output's Fourier
transforms (FFT of time-domain data), for example to handle periodic or band-limited data. (A band-
limited continuous time signal has no frequency components above the Nyquist frequency). In System
Identification Toolbox, frequency domain I/O data are represented the same way as time-domain data,
i.e., using iddata objects. The 'Domain' property of the object must be set to 'Frequency'. Frequency
response data are represented as complex vectors or as magnitude/phase vectors as a function of
frequency. IDFRD objects in the toolbox are used to encapsulate FRFs, where a user specifies the
complex response data and a frequency vector. Such IDDATA or IDFRD objects (and also FRD objects
of Control System Toolbox) may be used seamlessly with any estimation routine (such as procest,
tfest etc).

Inspecting Frequency Domain Data

Let us begin by loading some frequency domain data:

load demofr

This MAT-file contains frequency response data at frequencies W, with the amplitude response AMP
and the phase response PHA. Let us first have a look at the data:

subplot(211), loglog(W,AMP),title('Amplitude Response')
subplot(212), semilogx(W,PHA),title('Phase Response')
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This experimental data will now be stored as an IDFRD object. First transform amplitude and phase
to a complex valued response:

zfr = AMP.*exp(1i*PHA*pi/180);
Ts = 0.1;
gfr = idfrd(zfr,W,Ts);

Ts is the sample time of the underlying data. If the data corresponds to continuous time, for example
since the input has been band-limited, use Ts = 0.

Note: If you have the Control System Toolbox™, you could use an FRD object instead of the IDFRD
object. IDFRD has options for more information, like disturbance spectra and uncertainty measures
which are not available in FRD objects.

The IDFRD object gfr now contains the data, and it can be plotted and analyzed in different ways. To
view the data, we may use plot or bode:

clf
bode(gfr), legend('gfr')
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Estimating Models Using Frequency Response (FRF) Data

To estimate models, you can now use gfr as a data set with all the commands of the toolbox in a
transparent fashion. The only restriction is that noise models cannot be built. This means that for
polynomial models only OE (output-error models) apply, and for state-space models, you have to fix K
= 0.

m1 = oe(gfr,[2 2 1]) % Discrete-time Output error (transfer function) model
ms = ssest(gfr) % Continuous-time state-space model with default choice of order
mproc = procest(gfr,'P2UDZ') % 2nd-order, continuous-time model with underdamped poles
compare(gfr,m1,ms,mproc)
L = findobj(gcf,'type','legend');
L.Location = 'southwest'; % move legend to non-overlapping location

m1 =
Discrete-time OE model: y(t) = [B(z)/F(z)]u(t) + e(t)
  B(z) = 0.9986 z^-1 + 0.4968 z^-2                   
                                                     
  F(z) = 1 - 1.499 z^-1 + 0.6998 z^-2                
                                                     
Sample time: 0.1 seconds
  
Parameterization:
   Polynomial orders:   nb=2   nf=2   nk=1
   Number of free coefficients: 4
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.
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Status:                                             
Estimated using OE on frequency response data "gfr".
Fit to estimation data: 88.04%                      
FPE: 0.2512, MSE: 0.2492                            

ms =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
           x1      x2
   x1  -1.785   3.097
   x2  -6.835  -1.785
 
  B = 
          u1
   x1  -4.15
   x2  27.17
 
  C = 
           x1      x2
   y1    1.97  0.3947
 
  D = 
       u1
   y1   0
 
  K = 
       y1
   x1   0
   x2   0
 
Parameterization:
   FREE form (all coefficients in A, B, C free).
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 8
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                
Estimated using SSEST on frequency response data "gfr".
Fit to estimation data: 88.04%                         
FPE: 0.2512, MSE: 0.2492                               

mproc =
Process model with transfer function:            
                     1+Tz*s                      
  G(s) = Kp * ---------------------- * exp(-Td*s)
              1+2*Zeta*Tw*s+(Tw*s)^2             
                                                 
         Kp = 7.4619                             
         Tw = 0.20245                            
       Zeta = 0.36242                            
         Td = 0                                  
         Tz = 0.013617                           
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Parameterization:
    {'P2DUZ'}
   Number of free coefficients: 5
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                  
Estimated using PROCEST on frequency response data "gfr".
Fit to estimation data: 88.03%                           
FPE: 0.2517, MSE: 0.2492                                 

As shown above a variety of linear model types may be estimated in both continuous and discrete
time domains, using spectral data. These models may be validated using, time-domain data. The time-
domain I/O data set ztime, for example, is collected from the same system, and can be used for
validation of m1, ms and mproc:

compare(ztime,m1,ms,mproc) %validation in a different domain
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We may also look at the residuals to affirm the quality of the model using the validation data ztime.
As observed, the residuals are almost white:

resid(ztime,mproc) % Residuals plot

 Frequency Domain Identification: Estimating Models Using Frequency Domain Data

4-57



Condensing Data Using SPAFDR

An important reason to work with frequency response data is that it is easy to condense the
information with little loss. The command SPAFDR allows you to compute smoothed response data
over limited frequencies, for example with logarithmic spacing. Here is an example where the gfr
data is condensed to 100 logarithmically spaced frequency values. With a similar technique, also the
original time domain data can be condensed:

sgfr = spafdr(gfr) % spectral estimation with frequency-dependent resolution
sz = spafdr(ztime); % spectral estimation using time-domain data
clf
bode(gfr,sgfr,sz)
axis([pi/100 10*pi, -272 105])
legend('gfr (raw data)','sgfr','sz','location','southwest')

sgfr =
IDFRD model.
Contains Frequency Response Data for 1 output(s) and 1 input(s), and the spectra for disturbances at the outputs.
Response data and disturbance spectra are available at 100 frequency points, ranging from 0.03142 rad/s to 31.42 rad/s.
 
Sample time: 0.1 seconds
Output channels: 'y1'
Input channels: 'u1'
Status:                                                 
Estimated using SPAFDR on frequency response data "gfr".
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The Bode plots show that the information in the smoothed data has been taken well care of. Now,
these data records with 100 points can very well be used for model estimation. For example:

msm = oe(sgfr,[2 2 1]);
compare(ztime,msm,m1) % msm has the same accuracy as M1 (based on 1000 points)
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Estimation Using Frequency-Domain I/O Data

It may be that the measurements are available as Fourier transforms of inputs and output. Such
frequency domain data from the system are given as the signals Y and U. In loglog plots they look like

Wfd = (0:500)'*10*pi/500;
subplot(211),loglog(Wfd,abs(Y)),title('The amplitude of the output')
subplot(212),loglog(Wfd,abs(U)),title('The amplitude of the input')
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The frequency response data is essentially the ratio between Y and U. To collect the frequency domain
data as an IDDATA object, do as follows:

ZFD = iddata(Y, U, 'Ts', 0.1, 'Frequency', Wfd)

ZFD =

Frequency domain data set with responses at 501 frequencies.
Frequency range: 0 to 31.416 rad/seconds
Sample time: 0.1 seconds                                                                              
                                                                                                      
Outputs      Unit (if specified)                                                                      
   y1                                                                                                 
                                                                                                      
Inputs       Unit (if specified)                                                                      
   u1                                                                                                 
                                                                                                      

Now, again the frequency domain data set ZFD can be used as data in all estimation routines, just as
time domain data and frequency response data:

mf = ssest(ZFD)   % SSEST picks best order in 1:10 range when called this way
mfr = ssregest(ZFD) % an alternative regularized reduction based state-space estimator
clf
compare(ztime,mf,mfr,m1)
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mf =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
           x1      x2
   x1   -1.78   3.095
   x2  -6.812   -1.78
 
  B = 
          u1
   x1   1.32
   x2  28.61
 
  C = 
              x1         x2
   y1          2  6.416e-08
 
  D = 
       u1
   y1   0
 
  K = 
       y1
   x1   0
   x2   0
 
Parameterization:
   FREE form (all coefficients in A, B, C free).
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 8
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                              
Estimated using SSEST on frequency domain data "ZFD".
Fit to estimation data: 97.21%                       
FPE: 0.04288, MSE: 0.04186                           

mfr =
  Discrete-time identified state-space model:
    x(t+Ts) = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
               x1         x2         x3         x4         x5         x6
   x1       0.701   -0.05307    -0.4345  -0.006642   -0.08085     0.1158
   x2     -0.4539   -0.09623    -0.3629     0.2113    -0.2219    -0.3536
   x3      0.1719    -0.3996     0.4385   -0.01558     0.1768    -0.2467
   x4     -0.1821     0.3465     0.3292    -0.1357    -0.2578    -0.2483
   x5    -0.09939     -0.338     0.1236    -0.2537     -0.387   -0.05591
   x6     0.06004     -0.226   -0.04117     0.6891     0.0873     0.2818
   x7      0.1056    -0.1859   -0.04223      0.629    -0.1968    -0.7077
   x8     0.05337     0.1948    0.06355   -0.09052     0.4216    -0.3997
   x9    -0.01696   -0.05961   -0.04891   -0.01251   -0.03521     0.3876
   x10    0.01727     0.1232    0.03586    -0.1187     0.1738   -0.05051
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               x7         x8         x9        x10
   x1      0.3087   0.007547    0.02011     0.1469
   x2     0.01728   -0.04967     0.1144   -0.03883
   x3    -0.07107    -0.2977     -0.129    0.06179
   x4    -0.08461    0.03541   -0.06711     0.1759
   x5      0.5324     0.1778    -0.1114  2.119e-05
   x6       0.155     0.5047     -0.285     0.3976
   x7     -0.2406    -0.5628    0.09159    -0.4845
   x8      0.5674    -0.3337      0.105    -0.1995
   x9      0.2024    -0.4718   -0.01861     0.5838
   x10    0.01243    -0.2968    -0.6808    -0.7726
 
  B = 
              u1
   x1   -0.09482
   x2     0.7665
   x3     -1.036
   x4      0.162
   x5    -0.2926
   x6    -0.0805
   x7     0.1277
   x8   -0.02441
   x9     0.0288
   x10  -0.03776
 
  C = 
            x1       x2       x3       x4       x5       x6       x7
   y1    1.956  -0.4539   -1.805   -1.356   0.3662   -1.691  -0.8489
 
            x8       x9      x10
   y1    0.148  -0.5203   0.4013
 
  D = 
       u1
   y1   0
 
  K = 
               y1
   x1      0.1063
   x2   -0.007395
   x3      0.0426
   x4    0.004966
   x5    -0.01505
   x6    0.005483
   x7   0.0004218
   x8   -0.001044
   x9    0.003066
   x10  -0.002273
 
Sample time: 0.1 seconds
  
Parameterization:
   FREE form (all coefficients in A, B, C free).
   Feedthrough: none
   Disturbance component: estimate
   Number of free coefficients: 130
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.
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Status:                                                 
Estimated using SSREGEST on frequency domain data "ZFD".
Fit to estimation data: 76.61% (prediction focus)       
FPE: 3.448, MSE: 2.938                                  

Transformations Between Data Representations (Time - Frequency)

Time and frequency domain input-output data sets can be transformed to either domain by using FFT
and IFFT. These commands are adapted to IDDATA objects:

dataf = fft(ztime)
datat = ifft(dataf)

dataf =

Frequency domain data set with responses at 501 frequencies.
Frequency range: 0 to 31.416 rad/seconds
Sample time: 0.1 seconds                                                                              
                                                                                                      
Outputs      Unit (if specified)                                                                      
   y1                                                                                                 
                                                                                                      
Inputs       Unit (if specified)                                                                      
   u1                                                                                                 
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datat =

Time domain data set with 1000 samples.
Sample time: 0.1 seconds                
                                        
Outputs      Unit (if specified)        
   y1                                   
                                        
Inputs       Unit (if specified)        
   u1                                   
                                        

Time and frequency domain input-output data can be transformed to frequency response data by
SPAFDR, SPA and ETFE:

g1 = spafdr(ztime)
g2 = spafdr(ZFD);
clf;
bode(g1,g2)

g1 =
IDFRD model.
Contains Frequency Response Data for 1 output(s) and 1 input(s), and the spectra for disturbances at the outputs.
Response data and disturbance spectra are available at 100 frequency points, ranging from 0.06283 rad/s to 31.42 rad/s.
 
Sample time: 0.1 seconds
Output channels: 'y1'
Input channels: 'u1'
Status:                                            
Estimated using SPAFDR on time domain data "ztime".
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Frequency response data can also be transformed to more smoothed data (less resolution and less
data) by SPAFDR and SPA;

g3 = spafdr(gfr);

Frequency response data can be transformed to frequency domain input-output signals by the
command IDDATA:

gfd = iddata(g3)
plot(gfd)

gfd =

Frequency domain data set with responses at 100 frequencies.
Frequency range: 0.031416 to 31.416 rad/seconds
Sample time: 0.1 seconds                                                                                     
                                                                                                             
Outputs      Unit (if specified)                                                                             
   y1                                                                                                        
                                                                                                             
Inputs       Unit (if specified)                                                                             
   u1                                                                                                        
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Using Continuous-time Frequency-domain Data to Estimate Continuous-time Models

Time domain data can naturally only be stored and dealt with as discrete-time, sampled data.
Frequency domain data have the advantage that continuous time data can be represented correctly.
Suppose that the underlying continuous time signals have no frequency information above the
Nyquist frequency, e.g. because they are sampled fast, or the input has no frequency component
above the Nyquist frequency and that the data has been collected from a steady-state experiment.
Then the Discrete Fourier transforms (DFT) of the data also are the Fourier transforms of the
continuous time signals, at the chosen frequencies. They can therefore be used to directly fit
continuous time models.

This will be illustrated by the following example.

Consider the continuous time system:

m0 = idpoly(1,1,1,1,[1 1 1],'ts',0)

m0 =
Continuous-time OE model: y(t) = [B(s)/F(s)]u(t) + e(t)
  B(s) = 1                                             
                                                       
  F(s) = s^2 + s + 1                                   
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Parameterization:
   Polynomial orders:   nb=1   nf=2   nk=0
   Number of free coefficients: 3
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

Load data that comes from steady-state simulation of this system using periodic inputs. The collected
data was converted into frequency domain and saved in CTFDData.mat file.

load CTFDData.mat dataf % load continuous-time frequency-domain data.

Look at the data:

plot(dataf)
set(gca,'XLim',[0.1 10])

Using dataf for estimation will by default give continuous time models: State-space:

m4 = ssest(dataf,2); %Second order continuous-time model

For a polynomial model with nb = 2 numerator coefficient and nf = 2 estimated denominator
coefficients use:
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nb = 2;
nf = 2;
m5 = oe(dataf,[nb nf])

m5 =
Continuous-time OE model: y(t) = [B(s)/F(s)]u(t) + e(t)
  B(s) = -0.01814 s + 1.008                            
                                                       
  F(s) = s^2 + 1.001 s + 0.9967                        
                                                       
Parameterization:
   Polynomial orders:   nb=2   nf=2   nk=0
   Number of free coefficients: 4
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using OE on frequency domain data "dataf".
Fit to estimation data: 70.15%                      
FPE: 0.00491, MSE: 0.00468                          

Compare step responses with uncertainty of the true system m0 and the models m4 and m5. The
confidence intervals are shown with patches in the plot.

clf
h = stepplot(m0,m4,m5);
showConfidence(h,1)
legend('show','location','southeast')
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Although it was not necessary in this case, it is generally advised to focus the fit to a limited
frequency band (low pass filter the data) when estimating using continuous time data. The system has
a bandwidth of about 3 rad/s, and was excited by sinusoids up to 6.2 rad/s. A reasonable frequency
range to focus the fit to is then [0 7] rad/s:

m6 = ssest(dataf,2,ssestOptions('WeightingFilter',[0 7])) % state space model

m6 =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
            x1       x2
   x1  -0.5011    1.001
   x2  -0.7446  -0.5011
 
  B = 
             u1
   x1  -0.01706
   x2     1.016
 
  C = 
               x1          x2
   y1       1.001  -0.0005347
 
  D = 
       u1
   y1   0
 
  K = 
       y1
   x1   0
   x2   0
 
Parameterization:
   FREE form (all coefficients in A, B, C free).
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 8
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                
Estimated using SSEST on frequency domain data "dataf".
Fit to estimation data: 87.03% (data prefiltered)      
FPE: 0.004832, MSE: 0.003631                           

m7 = oe(dataf,[1 2],oeOptions('WeightingFilter',[0 7])) % polynomial model of Output Error structure

m7 =
Continuous-time OE model: y(t) = [B(s)/F(s)]u(t) + e(t)
  B(s) = 0.9861                                        
                                                       
  F(s) = s^2 + 0.9498 s + 0.9704                       
                                                       
Parameterization:
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   Polynomial orders:   nb=1   nf=2   nk=0
   Number of free coefficients: 3
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using OE on frequency domain data "dataf".
Fit to estimation data: 86.81% (data prefiltered)   
FPE: 0.004902, MSE: 0.003752                        

opt = procestOptions('SearchMethod','lsqnonlin',...
   'WeightingFilter',[0 7]); % Requires Optimization Toolbox(TM)
m8 = procest(dataf,'P2UZ',opt)  % process model with underdamped poles

m8 =
Process model with transfer function:
                     1+Tz*s          
  G(s) = Kp * ---------------------- 
              1+2*Zeta*Tw*s+(Tw*s)^2 
                                     
         Kp = 1.0124                 
         Tw = 1.0019                 
       Zeta = 0.5021                 
         Tz = -0.017474              
                                     
Parameterization:
    {'P2UZ'}
   Number of free coefficients: 4
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                  
Estimated using PROCEST on frequency domain data "dataf".
Fit to estimation data: 87.03% (data prefiltered)        
FPE: 0.004832, MSE: 0.003631                             

opt = tfestOptions('SearchMethod','lsqnonlin',...
   'WeightingFilter',[0 7]); % Requires Optimization Toolbox
m9 = tfest(dataf,2,opt) % transfer function with 2 poles

m9 =
 
  From input "u1" to output "y1":
  -0.01662 s + 1.007
  ------------------
   s^2 + s + 0.995
 
Continuous-time identified transfer function.

Parameterization:
   Number of poles: 2   Number of zeros: 1
   Number of free coefficients: 4
   Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                
Estimated using TFEST on frequency domain data "dataf".
Fit to estimation data: 87.03% (data prefiltered)      
FPE: 0.00491, MSE: 0.003629                            
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h = stepplot(m0,m6,m7,m8,m9);
showConfidence(h,1)
legend('show')

Conclusions

We saw how time, frequency and spectral data can seamlessly be used to estimate a variety of linear
models in both continuous and discrete time domains. The models may be validated and compared in
domains different from the ones they were estimated in. The data formats (time, frequency and
spectrum) are interconvertible, using methods such as fft, ifft, spafdr and spa. Furthermore,
direct, continuous-time estimation is achievable by using tfest, ssest and procest estimation
routines. The seamless use of data in any domain for estimation and analysis is an important feature
of System Identification Toolbox.

See Also
oe | procest | ssest | tfest

More About
• “Estimating Models Using Frequency-Domain Data”
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Building Structured and User-Defined Models Using System
Identification Toolbox™

This example shows how to estimate parameters in user-defined model structures. Such structures
are specified by IDGREY (linear state-space) or IDNLGREY (nonlinear state-space) models. We shall
investigate how to assign structure, fix parameters and create dependencies among them.

Experiment Data

We shall investigate data produced by a (simulated) dc-motor. We first load the data:

load dcmdata
who

Your variables are:

text  u     y     

The matrix y contains the two outputs: y1 is the angular position of the motor shaft and y2 is the
angular velocity. There are 400 data samples and the sample time is 0.1 seconds. The input is
contained in the vector u. It is the input voltage to the motor.

z = iddata(y,u,0.1); % The IDDATA object
z.InputName = 'Voltage';
z.OutputName = {'Angle';'AngVel'};
plot(z(:,1,:))
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Figure: Measurement Data: Voltage to Angle

plot(z(:,2,:))
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Figure: Measurement Data: Voltage to Angular Velocity

Model Structure Selection

     d/dt x = A x + B u + K e
        y   = C x + D u + e

We shall build a model of the dc-motor. The dynamics of the motor is well known. If we choose x1 as
the angular position and x2 as the angular velocity it is easy to set up a state-space model of the
following character neglecting disturbances: (see Example 4.1 in Ljung(1999):

         | 0     1  |      | 0   |
d/dt x = |          | x  + |     | u
         | 0   -th1 |      | th2 |

        | 1  0 |
   y =  |      | x
        | 0  1 |

The parameter th1 is here the inverse time-constant of the motor and th2 is such that th2/th1 is
the static gain from input to the angular velocity. (See Ljung(1987) for how th1 and th2 relate to the
physical parameters of the motor). We shall estimate these two parameters from the observed data.
The model structure (parameterized state space) described above can be represented in MATLAB®
using IDSS and IDGREY models. These models let you perform estimation of parameters using
experimental data.
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Specification of a Nominal (Initial) Model

If we guess that th1=1 and th2 = 0.28 we obtain the nominal or initial model

A = [0 1; 0 -1]; % initial guess for A(2,2) is -1
B = [0; 0.28]; % initial guess for B(2) is 0.28
C = eye(2);
D = zeros(2,1);

and we package this into an IDSS model object:

ms = idss(A,B,C,D);

The model is characterized by its matrices, their values, which elements are free (to be estimated)
and upper and lower limits of those:

ms.Structure.a

 
ans =
 
       Name: 'A'
      Value: [2x2 double]
    Minimum: [2x2 double]
    Maximum: [2x2 double]
       Free: [2x2 logical]
      Scale: [2x2 double]
       Info: [2x2 struct]

 
1x1 param.Continuous
 

ms.Structure.a.Value
ms.Structure.a.Free

ans =

     0     1
     0    -1

ans =

  2x2 logical array

   1   1
   1   1

Specification of Free (Independent) Parameters Using IDSS Models

So we should now mark that it is only A(2,2) and B(2,1) that are free parameters to be estimated.

ms.Structure.a.Free = [0 0; 0 1];
ms.Structure.b.Free = [0; 1];
ms.Structure.c.Free = 0; % scalar expansion used
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ms.Structure.d.Free = 0;
ms.Ts = 0;  % This defines the model to be continuous

The Initial Model

ms % Initial model

ms =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
       x1  x2
   x1   0   1
   x2   0  -1
 
  B = 
         u1
   x1     0
   x2  0.28
 
  C = 
       x1  x2
   y1   1   0
   y2   0   1
 
  D = 
       u1
   y1   0
   y2   0
 
  K = 
       y1  y2
   x1   0   0
   x2   0   0
 
Parameterization:
   STRUCTURED form (some fixed coefficients in  A, B, C).
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 2
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

Estimation of Free Parameters of the IDSS Model

The prediction error (maximum likelihood) estimate of the parameters is now computed by:

dcmodel = ssest(z,ms,ssestOptions('Display','on'));
dcmodel

dcmodel =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
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       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
           x1      x2
   x1       0       1
   x2       0  -4.013
 
  B = 
       Voltage
   x1        0
   x2    1.002
 
  C = 
           x1  x2
   Angle    1   0
   AngVel   0   1
 
  D = 
           Voltage
   Angle         0
   AngVel        0
 
  K = 
        Angle  AngVel
   x1       0       0
   x2       0       0
 
Parameterization:
   STRUCTURED form (some fixed coefficients in  A, B, C).
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 2
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                       
Estimated using SSEST on time domain data "z".
Fit to estimation data: [98.35;84.42]%        
FPE: 0.001071, MSE: 0.1192                    
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The estimated values of the parameters are quite close to those used when the data were simulated
(-4 and 1). To evaluate the model's quality we can simulate the model with the actual input by and
compare it with the actual output.

compare(z,dcmodel);
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We can now, for example plot zeros and poles and their uncertainty regions. We will draw the regions
corresponding to 3 standard deviations, since the model is quite accurate. Note that the pole at the
origin is absolutely certain, since it is part of the model structure; the integrator from angular
velocity to position.

clf
showConfidence(iopzplot(dcmodel),3)
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Now, we may make various modifications. The 1,2-element of the A-matrix (fixed to 1) tells us that x2
is the derivative of x1. Suppose that the sensors are not calibrated, so that there may be an unknown
proportionality constant. To include the estimation of such a constant we just "let loose" A(1,2) and
re-estimate:

dcmodel2 = dcmodel;
dcmodel2.Structure.a.Free(1,2) = 1;
dcmodel2 = pem(z,dcmodel2,ssestOptions('Display','on'));

State-space Model Identification
                                
Estimation data: Time domain data z          
Data has 2 outputs, 1 inputs and 400 samples.
Number of states: 2                          

Algorithm: Nonlinear least squares with automatically chosen line search method
 <br>
------------------------------------------------------------------------------------------
 <br>
                          Norm of      First-order    Improvement (%) <br> Iteration       Cost       step         optimality     Expected   Achieved    Bisections <br>------------------------------------------------------------------------------------------
     0     0.00106082          -             40      0.0256           -         -                                                                                                                                                                                                                                                                                                                                                                         
     1     0.00106055     0.0038           8.21      0.0256      0.0255         0
     2     0.00106055   5.48e-05       0.000879    1.13e-05    1.13e-05         0
------------------------------------------------------------------------------------------
Estimating parameter covariance...
done.
Termination condition: Near (local) minimum, (norm(g) < tol)..
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Number of iterations: 2, Number of function evaluations: 5    
                                                              
Status: Estimated using PEM                                   
Fit to estimation data: [98.35;84.42]%, FPE: 0.00107658       

The resulting model is

dcmodel2

dcmodel2 =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
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       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
           x1      x2
   x1       0  0.9975
   x2       0  -4.011
 
  B = 
       Voltage
   x1        0
   x2    1.004
 
  C = 
           x1  x2
   Angle    1   0
   AngVel   0   1
 
  D = 
           Voltage
   Angle         0
   AngVel        0
 
  K = 
        Angle  AngVel
   x1       0       0
   x2       0       0
 
Parameterization:
   STRUCTURED form (some fixed coefficients in  A, B, C).
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 3
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                     
Estimated using PEM on time domain data "z".
Fit to estimation data: [98.35;84.42]%      
FPE: 0.001077, MSE: 0.1192                  

We find that the estimated A(1,2) is close to 1. To compare the two model we use the compare
command:

compare(z,dcmodel,dcmodel2)
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Specification of Models with Coupled Parameters Using IDGREY Objects

Suppose that we accurately know the static gain of the dc-motor (from input voltage to angular
velocity, e.g. from a previous step-response experiment. If the static gain is G, and the time constant
of the motor is t, then the state-space model becomes

          |0     1|    |  0  |
d/dt x =  |       |x + |     | u
          |0  -1/t|    | G/t |

          |1   0|
   y   =  |     | x
          |0   1|

With G known, there is a dependence between the entries in the different matrices. In order to
describe that, the earlier used way with "Free" parameters will not be sufficient. We thus have to
write a MATLAB file which produces the A, B, C, and D, and optionally also the K and X0 matrices as
outputs, for each given parameter vector as input. It also takes auxiliary arguments as inputs, so that
the user can change certain things in the model structure, without having to edit the file. In this case
we let the known static gain G be entered as such an argument. The file that has been written has the
name 'motorDynamics.m'.

type motorDynamics

function [A,B,C,D,K,X0] = motorDynamics(par,ts,aux)
%MOTORDYNAMICS ODE file representing the dynamics of a motor.
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%
%   [A,B,C,D,K,X0] = motorDynamics(Tau,Ts,G)
%   returns the State Space matrices of the DC-motor with
%   time-constant Tau (Tau = par) and known static gain G. The sample
%   time is Ts.
%
%   This file returns continuous-time representation if input argument Ts
%   is zero. If Ts>0, a discrete-time representation is returned. To make
%   the IDGREY model that uses this file aware of this flexibility, set the
%   value of Structure.FcnType property to 'cd'. This flexibility is useful
%   for conversion between continuous and discrete domains required for
%   estimation and simulation.
%
%   See also IDGREY, IDDEMO7.

%   L. Ljung
%   Copyright 1986-2015 The MathWorks, Inc.

t = par(1);
G = aux(1);

A = [0 1;0 -1/t];
B = [0;G/t];
C = eye(2);
D = [0;0];
K = zeros(2);
X0 = [0;0];
if ts>0 % Sample the model with sample time Ts
   s = expm([[A B]*ts; zeros(1,3)]);
   A = s(1:2,1:2);
   B = s(1:2,3);
end

We now create an IDGREY model object corresponding to this model structure: The assumed time
constant will be

par_guess = 1;

We also give the value 0.25 to the auxiliary variable G (gain) and sample time.

aux = 0.25;
dcmm = idgrey('motorDynamics',par_guess,'cd',aux,0);

The time constant is now estimated by

dcmm = greyest(z,dcmm,greyestOptions('Display','on'));
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We have thus now estimated the time constant of the motor directly. Its value is in good agreement
with the previous estimate.

dcmm

dcmm =
  Continuous-time linear grey box model defined by "motorDynamics" function:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
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           x1      x2
   x1       0       1
   x2       0  -4.006
 
  B = 
       Voltage
   x1        0
   x2    1.001
 
  C = 
           x1  x2
   Angle    1   0
   AngVel   0   1
 
  D = 
           Voltage
   Angle         0
   AngVel        0
 
  K = 
        Angle  AngVel
   x1       0       0
   x2       0       0
 
  Model parameters:
   Par1 = 0.2496
 
Parameterization:
   ODE Function: motorDynamics
   (parametrizes both continuous- and discrete-time equations)
   Disturbance component: parameterized by the ODE function
   Initial state: parameterized by the ODE function
   Number of free coefficients: 1
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                         
Estimated using GREYEST on time domain data "z".
Fit to estimation data: [98.35;84.42]%          
FPE: 0.00107, MSE: 0.1193                       

With this model we can now proceed to test various aspects as before. The syntax of all the
commands is identical to the previous case. For example, we can compare the idgrey model with the
other state-space model:

compare(z,dcmm,dcmodel)
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They are clearly very close.

Estimating Multivariate ARX Models

The state-space part of the toolbox also handles multivariate (several outputs) ARX models. By a
multivariate ARX-model we mean the following:

A(q) y(t) = B(q) u(t) + e(t)

Here A(q) is a ny | ny matrix whose entries are polynomials in the delay operator 1/q. The k-l element
is denoted by:

where:

It is thus a polynomial in 1/q of degree nakl.

Similarly B(q) is a ny | nu matrix, whose kj-element is:
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There is thus a delay of nkkj from input number j to output number k. The most common way to
create those would be to use the ARX-command. The orders are specified as: nn = [na nb nk] with
na being a ny-by-ny matrix whose kj-entry is nakj; nb and nk are defined similarly.

Let's test some ARX-models on the dc-data. First we could simply build a general second order model:

dcarx1 = arx(z,'na',[2,2;2,2],'nb',[2;2],'nk',[1;1])

dcarx1 =
Discrete-time ARX model:                                                   
  Model for output "Angle": A(z)y_1(t) = - A_i(z)y_i(t) + B(z)u(t) + e_1(t)
    A(z) = 1 - 0.5545 z^-1 - 0.4454 z^-2                                   
                                                                           
    A_2(z) = -0.03548 z^-1 - 0.06405 z^-2                                  
                                                                           
    B(z) = 0.004243 z^-1 + 0.006589 z^-2                                   
                                                                           
  Model for output "AngVel": A(z)y_2(t) = - A_i(z)y_i(t) + B(z)u(t) + e_2(t)
    A(z) = 1 - 0.2005 z^-1 - 0.2924 z^-2                                    
                                                                            
    A_1(z) = 0.01849 z^-1 - 0.01937 z^-2                                    
                                                                            
    B(z) = 0.08642 z^-1 + 0.03877 z^-2                                      
                                                                            
Sample time: 0.1 seconds
  
Parameterization:
   Polynomial orders:   na=[2 2;2 2]   nb=[2;2]   nk=[1;1]
   Number of free coefficients: 12
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                  
Estimated using ARX on time domain data "z".             
Fit to estimation data: [97.87;83.44]% (prediction focus)
FPE: 0.002157, MSE: 0.1398                               

The result, dcarx1, is stored as an IDPOLY model, and all previous commands apply. We could for
example explicitly list the ARX-polynomials by:

dcarx1.a

ans =

  2x2 cell array

    {[1 -0.5545 -0.4454]}    {[0 -0.0355 -0.0640]}
    {[ 0 0.0185 -0.0194]}    {[1 -0.2005 -0.2924]}

as cell arrays where e.g. the {1,2} element of dcarx1.a is the polynomial A(1,2) described earlier,
relating y2 to y1.

We could also test a structure, where we know that y1 is obtained by filtering y2 through a first order
filter. (The angle is the integral of the angular velocity). We could then also postulate a first order
dynamics from input to output number 2:
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na = [1 1; 0 1];
nb = [0 ; 1];
nk = [1 ; 1];
dcarx2 = arx(z,[na nb nk])

dcarx2 =
Discrete-time ARX model:                                                   
  Model for output "Angle": A(z)y_1(t) = - A_i(z)y_i(t) + B(z)u(t) + e_1(t)
    A(z) = 1 - 0.9992 z^-1                                                 
                                                                           
    A_2(z) = -0.09595 z^-1                                                 
                                                                           
    B(z) = 0                                                               
                                                                           
  Model for output "AngVel": A(z)y_2(t) = B(z)u(t) + e_2(t)
    A(z) = 1 - 0.6254 z^-1                                 
                                                           
    B(z) = 0.08973 z^-1                                    
                                                           
Sample time: 0.1 seconds
  
Parameterization:
   Polynomial orders:   na=[1 1;0 1]   nb=[0;1]   nk=[1;1]
   Number of free coefficients: 4
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                  
Estimated using ARX on time domain data "z".             
Fit to estimation data: [97.52;81.46]% (prediction focus)
FPE: 0.003452, MSE: 0.177                                

To compare the different models obtained we use

compare(z,dcmodel,dcmm,dcarx2)
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Finally, we could compare the bodeplots obtained from the input to output one for the different
models by using bode: First output:

dcmm2 = idss(dcmm); % convert to IDSS for subreferencing
bode(dcmodel(1,1),'r',dcmm2(1,1),'b',dcarx2(1,1),'g')
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Second output:

bode(dcmodel(2,1),'r',dcmm2(2,1),'b',dcarx2(2,1),'g')

4 Linear Model Identification

4-92



The two first models are more or less in exact agreement. The ARX-models are not so good, due to the
bias caused by the non-white equation error noise. (We had white measurement noise in the
simulations).

Conclusions

Estimation of models with pre-selected structures can be performed using System Identification
toolbox. In state-space form, parameters may be fixed to their known values or constrained to lie
within a prescribed range. If relationship between parameters or other constraints need to be
specified, IDGREY objects may be used. IDGREY models evaluate a user-specified MATLAB file for
estimating state-space system parameters. Multi-variate ARX models offer another option for quickly
estimating multi-output models with user-specified structure.
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Estimating Simple Models from Real Laboratory Process Data
This example shows how to develop and analyze simple models from a real laboratory process data.
We start with a small description of the process, learn how to import the data to the toolbox and
preprocess/condition it and then proceed systematically to estimate parametric and nonparametric
models. Once the models have been identified we compare the estimated models and also validate the
model to the actual output data from the experiment.

System Description

This case study concerns data collected from a laboratory scale "hairdryer". (Feedback's Process
Trainer PT326; See also page 525 in Ljung, 1999). The process works as follows: Air is fanned
through a tube and heated at the inlet. The air temperature is measured by a thermocouple at the
outlet. The input is the voltage over the heating device, which is just a mesh of resistor wires. The
output is the outlet air temperature represented by the measured thermocouple voltage.

Setting up Data for Analysis

First we load the input-output data to the MATLAB® Workspace.

load dryer2;

Vector y2, the output, contains 1000 measurements of the thermocouple voltage which is
proportional to the temperature in the outlet airstream. Vector u2 contains 1000 input data points
consisting of the voltage applied to the heater. The input was generated as a binary random sequence
that switches from one level to the other with probability 0.2. The sample time is 0.08 seconds.

The next step is to set up the data as an iddata object

dry = iddata(y2,u2,0.08);

To get information about the data, just type the name of the iddata object at the MATLAB command
window:

dry

dry =

Time domain data set with 1000 samples.
Sample time: 0.08 seconds               
                                        
Outputs      Unit (if specified)        
   y1                                   
                                        
Inputs       Unit (if specified)        
   u1                                   
                                        

To inspect the properties of the above iddata object, use the get command:

get(dry)

ans = 

  struct with fields:
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              Domain: 'Time'
                Name: ''
          OutputData: [1000x1 double]
                   y: 'Same as OutputData'
          OutputName: {'y1'}
          OutputUnit: {''}
           InputData: [1000x1 double]
                   u: 'Same as InputData'
           InputName: {'u1'}
           InputUnit: {''}
              Period: Inf
         InterSample: 'zoh'
                  Ts: 0.0800
              Tstart: []
    SamplingInstants: [1000x0 double]
            TimeUnit: 'seconds'
      ExperimentName: 'Exp1'
               Notes: {}
            UserData: []

For better book-keeping, it is good practice to give names to the input and output channels and Time
units. These names would be propagated throughout the analysis of this iddata object:

dry.InputName = 'Heater Voltage';
dry.OutputName = 'Thermocouple Voltage';
dry.TimeUnit = 'seconds';
dry.InputUnit = 'V';
dry.OutputUnit = 'V';

Now that we have the data set ready, we choose the first 300 data points for model estimation.

ze = dry(1:300)

ze =

Time domain data set with 300 samples.       
Sample time: 0.08 seconds                     
                                              
Outputs                    Unit (if specified)
   Thermocouple Voltage       V               
                                              
Inputs                     Unit (if specified)
   Heater Voltage             V               
                                              

Preprocessing the Data

Plot the interval from sample 200 to 300:

plot(ze(200:300));
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Figure 1: A snapshot of the measured hair-dryer data.

From the above plot, it can be observed that the data is not zero mean. So let us remove the constant
levels and make the data zero mean.

ze = detrend(ze);

The same data set after it has been detrended:

plot(ze(200:300)) %show samples from 200 to 300 of detrended data
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Figure 2: Detrended estimation data.

Estimating Nonparametric and Parametric Models

Now that the dataset has been detrended and there are no obvious outliers, let us first estimate the
impulse response of the system by correlation analysis to get some idea of time constants and the
like:

clf
mi = impulseest(ze); % non-parametric (FIR) model
showConfidence(impulseplot(mi),3); %impulse response with 3 standard
                                   %deviations confidence region
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Figure 3: Impulse response of the FIR model estimated using ze.

The shaded region marks a 99.7% confidence interval. There is a time delay (dead-time) of 3 samples
before the output responds to the input (significant output outside the confidence interval).

The simplest way to get started on a parametric estimation routine is to build a state-space model
where the model-order is automatically determined, using a prediction error method. Let us estimate
a model using the ssest estimation technique:

m1 = ssest(ze);

m1 is a continuous-time identified state-space model, represented by an idss object. The estimation
algorithm chooses 3 as the optimal order of the model. To inspect the properties of the estimated
model, just enter the model name at the command window:

m1

m1 =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
            x1       x2       x3
   x1  -0.4839   -2.011    2.092
   x2    3.321   -1.913    5.998
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   x3    1.623   -17.01   -15.61
 
  B = 
       Heater Volta
   x1      -0.05753
   x2       0.02004
   x3         1.377
 
  C = 
                      x1       x2       x3
   Thermocouple   -14.07  0.07729  0.04252
 
  D = 
                 Heater Volta
   Thermocouple             0
 
  K = 
       Thermocouple
   x1       -0.9457
   x2      -0.02097
   x3         2.102
 
Parameterization:
   FREE form (all coefficients in A, B, C free).
   Feedthrough: none
   Disturbance component: estimate
   Number of free coefficients: 18
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using SSEST on time domain data "ze".  
Fit to estimation data: 95.32% (prediction focus)
FPE: 0.001621, MSE: 0.001526                     

The display suggests that the model is free-form (all entries of A, B and C matrices were treated as
free parameters) and that the estimated model fits the data pretty well (over 90% fit). To retrieve the
properties of this model, for example to obtain the A matrix of the discrete state-space object
generated above, we can use the dot operator:

     A = m1.a;

See the "Data and Model Objects in System Identification Toolbox" example for more information
regarding model objects. To find out which properties of the model object can be retrieved, use get
command:

get(m1)

                A: [3x3 double]
                B: [3x1 double]
                C: [-14.0706 0.0773 0.0425]
                D: 0
                K: [3x1 double]
        StateName: {3x1 cell}
        StateUnit: {3x1 cell}
        Structure: [1x1 pmodel.ss]
    NoiseVariance: 1.2587e-04
       InputDelay: 0
      OutputDelay: 0
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               Ts: 0
         TimeUnit: 'seconds'
        InputName: {'Heater Voltage'}
        InputUnit: {'V'}
       InputGroup: [1x1 struct]
       OutputName: {'Thermocouple Voltage'}
       OutputUnit: {'V'}
      OutputGroup: [1x1 struct]
            Notes: [0x1 string]
         UserData: []
             Name: ''
     SamplingGrid: [1x1 struct]
           Report: [1x1 idresults.ssest]

To fetch the values of the state-space matrices and their 1 standard deviation uncertainties, use the
idssdata command:

[A,B,C,D,K,~,dA,dB,dC,dD,dK] = idssdata(m1)

A =

   -0.4839   -2.0112    2.0917
    3.3205   -1.9135    5.9981
    1.6235  -17.0096  -15.6070

B =

   -0.0575
    0.0200
    1.3770

C =

  -14.0706    0.0773    0.0425

D =

     0

K =

   -0.9457
   -0.0210
    2.1019

dA =

   1.0e+15 *

    0.1361    0.1356    0.0670
    0.3279    0.1989    0.1730

4 Linear Model Identification

4-100



    1.0640    0.6049    0.2248

dB =

   1.0e+13 *

    0.4362
    1.3716
    3.9230

dC =

   1.0e+14 *

    2.2936    1.5361    0.4630

dD =

     0

dK =

   1.0e+13 *

    1.4947
    3.6174
    8.1524

The uncertainties are quite large even though the model fit the estimation data well. This is because
the model is over-parameterized, that is, it has more free parameters than what could be uniquely
identified. The variance of parameters in such cases is not well defined. However this does not imply
that the model is unreliable. We can plot the time- and frequency-response of this plot and view the
variance as confidence regions as discussed next.

Analyzing the Estimated Model

The Bode plot of the generated model can be obtained using the bode function as shown below:

h = bodeplot(m1);
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Figure 4: Bode plot of estimated model.

Right-click on the plot and pick Characteristics->Confidence Region. Or, use the showConfidence
command to view the variance of the response.

showConfidence(h,3) % 3 standard deviation (99.7%) confidence region
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Figure 5: Bode plot with 3 standard deviation confidence region.

Similarly, we can generate the step plot and its associated 3 standard deviation confidence region. We
can compare the responses and associated variances of the parametric model m1 with that of the
nonparametric model mi:

showConfidence(stepplot(m1,'b',mi,'r',3),3)
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Figure 6: Step plot of models m1 and mi with confidence regions.

We can also consider the Nyquist plot, and mark uncertainty regions at certain frequencies with
ellipses, corresponding to 3 standard deviations:

Opt = nyquistoptions;
Opt.ShowFullContour = 'off';
showConfidence(nyquistplot(m1,Opt),3)
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Figure 7: Nyquist plot of estimated model showing the uncertainty regions at certain frequencies.

The response plots show that the estimated model m1 is quite reliable.

Estimating Models with a Prescribed Structure

System Identification Toolbox can also be used to obtain a model with a prescribed structure. For
example, a difference equation model with 2 poles, 1 zero and 3 sample delays can be obtained using
the arx function as shown below:

m2 = arx(ze,[2 2 3]);

To look at the model, enter the model name at the command window.

m2

m2 =
Discrete-time ARX model: A(z)y(t) = B(z)u(t) + e(t)
  A(z) = 1 - 1.274 z^-1 + 0.3942 z^-2              
                                                   
  B(z) = 0.06679 z^-3 + 0.04429 z^-4               
                                                   
Sample time: 0.08 seconds
  
Parameterization:
   Polynomial orders:   na=2   nb=2   nk=3
   Number of free coefficients: 4
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   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using ARX on time domain data "ze".    
Fit to estimation data: 95.08% (prediction focus)
FPE: 0.001756, MSE: 0.001687                     

A continuous time transfer function with 2 poles, one zero and 0.2 second transport delay can be
estimated using the tfest command:

m3 = tfest(ze, 2, 1, 0.2)

m3 =
 
  From input "Heater Voltage" to output "Thermocouple Voltage":
                   1.183 s + 26.55
  exp(-0.2*s) * ---------------------
                s^2 + 11.61 s + 28.63
 
Continuous-time identified transfer function.

Parameterization:
   Number of poles: 2   Number of zeros: 1
   Number of free coefficients: 4
   Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                        
Estimated using TFEST on time domain data "ze".
Fit to estimation data: 88.79%                 
FPE: 0.009126, MSE: 0.008768                   

Validating the Estimated Model to Experimental Output

How good is an estimated model? One way to find out is to simulate it and compare the model output
with measured output. Select a portion of the original data that was not used in building the model,
say from samples 800 to 900. Once the validation data has been preprocessed, we use the compare
function as shown below to view the quality of prediction:

zv = dry(800:900);   % select an independent data set for validation
zv = detrend(zv);    % preprocess the validation data
set(gcf,'DefaultLegendLocation','best')
compare(zv,m1);      % perform comparison of simulated output
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Figure 8: Model's simulated response vs. validation data output.

It can be observed here that the agreement is very good. The "Fit" value shown is calculated as:

Fit = 100*(1 - norm(yh - y)/norm(y-mean(y)))

where y is the measured output (=|zv.y|), and yh is the output of the model m1.

Comparing Estimated Models

To compare the performance of the models that we have estimated, for example m1, m2 and m3 with
the validation data zv, we can again use the compare command:

compare(zv,m1,'b',m2,'r',m3,'c');
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Figure 9: Comparing the responses of models m1, m2, m3 on validation data set ze.

The pole-zero plots for the models can be obtained using iopzplot:

h = iopzplot(m1,'b',m2,'r',m3,'c');
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Figure 10: Poles and zeros of the models m1, m2 and m3.

The uncertainties in the poles and zeroes can also be obtained. In the following statement, '3' refers
to the number of standard deviations.

showConfidence(h,3);
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Figure 11: Pole-zero map with uncertainty regions.

The frequency functions above that are obtained from the models can be compared with one that is
obtained using a non-parametric spectral analysis method (spa):

gs = spa(ze);

The spa command produces an IDFRD model. The bode function can again be used for a comparison
with the transfer functions of the models obtained.

w = linspace(0.4,pi/m2.Ts,200);
opt = bodeoptions; opt.PhaseMatching = 'on';
bodeplot(m1,'b',m2,'r',m3,'c',gs,'g',w,opt);
legend('m1','m2','m3','gs')
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Figure 12: Bode responses of m1, m2 and m3 compared against the non-parametric spectral
estimation model gs.

The frequency responses from the three models/methods are very close. This indicates that this
response is reliable.

Also, a Nyquist plot can be analyzed with the uncertainty regions marked at certain frequencies:

showConfidence(nyquistplot(m1,'b',m2,'r',m3,'c',gs,'g'),3)
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Figure 13: Nyquist plots of models m1, m2, m3 and gs.

The non-parametric model gs exhibits the most uncertainty in response.
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Data and Model Objects in System Identification Toolbox™
This example shows how to manage data and model objects available in the System Identification
Toolbox™. System identification is about building models from data. A data set is characterized by
several pieces of information: The input and output signals, the sample time, the variable names and
units, etc. Similarly, the estimated models contain information of different kinds - estimated
parameters, their covariance matrices, model structure and so on.

This means that it is suitable and desirable to package relevant information around data and models
into objects. System Identification Toolbox™ contains a number of such objects, and the basic
features of these are described in this example.

The IDDATA Object

First create some data:

u = sign(randn(200,2)); % 2 inputs
y = randn(200,1);       % 1 output
ts = 0.1;               % The sample time

To collect the input and the output in one object do

z = iddata(y,u,ts);

The data information is displayed by just typing its name:

z

z =

Time domain data set with 200 samples.
Sample time: 0.1 seconds               
                                       
Outputs      Unit (if specified)       
   y1                                  
                                       
Inputs       Unit (if specified)       
   u1                                  
   u2                                  
                                       

The data is plotted as iddata by the plot command, as in plot(z). Press a key to continue and
advance between the subplots. Here, we plot the channels separately:

plot(z(:,1,1)) % Data subset with Input 1 and Output 1.
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plot(z(:,1,2)) % Data subset with Input 2 and Output 1.
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To retrieve the outputs and inputs, use

u = z.u;   % or, equivalently u = get(z,'u');
y = z.y;   % or, equivalently y = get(z,'y');

To select a portion of the data:

zp = z(48:79);

To select the first output and the second input:

zs = z(:,1,2);  % The ':' refers to all the data time points.

The sub-selections can be combined:

plot(z(45:54,1,2)) % samples 45 to 54 of response from second input to the first output.
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The channels are given default names 'y1', 'u2', etc. This can be changed to any values by

set(z,'InputName',{'Voltage';'Current'},'OutputName','Speed');

Equivalently we could write

z.inputn = {'Voltage';'Current'}; % Autofill is used for properties
z.outputn = 'Speed';    % Upper and lower cases are also ignored

For bookkeeping and plots, also units can be set:

z.InputUnit = {'Volt';'Ampere'};
z.OutputUnit = 'm/s';
z

z =

Time domain data set with 200 samples.
Sample time: 0.1 seconds               
                                       
Outputs       Unit (if specified)      
   Speed         m/s                   
                                       
Inputs        Unit (if specified)      
   Voltage       Volt                  
   Current       Ampere                
                                       

4 Linear Model Identification

4-116



All current properties are (as for any object) obtained by get:

get(z)

ans = 

  struct with fields:

              Domain: 'Time'
                Name: ''
          OutputData: [200x1 double]
                   y: 'Same as OutputData'
          OutputName: {'Speed'}
          OutputUnit: {'m/s'}
           InputData: [200x2 double]
                   u: 'Same as InputData'
           InputName: {2x1 cell}
           InputUnit: {2x1 cell}
              Period: [2x1 double]
         InterSample: {2x1 cell}
                  Ts: 0.1000
              Tstart: []
    SamplingInstants: [200x0 double]
            TimeUnit: 'seconds'
      ExperimentName: 'Exp1'
               Notes: {}
            UserData: []

In addition to the properties discussed so far, we have 'Period' which denotes the period of the input if
periodic Period = inf means a non-periodic input:

z.Period

ans =

   Inf
   Inf

The intersample behavior of the input may be given as 'zoh' (zero-order-hold, i.e. piecewise constant)
or 'foh' (first- order-hold, i.e., piecewise linear). The identification routines use this information to
adjust the algorithms.

z.InterSample

ans =

  2x1 cell array

    {'zoh'}
    {'zoh'}

You can add channels (both input and output) by "horizontal concatenation", i.e. z = [z1 z2]:
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z2 = iddata(rand(200,1),ones(200,1),0.1,'OutputName','New Output',...
    'InputName','New Input');
z3 = [z,z2]

z3 =

Time domain data set with 200 samples.
Sample time: 0.1 seconds               
                                       
Outputs          Unit (if specified)   
   Speed            m/s                
   New Output                          
                                       
Inputs           Unit (if specified)   
   Voltage          Volt               
   Current          Ampere             
   New Input                           
                                       

Let us plot some of the channels of z3:

plot(z3(:,1,1)) % Data subset with Input 2 and Output 1.

plot(z3(:,2,3)) % Data subset with Input 2 and Output 3.
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Generating Inputs

The command idinput generates typical input signals.

u = idinput([30 1 10],'sine'); % 10 periods of 30 samples
u = iddata([],u,1,'Period',30) % Making the input an IDDATA object.

u =

Time domain data set with 300 samples.
Sample time: 1 seconds                 
                                       
Inputs       Unit (if specified)       
   u1                                  
                                       

SIM applied to an iddata input delivers an iddata output. Let us use sim to obtain the response of an
estimated model m using the input u. We also add noise to the model response in accordance with the
noise dynamics of the model. We do this by using the "AddNoise" simulation option:

m = idpoly([1 -1.5 0.7],[0 1 0.5]);  % This creates a model; see below.
options = simOptions;
options.AddNoise = true;
y = sim(m,u,options) % simulated response produced as an iddata object

y =
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Time domain data set with 300 samples.
Sample time: 1 seconds                 
                                       
Outputs      Unit (if specified)       
   y1                                  
                                       

The simulation input u and the output y may be combined into a single iddata object as follows:

z5 = [y u] % The output-input iddata.

z5 =

Time domain data set with 300 samples.
Sample time: 1 seconds                 
                                       
Outputs      Unit (if specified)       
   y1                                  
                                       
Inputs       Unit (if specified)       
   u1                                  
                                       

More about the iddata object is found under help iddata.

The Linear Model Objects

All models are delivered as MATLAB® objects. There are a few different objects depending on the
type of model used, but this is mostly transparent.

load iddata1
m = armax(z1,[2 2 2 1]);  % This creates an ARMAX model, delivered as an IDPOLY object

All relevant properties of this model are packaged as one object (here, idpoly). To display it just
type its name:

m

m =
Discrete-time ARMAX model: A(z)y(t) = B(z)u(t) + C(z)e(t)
  A(z) = 1 - 1.531 z^-1 + 0.7293 z^-2                    
                                                         
  B(z) = 0.943 z^-1 + 0.5224 z^-2                        
                                                         
  C(z) = 1 - 1.059 z^-1 + 0.1968 z^-2                    
                                                         
Sample time: 0.1 seconds
  
Parameterization:
   Polynomial orders:   na=2   nb=2   nc=2   nk=1
   Number of free coefficients: 6
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using ARMAX on time domain data "z1".  
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Fit to estimation data: 76.38% (prediction focus)
FPE: 1.127, MSE: 1.082                           

    Many of the model properties are directly accessible

m.a    % The A-polynomial

ans =

    1.0000   -1.5312    0.7293

A list of properties is obtained by get:

get(m)

                 A: [1 -1.5312 0.7293]
                 B: [0 0.9430 0.5224]
                 C: [1 -1.0587 0.1968]
                 D: 1
                 F: 1
    IntegrateNoise: 0
          Variable: 'z^-1'
           IODelay: 0
         Structure: [1x1 pmodel.polynomial]
     NoiseVariance: 1.1045
        InputDelay: 0
       OutputDelay: 0
                Ts: 0.1000
          TimeUnit: 'seconds'
         InputName: {'u1'}
         InputUnit: {''}
        InputGroup: [1x1 struct]
        OutputName: {'y1'}
        OutputUnit: {''}
       OutputGroup: [1x1 struct]
             Notes: [0x1 string]
          UserData: []
              Name: ''
      SamplingGrid: [1x1 struct]
            Report: [1x1 idresults.polyest]

Use present to view the estimated parameter covariance as +/- 1 standard deviation uncertainty
values on individual parameters:

present(m)

                                                                              
m =                                                                           
Discrete-time ARMAX model: A(z)y(t) = B(z)u(t) + C(z)e(t)                     
  A(z) = 1 - 1.531 (+/- 0.01801) z^-1 + 0.7293 (+/- 0.01473) z^-2             
                                                                              
  B(z) = 0.943 (+/- 0.06074) z^-1 + 0.5224 (+/- 0.07818) z^-2                 
                                                                              
  C(z) = 1 - 1.059 (+/- 0.06067) z^-1 + 0.1968 (+/- 0.05957) z^-2             
                                                                              
Sample time: 0.1 seconds                                                      
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Parameterization:                                                             
   Polynomial orders:   na=2   nb=2   nc=2   nk=1                             
   Number of free coefficients: 6                                             
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.
                                                                              
Status:                                                                       
Termination condition: Near (local) minimum, (norm(g) < tol)..                
Number of iterations: 3, Number of function evaluations: 7                    
                                                                              
Estimated using ARMAX on time domain data "z1".                               
Fit to estimation data: 76.38% (prediction focus)                             
FPE: 1.127, MSE: 1.082                                                        
More information in model's "Report" property.                                

Use getpvec to fetch a flat list of all the model parameters, or just the free ones, and their
uncertainties. Use getcov to fetch the entire covariance matrix.

[par, dpar] = getpvec(m, 'free')
CovFree = getcov(m,'value')

par =

   -1.5312
    0.7293
    0.9430
    0.5224
   -1.0587
    0.1968

dpar =

    0.0180
    0.0147
    0.0607
    0.0782
    0.0607
    0.0596

CovFree =

    0.0003   -0.0003    0.0000    0.0007    0.0004   -0.0003
   -0.0003    0.0002   -0.0000   -0.0004   -0.0003    0.0002
    0.0000   -0.0000    0.0037   -0.0034   -0.0000    0.0001
    0.0007   -0.0004   -0.0034    0.0061    0.0008   -0.0005
    0.0004   -0.0003   -0.0000    0.0008    0.0037   -0.0032
   -0.0003    0.0002    0.0001   -0.0005   -0.0032    0.0035

nf = 0, nd = 0 denote orders of a general linear model, of which the ARMAX model is a special case.

Report contains information about the estimation process:

m.Report
m.Report.DataUsed       % record of data used for estimation
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m.Report.Fit            % quantitative measures of model quality
m.Report.Termination    % search termination conditions

ans = 

              Status: 'Estimated using ARMAX with prediction focus'
              Method: 'ARMAX'
    InitialCondition: 'zero'
                 Fit: [1x1 struct]
          Parameters: [1x1 struct]
         OptionsUsed: [1x1 idoptions.polyest]
           RandState: [1x1 struct]
            DataUsed: [1x1 struct]
         Termination: [1x1 struct]

ans = 

  struct with fields:

            Name: 'z1'
            Type: 'Time domain data'
          Length: 300
              Ts: 0.1000
     InterSample: 'zoh'
     InputOffset: []
    OutputOffset: []

ans = 

  struct with fields:

    FitPercent: 76.3807
       LossFcn: 1.0824
           MSE: 1.0824
           FPE: 1.1266
           AIC: 887.1256
          AICc: 887.4123
          nAIC: 0.1192
           BIC: 909.3483

ans = 

  struct with fields:

                 WhyStop: 'Near (local) minimum, (norm(g) < tol).'
              Iterations: 3
    FirstOrderOptimality: 7.2436
                FcnCount: 7
              UpdateNorm: 0.0067
         LastImprovement: 0.0067
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To obtain on-line information about the minimization, use the 'Display' estimation option with possible
values 'off', 'on', and 'full'. This launches a progress viewer that shows information on the model
estimation progress.

Opt = armaxOptions('Display','on');
m1 = armax(z1,[2 2 2 1],Opt);

Variants of Linear Models - IDTF, IDPOLY, IDPROC, IDSS and IDGREY

There are several types of linear models. The one above is an example of the idpoly version for
polynomial type models. Different variants of polynomial-type models, such as Box-Jenkins models,
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Output Error models, ARMAX models etc are obtained using the corresponding estimators - bj, oe,
armax, arx etc. All of these are presented as idpoly objects.

Other variants are idss for state-space models; idgrey for user-defined structured state-space
models; idtf for transfer function models, and idproc for process models (gain+delay+static gain).

The commands to evaluate the model: bode, step, iopzmap, compare, etc, all operate directly
on the model objects, for example:

compare(z1,m1)

Transformations to state-space, transfer function and zeros/poles are obtained by idssdata, tfdata
and zpkdata:

[num,den]  = tfdata(m1,'v')

num =

         0    0.9430    0.5224

den =

    1.0000   -1.5312    0.7293
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The 'v' means that num and den are returned as vectors and not as cell arrays. The cell arrays are
useful to handle multivariable systems. To also retrieve the 1 standard deviation uncertainties in the
values of num and den use:

[num, den, ~, dnum, dden] = tfdata(m1,'v')

num =

         0    0.9430    0.5224

den =

    1.0000   -1.5312    0.7293

dnum =

         0    0.0607    0.0782

dden =

         0    0.0180    0.0147

Transforming Identified Models into Numeric LTIs of Control System Toolbox™

The objects also connect directly to the Control System Toolbox™ model objects, like tf, ss, and zpk,
and can be converted into these LTI objects, if Control System Toolbox is available. For example, tf
converts an idpoly object into a tf object.

CSTBInstalled = exist('tf','class')==8;
if CSTBInstalled % check if Control System Toolbox is installed
    tfm = tf(m1) % convert IDPOLY model m1 into a TF object
end

tfm =
 
  From input "u1" to output "y1":
    0.943 z^-1 + 0.5224 z^-2
  ----------------------------
  1 - 1.531 z^-1 + 0.7293 z^-2
 
Sample time: 0.1 seconds
Discrete-time transfer function.

When converting an IDLTI model to the Control Systems Toolbox's LTI models, noise component is not
retained. To also include the noise channels as regular inputs of the LTI model, use the 'augmented'
flag:

if CSTBInstalled
    tfm2 = tf(m1,'augmented')
end
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tfm2 =
 
  From input "u1" to output "y1":
    0.943 z^-1 + 0.5224 z^-2
  ----------------------------
  1 - 1.531 z^-1 + 0.7293 z^-2
 
  From input "v@y1" to output "y1":
  1.051 - 1.113 z^-1 + 0.2069 z^-2
  --------------------------------
    1 - 1.531 z^-1 + 0.7293 z^-2
 
Input groups:           
      Name      Channels
    Measured       1    
     Noise         2    
                        
Sample time: 0.1 seconds
Discrete-time transfer function.

The noise channel is named v@y1 in the model tfm2.
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Comparison of Various Model Identification Methods
This example shows several identification methods available in System Identification Toolbox™. We
begin by simulating experimental data and use several estimation techniques to estimate models from
the data. The following estimation routines are illustrated in this example: spa, ssest, tfest, arx,
oe, armax and bj.

System Description

A noise corrupted linear system can be described by:

y = G u + H e

where y is the output and u is the input, while e denotes the unmeasured (white) noise source. G is
the system's transfer function and H gives the description of the noise disturbance.

There are many ways to estimate G and H. Essentially they correspond to different ways of
parameterizing these functions.

Defining a Model

System Identification Toolbox provides users with the option of simulating data as would have been
obtained from a physical process. Let us simulate the data from an IDPOLY model with a given set of
coefficients.

B = [0 1 0.5];
A = [1 -1.5 0.7];
m0 = idpoly(A,B,[1 -1 0.2],'Ts',0.25,'Variable','q^-1'); % The sample time is 0.25 s.

The third argument [1 -1 0.2] gives a characterization of the disturbances that act on the system.
Execution of these commands produces the following discrete-time idpoly model:

m0

m0 =
Discrete-time ARMAX model: A(q)y(t) = B(q)u(t) + C(q)e(t)
  A(q) = 1 - 1.5 q^-1 + 0.7 q^-2                         
                                                         
  B(q) = q^-1 + 0.5 q^-2                                 
                                                         
  C(q) = 1 - q^-1 + 0.2 q^-2                             
                                                         
Sample time: 0.25 seconds
  
Parameterization:
   Polynomial orders:   na=2   nb=2   nc=2   nk=1
   Number of free coefficients: 6
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

Here q denotes the shift operator so that A(q)y(t) is really short for y(t) - 1.5 y(t-1) + 0.7 y(t-2). The
display of model m0 shows that it is an ARMAX model.

This particular model structure is known as an ARMAX model, where AR (Autoregressive) refers to
the A-polynomial, MA (Moving average) to the noise C-polynomial and X to the "eXtra" input B(q)u(t).

4 Linear Model Identification

4-128



In terms of the general transfer functions G and H, this model corresponds to a parameterization:

G(q) = B(q)/A(q) and H(q) = C(q)/A(q), with common denominators

Simulating the Model

We generate an input signal u and simulate the response of the model to these inputs. The idinput
command can be used to create an input signal to the model and the iddata command will package
the signal into a suitable format. The sim command can then be used to simulate the output as shown
below:

prevRng = rng(12,'v5normal');
u = idinput(350,'rbs');  %Generates a random binary signal of length 350
u = iddata([],u,0.25);   %Creates an IDDATA object. The sample time is 0.25 sec.
y = sim(m0,u,'noise')    %Simulates the model's response for this

y =

Time domain data set with 350 samples.
Sample time: 0.25 seconds              
                                       
Outputs      Unit (if specified)       
   y1                                  
                                       

                         %input with added white Gaussian noise e
                         %according to the model description m0
rng(prevRng);

One aspect to note is that the signals u and y are both IDDATA objects. Next we collect this input-
output data to form a single iddata object.

z = [y,u];

To get information on the data object (which now incorporates both the input and output data
samples), just enter its name at the MATLAB® command window:

z

z =

Time domain data set with 350 samples.
Sample time: 0.25 seconds              
                                       
Outputs      Unit (if specified)       
   y1                                  
                                       
Inputs       Unit (if specified)       
   u1                                  
                                       

To plot the first 100 values of the input u and output y, use the plot command on the iddata object:

h = gcf; set(h,'DefaultLegendLocation','best')
h.Position = [100 100 780 520];
plot(z(1:100));
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It is good practice to use only a portion of the data for estimation purposes, ze and save another part
to validate the estimated models later on:

ze = z(1:200);
zv = z(201:350);

Performing Spectral Analysis

Now that we have obtained the simulated data, we can estimate models and make comparisons. Let
us start with spectral analysis. We invoke the spa command which returns a spectral analysis
estimate of the frequency function and the noise spectrum.

GS = spa(ze);

The result of spectral analysis is a complex-valued function of frequency: the frequency response. It is
packaged into an object called IDFRD object (Identified Frequency Response Data):

GS

GS =
IDFRD model.
Contains Frequency Response Data for 1 output(s) and 1 input(s), and the spectra for disturbances at the outputs.
Response data and disturbance spectra are available at 128 frequency points, ranging from 0.09817 rad/s to 12.57 rad/s.
 
Sample time: 0.25 seconds
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Output channels: 'y1'
Input channels: 'u1'
Status:                                      
Estimated using SPA on time domain data "ze".

To plot the frequency response it is customary to use the Bode plot, with the bode or bodeplot
command:

clf
h = bodeplot(GS); % bodeplot returns a plot handle, which bode does not
ax = axis; axis([0.1 10 ax(3:4)])

The estimate GS is uncertain, since it is formed from noise corrupted data. The spectral analysis
method provides also its own assessment of this uncertainty. To display the uncertainty (say for
example 3 standard deviations) we can use the showConfidence command on the plot handle h
returned by the previous bodeplot command.

showConfidence(h,3)
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The plot says that although the nominal estimate of the frequency response (blue line) is not
necessarily accurate, there is a 99.7% probability (3 standard deviations of the normal distribution)
that the true response is within the shaded (light-blue) region.

Estimating Parametric State Space Models

Next let us estimate a default (without us specifying a particular model structure) linear model. It will
be computed as a state-space model using a prediction error method. We use the ssest function in
this case:

m = ssest(ze) % The order of the model will be chosen automatically

m =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
              x1         x2
   x1  -0.007167      1.743
   x2     -2.181     -1.337
 
  B = 
            u1
   x1  0.09388
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   x2   0.2408
 
  C = 
          x1     x2
   y1  47.34  -14.4
 
  D = 
       u1
   y1   0
 
  K = 
             y1
   x1   0.04108
   x2  -0.03751
 
Parameterization:
   FREE form (all coefficients in A, B, C free).
   Feedthrough: none
   Disturbance component: estimate
   Number of free coefficients: 10
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using SSEST on time domain data "ze".  
Fit to estimation data: 75.08% (prediction focus)
FPE: 0.9835, MSE: 0.9262                         

At this point the state-space model matrices do not tell us very much. We could compare the
frequency response of the model m with that of the spectral analysis estimate GS. Note that GS is a
discrete-time model while m is a continuous-time model. It is possible to use ssest to compute
discrete time models too.

bodeplot(m,GS)
ax = axis; axis([0.1 10 ax(3:4)])
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We note that the two frequency responses are close, despite the fact that they have been estimated in
very different ways.

Estimating Simple Transfer Functions

There is a wide variety of linear model structures, all corresponding to linear difference or differential
equations describing the relation between u and y. The different structures all correspond to various
ways of modeling the noise influence. The simplest of these models are the transfer function and ARX
models. A transfer function takes the form:

Y(s) = NUM(s)/DEN(s) U(s) + E(s)

where NUM(s) and DEN(s) are the numerator and denominator polynomials, and Y(s), U(s) and E(s)
are the Laplace Transforms of the output, input and error signals (y(t), u(t) and e(t)) respectively.
NUM and DEN can be parameterized by their orders which represent the number of zeros and poles.
For a given number of poles and zeros, we can estimate a transfer function using the tfest
command:

mtf = tfest(ze, 2, 2) % transfer function with 2 zeros and 2 poles

mtf =
 
  From input "u1" to output "y1":
  -0.05428 s^2 - 0.02386 s + 29.6
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  -------------------------------
       s^2 + 1.361 s + 4.102
 
Continuous-time identified transfer function.

Parameterization:
   Number of poles: 2   Number of zeros: 2
   Number of free coefficients: 5
   Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                        
Estimated using TFEST on time domain data "ze".
Fit to estimation data: 71.69%                 
FPE: 1.282, MSE: 1.195                         

AN ARX model is represented as: A(q)y(t) = B(q)u(t) + e(t),

or in long-hand,

y t + a1y t − 1 +⋯ + anay t − na = b1u t − nk + ⋯ bnbu t − nb − nk + 1 + e t

This model is linear in coefficients. The coefficients a1, a2, ..., b1, b2, .. can be computed efficiently
using a least squares estimation technique. An estimate of an ARX model with a prescribed structure
- two poles, one zero and a single lag on the input is obtained as ([na nb nk] = [2 2 1]):

mx = arx(ze,[2 2 1])

mx =
Discrete-time ARX model: A(z)y(t) = B(z)u(t) + e(t)
  A(z) = 1 - 1.32 z^-1 + 0.5393 z^-2               
                                                   
  B(z) = 0.9817 z^-1 + 0.4049 z^-2                 
                                                   
Sample time: 0.25 seconds
  
Parameterization:
   Polynomial orders:   na=2   nb=2   nk=1
   Number of free coefficients: 4
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using ARX on time domain data "ze".    
Fit to estimation data: 68.18% (prediction focus)
FPE: 1.603, MSE: 1.509                           

Comparing the Performance of Estimated Models

Are the models (mtf, mx) better or worse than the default state-space model m? One way to find out is
to simulate each model (noise free) with the input from the validation data zv and compare the
corresponding simulated outputs with the measured output in the set zv:

compare(zv,m,mtf,mx)
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The fit is the percent of the output variation that is explained by the model. Clearly m is the better
model, although mtf comes close. A discrete-time transfer function can be estimate using either the
tfest or the oe command. The former creates an IDTF model while the latter creates an IDPOLY
model of Output-Error structure (y(t) = B(q)/F(q)u(t) + e(t)), but they are mathematically equivalent.

md1 = tfest(ze,2,2,'Ts',0.25)  % two poles and 2 zeros (counted as roots of polynomials in z^-1)

md1 =
 
  From input "u1" to output "y1":
   0.8383 z^-1 + 0.7199 z^-2
  ----------------------------
  1 - 1.497 z^-1 + 0.7099 z^-2
 
Sample time: 0.25 seconds
Discrete-time identified transfer function.

Parameterization:
   Number of poles: 2   Number of zeros: 2
   Number of free coefficients: 4
   Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                        
Estimated using TFEST on time domain data "ze".
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Fit to estimation data: 71.46%                 
FPE: 1.264, MSE: 1.214                         

md2 = oe(ze,[2 2 1]) 

md2 =
Discrete-time OE model: y(t) = [B(z)/F(z)]u(t) + e(t)
  B(z) = 0.8383 z^-1 + 0.7199 z^-2                   
                                                     
  F(z) = 1 - 1.497 z^-1 + 0.7099 z^-2                
                                                     
Sample time: 0.25 seconds
  
Parameterization:
   Polynomial orders:   nb=2   nf=2   nk=1
   Number of free coefficients: 4
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                     
Estimated using OE on time domain data "ze".
Fit to estimation data: 71.46%              
FPE: 1.264, MSE: 1.214                      

compare(zv, md1, md2)

The models md1 and md2 deliver identical fits to the data.
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Residual Analysis

A further way to gain insight into the quality of a model is to compute the "residuals": i.e. that part e
in y = Gu + He that could not be explained by the model. Ideally, these should be uncorrelated with
the input and also mutually uncorrelated. The residuals are computed and their correlation properties
are displayed by the resid command. This function can be used to evaluate the residues both in the
time and frequency domains. First let us obtain the residuals for the Output-Error model in the time
domain:

resid(zv,md2) % plots the result of residual analysis

We see that the cross correlation between residuals and input lies in the confidence region, indicating
that there is no significant correlation. The estimate of the dynamics G should then be considered as
adequate. However, the (auto) correlation of e is significant, so e cannot be seen as white noise. This
means that the noise model H is not adequate.

Estimating ARMAX and Box-Jenkins Models

Let us now compute a second order ARMAX model and a second order Box-Jenkins model. The
ARMAX model has the same noise characteristics as the simulated model m0 and the Box-Jenkins
model allows a more general noise description.

am2 = armax(ze,[2 2 2 1])  % 2nd order ARMAX model
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am2 =
Discrete-time ARMAX model: A(z)y(t) = B(z)u(t) + C(z)e(t)
  A(z) = 1 - 1.516 z^-1 + 0.7145 z^-2                    
                                                         
  B(z) = 0.982 z^-1 + 0.5091 z^-2                        
                                                         
  C(z) = 1 - 0.9762 z^-1 + 0.218 z^-2                    
                                                         
Sample time: 0.25 seconds
  
Parameterization:
   Polynomial orders:   na=2   nb=2   nc=2   nk=1
   Number of free coefficients: 6
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using ARMAX on time domain data "ze".  
Fit to estimation data: 75.08% (prediction focus)
FPE: 0.9837, MSE: 0.9264                         

bj2 = bj(ze,[2 2 2 2 1])   % 2nd order BOX-JENKINS model

bj2 =
Discrete-time BJ model: y(t) = [B(z)/F(z)]u(t) + [C(z)/D(z)]e(t)
  B(z) = 0.9922 z^-1 + 0.4701 z^-2                              
                                                                
  C(z) = 1 - 0.6283 z^-1 - 0.1221 z^-2                          
                                                                
  D(z) = 1 - 1.221 z^-1 + 0.3798 z^-2                           
                                                                
  F(z) = 1 - 1.522 z^-1 + 0.7243 z^-2                           
                                                                
Sample time: 0.25 seconds
  
Parameterization:
   Polynomial orders:   nb=2   nc=2   nd=2   nf=2   nk=1
   Number of free coefficients: 8
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using BJ on time domain data "ze".     
Fit to estimation data: 75.47% (prediction focus)
FPE: 0.9722, MSE: 0.8974                         

Comparing Estimated Models - Simulation and Prediction Behavior

Now that we have estimated so many different models, let us make some model comparisons. This
can be done by comparing the simulated outputs as before:

clf
compare(zv,am2,md2,bj2,mx,mtf,m)
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We can also compare how well the various estimated models are able to predict the output, say, 1 step
ahead:

compare(zv,am2,md2,bj2,mx,mtf,m,1)
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The residual analysis of model bj2 shows that the prediction error is devoid of any information - it is
not auto-correlated and also uncorrelated with the input. This shows that the extra dynamic elements
of a Box-Jenkins model (the C and D polynomials) were able to capture the noise dynamics.

resid(zv,bj2)
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Comparing Frequency Functions

In order to compare the frequency functions for the generated models we use again the bodeplot
command:

clf
opt = bodeoptions; opt.PhaseMatching = 'on';
w = linspace(0.1,4*pi,100);
bodeplot(GS,m,mx,mtf,md2,am2,bj2,w,opt);
legend({'SPA','SS','ARX','TF','OE','ARMAX','BJ'},'Location','West');
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The noise spectra of the estimated models can also be analyzed. For example here we compare the
noise spectra the ARMAX and the Box-Jenkins models with the state-space and the Spectral Analysis
models. For this, we use the spectrum command:

spectrum(GS,m,mx,am2,bj2,w)
legend('SPA','SS','ARX','ARMAX','BJ');
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Comparing Estimated Models with the True System

Here we validate the estimated models against the true system m0 that we used to simulate the input
and output data. Let us compare the frequency functions of the ARMAX model with the true system.

bode(m0,am2,w)
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The responses practically coincide. The noise spectra can also be compared.

spectrum(m0,am2,w)
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Let us also examine the pole-zero plot:

h = iopzplot(m0,am2);
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It can be seen that the poles and the zeros of the true system (blue) and the ARMAX model (green)
are very close.

We can also evaluate the uncertainty of the zeros and poles. To plot confidence regions around the
estimated poles and zeros corresponding to 3 standard deviations, use showConfidence or turn on
the "Confidence Region" characteristic from the plot's context (right-click) menu.

showConfidence(h,3)
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%

We see that the true, blue zeros and poles are well inside the green uncertainty regions.
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Estimating Continuous-Time Models using Simulink Data
This example illustrates how models simulated in Simulink® can be identified using System
Identification Toolbox™. The example describes how to deal with continuous-time systems and delays,
as well as the importance of the intersample behavior of the input.

if exist('start_simulink','file')~=2
    disp('This example requires Simulink.')
    return
end

This example requires Simulink.

Acquiring Simulation Data from a Simulink Model

Consider the system described by the following Simulink model:

open_system('iddemsl1')
set_param('iddemsl1/Random Number','seed','0')

The red part is the system, the blue part is the controller and the reference signal is a swept sinusoid
(a chirp signal). The data sample time is set to 0.5 seconds.

This system can be represented using an idpoly structure:

m0 = idpoly(1,0.1,1,1,[1 0.5],'Ts',0,'InputDelay',1,'NoiseVariance',0.01)

Let us simulate the model iddemsl1 and save the data in an iddata object:

sim('iddemsl1')
dat1e = iddata(y,u,0.5); % The IDDATA object

Let us do a second simulation of the mode for validation purposes.

set_param('iddemsl1/Random Number','seed','13')
sim('iddemsl1')
dat1v = iddata(y,u,0.5);

Let us have a peek at the estimation data obtained during the first simulation:

plot(dat1e)

Estimating Discrete Models Using the Simulation Data

Let us begin by evaluating a default-order discrete model to gain some preliminary insight into the
data characteristics:

m1 = n4sid(dat1e, 'best')     % A default order model

Check how well the model reproduces the validation data

compare(dat1v,m1)

As observed, the validation data is predicted well by the model. To investigate more into the data
characteristics, let us inspect the non-parametric impulse response computed using dat1e where the
negative lags for analysis are automatically determined:

ImpModel = impulseest(dat1e,[],'negative');
clf
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h = impulseplot(ImpModel);
showConfidence(h,3)

ImpModel is an FIR model whose order (no. of coefficients) are automatically determined. We also
choose to analyze feedback effects by computing impulse response for negative delays. Influences
from negative lags are not all insignificant. This is due to the regulator (output feedback). This means
that the impulse response estimate cannot be used to determine the time delay. Instead, build several
low order ARX-models with different delays and find out the best fit:

V = arxstruc(dat1e,dat1v,struc(1:2,1:2,1:10));
nn = selstruc(V,0) %delay is the third element of nn

The delay is determined to 3 lags. (This is correct: the deadtime of 1 second gives two lag-delays, and
the ZOH-block another one.) The corresponding ARX-model can also be computed, as follows:

m2 = arx(dat1e,nn)
compare(dat1v,m1,m2);

Refining the Estimation

The two models m1 and m2 behave similarly in simulation. Let us now try and fine-tune orders and
delays. Fix the delay to 2 (which coupled with a lack of feedthrough gives a net delay of 3 samples)
and find a default order state-space model with that delay:

m3 = n4sid(dat1e,'best','InputDelay',2,'Feedthrough',false);
% Refinement for prediction error minimization using pem (could also use
% |ssest|)
m3 = pem(dat1e, m3);

Let as look at the estimated system matrix

m3.a  % the A-matrix of the resulting model

A third order dynamics is automatically chosen, which together with the 2 "extra" delays gives a 5th
order state space model.

It is always advisable not to blindly rely upon automatic order choices. They are influenced by
random errors. A good way is to look at the model's zeros and poles, along with confidence regions:

clf
h = iopzplot(m3);
showConfidence(h,2) % Confidence region corresponding to 2 standard deviations

Clearly the two poles/zeros at the unit circle seem to cancel, indicating that a first order dynamics
might be sufficient. Using this information, let us do a new first-order estimation:

m4 = ssest(dat1e,1,'Feedthrough',false,'InputDelay',2,'Ts',dat1e.Ts);
compare(dat1v,m4,m3,m1)

The compare plot shows that the simple first order model m4 gives a very good description of the
data. Thus we shall select this model as our final result.

Converting Discrete Model to Continuous-Time (LTI)

Convert this model to continuous time, and represent it in transfer function form:

mc = d2c(m4);
idtf(mc)
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A good description of the system has been obtained, as displayed above.

Estimating Continuous-Time Model Directly

The continuous time model can also be estimated directly. The discrete model m4 has 2 sample input
delay which represents a 1 second delay. We use the ssest command for this estimation:

m5 = ssest(dat1e,1,'Feedthrough',false,'InputDelay',1);
present(m5)

Uncertainty Analysis

The parameters of model m5 exhibit high levels of uncertainty even though the model fits the data
87%. This is because the model uses more parameters than absolutely required leading to a loss of
uniqueness in parameter estimates. To view the true effect of uncertainty in the model, there are two
possible approaches:

1 View the uncertainty as confidence bounds on model's response rather than on the parameters.
2 Estimate the model in canonical form.

Let use try both approaches. First we estimate the model in canonical form.

m5Canon = ssest(dat1e,1,'Feedthrough',false,'InputDelay',1,'Form','canonical');
present(m5Canon)

m5Canon uses a canonical parameterization of the model. It fits the estimation data as good as the
model m5. It shows small uncertainties in the values of its parameters giving an evidence of its
reliability. However, as we saw for m5, a large uncertainty does not necessarily mean a "bad" model.
To ascertain the quality of these models, let use view their responses in time and frequency domains
with confidence regions corresponding to 3 standard deviations. We also plot the original system m0
for comparison.

The bode plot.

clf
opt = bodeoptions;
opt.FreqScale = 'linear';
h = bodeplot(m0,m5,m5Canon,opt);
showConfidence(h,3)
legend show

The step plot.

clf
showConfidence(stepplot(m0,m5,m5Canon),3)
legend show

The uncertainty bounds for the two models are virtually identical. We can similarly generate pole-zero
map (iopzplot) and Nyquist plot (nyquistplot) with confidence regions for these models.

idtf(m5)

Accounting for Intersample Behavior in Continuous-Time Estimation

When comparing continuous time models computed from sampled data, it is important to consider
the intersample behavior of the input signal. In the example so far, the input to the system was piece-
wise constant, due to the Zero-order-Hold (zoh) circuit in the controller. Now remove this circuit, and
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consider a truly continuous system. The input and output signals are still sampled a 2 Hz, and
everything else is the same:

open_system('iddemsl3')
sim('iddemsl3')
dat2e = iddata(y,u,0.5);

Discrete time models will still do well on these data, since when they are adjusted to the
measurements, they will incorporate the sampling properties, and intersample input behavior (for the
current input). However, when building continuous time models, knowing the intersample properties
is essential. First build a model just as for the ZOH case:

m6 = ssest(dat2e,1,'Feedthrough',false,'InputDelay',1,'Form','canonical');
idtf(m6)

Let us compare the estimated model (m6) against the true model (m0):

step(m6,m0)  % Compare with true system

The agreement is now not so good. We may, however, include in the data object information about the
input. As an approximation, let it be described as piecewise linear (First-order-hold, FOH) between
the sampling instants. This information is then used by the estimator for proper sampling:

dat2e.Intersample = 'foh';
m7 = ssest(dat2e,1,'Feedthrough',false,'InputDelay',1,'Form','canonical');  % new estimation with correct intersample behavior
idtf(m7)

Let us look at the step response comparison again:

step(m7,m0)  % Compare with true system

This model (m7) gives a much better result than m6. This concludes this example.

bdclose('iddemsl1');
bdclose('iddemsl3');
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Linear Approximation of Complex Systems by Identification
This example shows how to obtain linear approximations of a complex, nonlinear system by means of
linear model identification. The approach is based on selection of an input signal that excites the
system. A linear approximation is obtained by fitting a linear model to the simulated response of the
nonlinear model for the chosen input signal.

This example uses Simulink®, Control System Toolbox™ and Simulink Control Design™.

Introduction

In many situations, a linear model is obtained by simplification of a more complex nonlinear system
under certain local conditions. For example, a high fidelity model of the aircraft dynamics may be
described by a detailed Simulink model. A common approach taken to speed up the simulation of
such systems, study their local behavior about an operating point or design compensators is to
linearize them. If we perform the linearization of the original model analytically about an operating
point, this, in general, would yield a model of an order as high as, or close to, the number of states in
the original model. This order may be unnecessarily high for the class of inputs it is supposed to be
used with for analysis or control system design. Hence we can consider an alternative approach
centered around collecting input-output data from the simulation of the system and using it to derive
a linear model of just the right order.

Analytical Linearization of F14 Model

Consider the F14 model. This is a already a linear model but contains derivative blocks and sources of
disturbance that may affect the nature of its output. We can "linearize" it between its one input port
and the two output ports as follows:

open_system('idF14Model')
IO = getlinio('idF14Model')
syslin = linearize('idF14Model',IO)

3x1 vector of Linearization IOs: 
--------------------------
1. Linearization input perturbation located at the following signal:
- Block: idF14Model/Pilot
- Port: 1
- Signal Name: Stick Input
2. Linearization output measurement located at the following signal:
- Block: idF14Model/Gain5
- Port: 1
- Signal Name: Angle of Attack
3. Linearization output measurement located at the following signal:
- Block: idF14Model/Pilot G force
- Port: 1
- Signal Name: Pilot G force

syslin =
 
  A = 
                 Transfer Fcn    Derivative  Transfer Fcn   Derivative1
   Transfer Fcn       -0.6385             0         689.4             0
   Derivative               1        -1e+05             0             0
   Transfer Fcn      -0.00592             0       -0.6571             0
   Derivative1              0             0             1        -1e+05
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   Actuator Mod             0             0         1.424             0
   Alpha-sensor      0.001451             0             0             0
   Stick Prefil             0             0             0             0
   Pitch Rate L             0             0             1             0
   Proportional             0             0       -0.8156             0
 
                 Actuator Mod  Alpha-sensor  Stick Prefil  Pitch Rate L
   Transfer Fcn         -1280             0             0             0
   Derivative               0             0             0             0
   Transfer Fcn        -137.7             0             0             0
   Derivative1              0             0             0             0
   Actuator Mod           -20         2.986        -39.32         -1.67
   Alpha-sensor             0        -2.526             0             0
   Stick Prefil             0             0        -22.52             0
   Pitch Rate L             0             0             0        -4.144
   Proportional             0         -1.71         22.52        0.9567
 
                 Proportional
   Transfer Fcn             0
   Derivative               0
   Transfer Fcn             0
   Derivative1              0
   Actuator Mod        -3.864
   Alpha-sensor             0
   Stick Prefil             0
   Pitch Rate L             0
   Proportional             0
 
  B = 
                 Stick Input
   Transfer Fcn            0
   Derivative              0
   Transfer Fcn            0
   Derivative1             0
   Actuator Mod            0
   Alpha-sensor            0
   Stick Prefil            1
   Pitch Rate L            0
   Proportional            0
 
  C = 
                 Transfer Fcn    Derivative  Transfer Fcn   Derivative1
   Angle of Att      0.001451             0             0             0
   Pilot G forc         -3106     3.106e+08     7.083e+04    -7.081e+09
 
                 Actuator Mod  Alpha-sensor  Stick Prefil  Pitch Rate L
   Angle of Att             0             0             0             0
   Pilot G forc             0             0             0             0
 
                 Proportional
   Angle of Att             0
   Pilot G forc             0
 
  D = 
                 Stick Input
   Angle of Att            0
   Pilot G forc            0
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Continuous-time state-space model.

syslin is a model with 2 outputs, one input and 9 states. This is because the linearization path from
the "Stick Input" input to the two outputs has 9 states in the original system. We can verify this by
using operpoint:

operpoint('idF14Model')

 Operating point for the Model idF14Model.
 (Time-Varying Components Evaluated at time t=0)

States: 
----------
(1.) idF14Model/Actuator Model
      x: 0            
(2.) idF14Model/Aircraft Dynamics Model/Transfer Fcn.1
      x: 0            
(3.) idF14Model/Aircraft Dynamics Model/Transfer Fcn.2
      x: 0            
(4.) idF14Model/Controller/Alpha-sensor Low-pass Filter
      x: 0            
(5.) idF14Model/Controller/Pitch Rate Lead Filter
      x: 0            
(6.) idF14Model/Controller/Proportional plus integral compensator
      x: 0            
(7.) idF14Model/Controller/Stick Prefilter
      x: 0            
(8.) idF14Model/Dryden Wind Gust Models/Q-gust model
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      x: 0            
(9.) idF14Model/Dryden Wind Gust Models/W-gust model
      x: 0            
      x: 0            

Inputs: None 
----------

Could this order be reduced while still maintaining fidelity to the responses for the chosen square-
wave ("Stick input") input?

Preparing Identification Data

Simulate the model and log the input square wave (u) and the outputs "Angle of attack" (y1) and
"Pilot G force" (y2) for 0:30 second time span. This data, after interpolation to a uniformly spaced
time vector (sample time of 0.0444 seconds), is stored in the "idF14SimData.mat" file.

load idF14SimData
Z = iddata([y1, y2],u,Ts,'Tstart',0);
Z.InputName = 'Stick input'; Z.InputUnit = 'rad/s';
Z.OutputName = {'Angle of attack', 'Pilot G force'};
Z.OutputUnit = {'rad', 'g'};
t = Z.SamplingInstants;

subplot(311)
plot(t,Z.y(:,1)), ylabel('Angle of attack (rad)')
title('Logged Input-Output Data')

subplot(312)
plot(t,Z.y(:,2)), ylabel('Pilot G force (g)')

subplot(313)
plot(t,Z.u), ylabel('Stick input (rad/s)')
axis([0 30 -1.2 1.2])
xlabel('Time (seconds)')
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Estimation of State Space Models

Estimate state-space models of orders 2 to 4 using the ssest command. We configure the estimation
to use "simulation" focus and choose to not estimate the disturbance component of the model.

opt = ssestOptions('Focus','simulation');
syslin2 = ssest(Z, 2, 'DisturbanceModel', 'none', opt);
syslin3 = ssest(Z, 3, 'DisturbanceModel', 'none', opt);
syslin4 = ssest(Z, 4, 'DisturbanceModel', 'none', opt);

Compare the performance of the linearized model syslin and the three identified models to the
data. Note that syslin is an SS model while syslin2, syslin3 and syslin4 are IDSS models.

syslin.InputName = Z.InputName;
syslin.OutputName = Z.OutputName; % reconcile names to facilitate comparison
clf
compare(Z, syslin, syslin2, syslin3, syslin4)
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The plot shows that the 3rd order model (syslin3) works pretty well as a linear approximation of
aircraft dynamic about its default (t=0) operating conditions. It fits the data slightly better than the
one obtained by analytical linearization (syslin). If the original idF14Model is linear, why doesn't its
linearization result, syslin, produce a 100% fit to the data? There are two reasons for this:

1 The measured outputs are affected by the wind gusts which means that the logged outputs are
not simply a function of the Stick input. There are disturbances affecting it.

2 The "Pilot G force" block uses derivative blocks whose linearization depends upon the value of
the time constant "c". "c" should be small (we use 1e-5) but not zero. A non-zero value for c
introduces an approximation error in the linearization.

Let us view the parameters of the model syslin3 which seems to capture the responses pretty well:

syslin3

syslin3 =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
            x1       x2       x3
   x1   -1.006   -2.029  -0.5842
   x2    8.284   -19.39    5.611
   x3   -2.784    12.63   -6.956
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  B = 
       Stick input
   x1       0.2614
   x2        5.512
   x3       -3.606
 
  C = 
                      x1       x2       x3
   Angle of att   -8.841  -0.5347   -1.402
   Pilot G forc   -86.42   -15.85   -66.12
 
  D = 
                 Stick input
   Angle of att            0
   Pilot G forc            0
 
  K = 
       Angle of att  Pilot G forc
   x1             0             0
   x2             0             0
   x3             0             0
 
Parameterization:
   FREE form (all coefficients in A, B, C free).
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 18
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                       
Estimated using SSEST on time domain data "Z".
Fit to estimation data: [98.4;97.02]%         
FPE: 2.367e-05, MSE: 0.1103                   

Model Simplification by Reduction and Estimation

We can also take the approach of reducing the order of the linearized model syslin and refining the
parameters of the reduced model to best fit the data Z. To figure out a good value for the reduced
order, we use hsvd:

[S, BalData] = hsvd(syslin);
clf; bar(S)
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The bar chart shows that the singular values are quite small for states 4 and above. Hence 3rd order
might be optimal for reduction.

sysr = balred(syslin,3,BalData)
opt2 = bodeoptions; opt2.PhaseMatching = 'on';
clf; bodeplot(sysr,syslin,opt2)

sysr =
 
  A = 
            x1       x2       x3
   x1   -2.854    -7.61   -54.04
   x2  -0.9714    2.341    9.123
   x3   0.6979   -7.203   -24.08
 
  B = 
       Stick input
   x1       -137.7
   x2         -869
   x3       -506.7
 
  C = 
                         x1          x2          x3
   Angle of att  -0.0005063  -0.0008826   -0.001016
   Pilot G forc   -0.005926    -0.04692     -0.1646
 
  D = 

4 Linear Model Identification

4-160



                 Stick input
   Angle of att     -0.03784
   Pilot G forc       -1.617
 
Continuous-time state-space model.

The bode plot shows good fidelity up to 10 rad/s. sysr is able to emulate the responses as good as
the original 9-state model as shown by the compare plot:

compare(Z, sysr, syslin)
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Let us refine the parameters of sysr to improve its fit to data. For this estimation, we choose the
"Levenberg-Marquardt" search method and change the maximum number of allowable iterations to
10. These choices were made based on some trial and error. We also turn on the display of estimation
progress.

opt.Display = 'on';
opt.SearchMethod = 'lm';
opt.SearchOptions.MaxIterations = 10;
sysr2 = ssest(Z, sysr, opt)
compare(Z, sysr2)

sysr2 =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
            x1       x2       x3
   x1   -4.048   -7.681   -54.01
   x2  -0.4844    1.549    8.895
   x3  -0.2398   -6.777   -25.78
 
  B = 
       Stick input
   x1       -137.7
   x2         -869
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   x3       -506.7
 
  C = 
                         x1          x2          x3
   Angle of att  -0.0003361  -0.0004964     0.00215
   Pilot G forc    -0.01191    -0.03599     -0.1434
 
  D = 
                 Stick input
   Angle of att     0.003022
   Pilot G forc       0.6438
 
  K = 
       Angle of att  Pilot G forc
   x1             0             0
   x2             0             0
   x3             0             0
 
Parameterization:
   FREE form (all coefficients in A, B, C free).
   Feedthrough: yes
   Disturbance component: none
   Number of free coefficients: 20
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                       
Estimated using SSEST on time domain data "Z".
Fit to estimation data: [98.78;97.03]%        
FPE: 1.434e-05, MSE: 0.1097                   
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The refined model sysr2 fits the response of the F14 model quite well (about 99% for the first
output, and about 97% for the second).

Conclusions

We showed an alternative approach to analytical linearization for obtaining linear approximations of
complex systems. The results are derived for a particular input signal and, strictly speaking, are
applicable to that input only. To improve the applicability of results to various input profiles, we could
perform several simulations using the various types of inputs. We could then merge the resulting
datasets into one multi-experiment dataset (see iddata/merge) and use it for estimations. In this
example, we used a complex, but linear system for convenience. The real benefit of this approach
would be seen for nonlinear systems.

We also showed an approach for reducing the order of a linear system while keeping the reduced
model faithful to the simulated response of the original Simulink model. The role of the reduced
model sysr was to provide an initial guess for the estimated model sysr2. The approach also
highlights the fact that any linear system, including those of a different class, can be used as the
initial model for estimations.

bdclose('idF14Model')
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Dealing with Multi-Variable Systems: Identification and
Analysis

This example shows how to deal with data with several input and output channels (MIMO data).
Common operations, such as viewing the MIMO data, estimating and comparing models, and viewing
the corresponding model responses are highlighted.

The Data Set

We start by looking at the data set SteamEng.

load SteamEng

This data set is collected from a laboratory scale steam engine. It has the inputs Pressure of the
steam (actually compressed air) after the control valve, and Magnetization voltage over the
generator connected to the output axis.

The outputs are Generated voltage in the generator and Rotational speed of the generator
(Frequency of the generated AC voltage).The sample time was 50 ms.

First collect the measured channels into an iddata object:

steam = iddata([GenVolt,Speed],[Pressure,MagVolt],0.05);
steam.InputName  = {'Pressure';'MagVolt'};
steam.OutputName = {'GenVolt';'Speed'};

Let us have a look at the data

plot(steam(:,1,1))

4 Linear Model Identification

4-166



plot(steam(:,1,2))
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plot(steam(:,2,1))
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plot(steam(:,2,2))
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Step and Impulse Responses

A first step to get a feel for the dynamics is to look at the step responses between the different
channels estimated directly from data:

mi = impulseest(steam,50);
clf, step(mi)
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Responses with Confidence Regions

To look at the significance of the responses, the impulse plot can be used instead, with confidence
regions corresponding to 3 standard deviations:

showConfidence(impulseplot(mi),3)
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Clearly the off-diagonal influences dominate (Compare the y-scales!) That is, GenVolt is primarily
affected by MagVolt (not much dynamics) and Speed primarily depends on Pressure. Apparently
the response from MagVolt to Speed is not very significant.

A Two-Input-Two-Output Model

A quick first test is also to look a a default continuous time state-space prediction error model. Use
only the first half of the data for estimation:

mp = ssest(steam(1:250))

mp =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
            x1       x2       x3       x4
   x1   -29.43   -4.561   0.5994     -5.2
   x2   0.4849  -0.8662   -4.101   -2.336
   x3    2.839    5.084   -8.566   -3.855
   x4   -12.13   0.9224    1.818   -34.29
 
  B = 
       Pressure   MagVolt
   x1    0.1033    -1.617
   x2   -0.3028  -0.09415
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   x3    -1.566    0.2953
   x4  -0.04477    -2.681
 
  C = 
                 x1       x2       x3       x4
   GenVolt   -16.39   0.3767  -0.7566    2.808
   Speed     -5.623    2.246  -0.5356    3.423
 
  D = 
            Pressure   MagVolt
   GenVolt         0         0
   Speed           0         0
 
  K = 
       GenVolt    Speed
   x1  -0.3555   0.0853
   x2  -0.0231    5.195
   x3    1.526    2.132
   x4    1.787  0.03216
 
Parameterization:
   FREE form (all coefficients in A, B, C free).
   Feedthrough: none
   Disturbance component: estimate
   Number of free coefficients: 40
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                 
Estimated using SSEST on time domain data.              
Fit to estimation data: [86.9;74.84]% (prediction focus)
FPE: 3.897e-05, MSE: 0.01414                            

Compare with the step responses estimated directly from data:

h = stepplot(mi,'b',mp,'r',2); % Blue for direct estimate, red for mp
showConfidence(h)
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The agreement is good with the variation permissible within the shown confidence bounds.

To test the quality of the state-space model, simulate it on the part of data that was not used for
estimation and compare the outputs:

compare(steam(251:450),mp)
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The model is very good at reproducing the Generated Voltage for the validation data, and does a
reasonable job also for the speed. (Use the pull-down menu to see the fits for the different outputs.)

Spectral Analysis

Similarly, comparisons of the frequency response of mp with a spectral analysis estimate gives:

msp = spa(steam);

bode(msp,mp)

clf, bode(msp,'b',mp,'r')
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You can right-click on the plot and select the different I/O pairs for close looks. You can also choose
'Characteristics: Confidence Region' for a picture of the reliability of the bode plot.

As before the response from MagVolt to Speed is insignificant and difficult to estimate.

Single-Input-Single-Output (SISO) Models

This data set quickly gave good models. Otherwise you often have to try out sub-models for certain
channels, to see significant influences The toolbox objects give full support to the necessary
bookkeeping in such work. The input and output names are central for this.

The step responses indicate that MagVolt primarily influences GenVolt while Pressure primarily
affects Speed. Build two simple SISO model for this: Both names and numbers can be used when
selecting channels.

m1 = tfest(steam(1:250,'Speed','Pressure'),2,1); % TF model with 2 poles 1 zero
m2 = tfest(steam(1:250,1,2),1,0) % Simple TF model with 1 pole.

m2 =
 
  From input "MagVolt" to output "GenVolt":
    18.57
  ---------
  s + 43.53
 
Continuous-time identified transfer function.
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Parameterization:
   Number of poles: 1   Number of zeros: 0
   Number of free coefficients: 2
   Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                   
Estimated using TFEST on time domain data.
Fit to estimation data: 73.34%            
FPE: 0.04645, MSE: 0.04535                

Compare these models with the MIMO model mp:

compare(steam(251:450),m1,m2,mp)

The SISO models compare well with the full model. Let us now compare the Nyquist plots. m1 is blue,
m2 is green and mp is red. Note that the sorting is automatic. mp describes all input output pairs,
while m1 only contains Pressure to Speed and m2 only contains MagVolt to GenVolt.

clf
showConfidence(nyquistplot(m1,'b',m2,'g',mp,'r'),3)
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The SISO models do a good job to reproduce their respective outputs.

The rule-of-thumb is that the model fitting becomes harder when you add more outputs (more to
explain!) and simpler when you add more inputs.

Two-Input-Single-Output Model

To do a good job on the output GenVolt, both inputs could be used.

m3 = armax(steam(1:250,'GenVolt',:),'na',4,'nb',[4 4],'nc',2,'nk',[1 1]);
m4 = tfest(steam(1:250,'GenVolt',:),2,1);
compare(steam(251:450),mp,m3,m4,m2)
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About 10% improvement was possible by including the input Pressure in the models m3 (discrete
time) and m4 (continuous time), compared to m2 that uses just MagVolt as input.

Merging SISO Models

If desired, the two SISO models m1 and m2 can be put together as one "Off-Diagonal" model by first
creating a zero dummy model:

mdum = idss(zeros(2,2),zeros(2,2),zeros(2,2),zeros(2,2));
mdum.InputName = steam.InputName;
mdum.OutputName = steam.OutputName;
mdum.ts = 0; % Continuous time model
m12 = [idss(m1),mdum('Speed','MagVolt')];    % Adding Inputs. 
                                             % From both inputs to Speed
m22 = [mdum('GenVolt','Pressure'),idss(m2)]; % Adding Inputs. 
                                             % From both inputs to GenVolt

mm = [m12;m22]; % Adding the outputs to a 2-by-2 model.

compare(steam(251:450),mp,mm)
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Clearly the "Off-Diagonal" model mm performs like m1 and m2 in explaining the outputs.
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Glass Tube Manufacturing Process
This example shows linear model identification of a glass tube manufacturing process. The
experiments and the data are discussed in:

V. Wertz, G. Bastin and M. Heet: Identification of a glass tube drawing bench. Proc. of the 10th IFAC
Congress, Vol 10, pp 334-339 Paper number 14.5-5-2. Munich August 1987.

The output of the process is the thickness and the diameter of the manufactured tube. The inputs are
the air-pressure inside the tube and the drawing speed.

The problem of modeling the process from the input speed to the output thickness is described below.
Various options for analyzing data and determining model order are discussed.

Experimental Data

We begin by loading the input and output data, saved as an iddata object:

load thispe25.mat

The data are contained in the variable glass:

glass

glass =

Time domain data set with 2700 samples.
Sample time: 1 seconds                  
                                        
Outputs      Unit (if specified)        
   Thickn                               
                                        
Inputs       Unit (if specified)        
   Speed                                
                                        

Data has 2700 samples of one input (Speed) and one output (Thickn). The sample time is 1 sec.

For estimation and cross-validation purpose, split it into two halves:

ze = glass(1001:1500); %Estimation data
zv = glass(1501:2000,:); %Validation data

A close-up view of the estimation data:

plot(ze(101:200)) %Plot the estimation data range from samples 101 to 200.
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Preliminary Analysis of Data

Let us remove the mean values as a first preprocessing step:

ze = detrend(ze);
zv = detrend(zv);

The sample time of the data is 1 second, while the process time constants might be much slower. We
may detect some rather high frequencies in the output. In order to affirm this, let us first compute the
input and output spectra:

sy = spa(ze(:,1,[]));
su = spa(ze(:,[],1));
clf
spectrum(sy,su)
axis([0.024 10 -5 20])
legend({'Output','Input'})
grid on
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Note that the input has very little relative energy above 1 rad/sec while the output contains relatively
larger values above that frequency. There are thus some high frequency disturbances that may cause
some problem for the model building.

We compute the impulse response, using part of the data to gain some insight into potential feedback
and delay from input to output:

Imp = impulseest(ze,[],'negative',impulseestOptions('RegularizationKernel','SE'));
showConfidence(impulseplot(Imp,-10:30),3)
grid on
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We see a delay of about 12 samples in the impulse response (first significant response value outside
the confidence interval), which is quite substantial. Also, the impulse response is not insignificant for
negative time lags. This indicates that there is a good probability of feedback in the data, so that
future values of output influence (get added to) the current inputs. The input delay may be calculated
explicitly using delayest:

delayest(ze)

ans = 12

The probability of feedback may be obtained using feedback:

feedback(ze) %compute probability of feedback in data

ans = 100

Thus, it is almost certain that there is feedback present in the data.

We also, as a preliminary test, compute the spectral analysis estimate:

g = spa(ze);
showConfidence(bodeplot(g))
grid on
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We note, among other things, that the high frequency behavior is quite uncertain. It may be advisable
to limit the model range to frequencies lower than 1 rad/s.

Parametric Models of the Process Behavior

Let us do a quick check if we can pick up good dynamics by just computing a fourth order ARX model
using the estimation data and simulate that model using the validation data. We know that the delay
is about 12 seconds.

m1 = arx(ze,[4 4 12]);
compare(zv,m1);
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A close view of simulation results:

compare(zv,m1,inf,'Samples',101:200)
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There are clear difficulties to deal with the high frequency components of the output. That, in
conjunction with the long delay, suggests that we decimate the data by four (i.e. low-pass filter it and
pick every fourth value):

if exist('resample','file')==2
    % Use "resample" command for decimation if Signal Processing Toolbox(TM)
    % is available.
    zd = resample(detrend(glass),1,4,20);
else
    % Otherwise, use the slower alternative - "idresamp"
    zd  = idresamp(detrend(glass),4);
end
   
zde = zd(1:500);
zdv = zd(501:size(zd,'N'));

Let us find a good structure for the decimated data. First compute the impulse response:

Imp = impulseest(zde);
showConfidence(impulseplot(Imp,200),3)
axis([0  100  -0.05  0.01])
grid on
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We again see that the delay is about 3 samples (which is consistent with what we saw above; 12
second delay with sample time of 4 seconds in zde). Let us now try estimating a default model, where
the order is automatically picked by the estimator.

Mdefault = n4sid(zde);
compare(zdv,Mdefault)
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The estimator picked a 4th order model. It seems to provide a better fit than that for the undecimated
data. Let us now systematically evaluate what model structure and orders we can use. First we look
for the delay:

V = arxstruc(zde,zdv,struc(2,2,1:30));
nn = selstruc(V,0)

nn = 1×3

     2     2     3

ARXSTRUC also suggests a delay of 3 samples which is consistent with the observations from the
impulse response. Therefore, we fix the delay to the vicinity of 3 and test several different orders with
and around this delay:

V = arxstruc(zde,zdv,struc(1:5,1:5,nn(3)-1:nn(3)+1));

Now we call selstruc on the returned matrix in order to pick the most preferred model order
(minimum loss function, which is shown in the first row of V).

nn = selstruc(V,0); %choose the "best" model order

SELSTRUC could be called with just one input to invoke an interactive mode of order selection (nn =
selstruc(V)).

Let us compute and check the model for the "best" order returned in variable nn:
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m2 = arx(zde,nn);
compare(zdv,m2,inf,compareOptions('Samples',21:150));

The model m2 is about same as Mdefault is fitting the data but uses lower orders.

Let us test the residuals:

resid(zdv,m2);
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The residuals are inside the confidence interval region, indicating that the essential dynamics have
been captured by the model. What does the pole-zero diagram tell us?

clf
showConfidence(iopzplot(m2),3)
axis([ -1.1898,1.3778,-1.5112,1.5688])
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From the pole-zero plot, there is am indication of pole-zero cancellations for several pairs. This is
because their locations overlap, within the confidence regions. This shows that we should be able to
do well with lower order models. Try a [1 1 3] ARX model:

m3 = arx(zde,[1 1 3])

m3 =
Discrete-time ARX model: A(z)y(t) = B(z)u(t) + e(t)
  A(z) = 1 - 0.115 z^-1                            
                                                   
  B(z) = -0.1788 z^-3                              
                                                   
Sample time: 4 seconds
  
Parameterization:
   Polynomial orders:   na=1   nb=1   nk=3
   Number of free coefficients: 2
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using ARX on time domain data "zde".   
Fit to estimation data: 35.07% (prediction focus)
FPE: 0.4437, MSE: 0.4384                         

Simulation of model m3 compared against the validation data shows:

compare(zdv,Mdefault,m2,m3)
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The three models deliver comparable results. Similarly, we can compare the 5-step ahead prediction
capability of the models:

compare(zdv,Mdefault,m2,m3,5)
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As these plots indicate, a reduction in model order does not significantly reduce its effectiveness is
predicting future values.
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Modal Analysis of a Flexible Flying Wing Aircraft
This example shows computation of bending modes of a flexible wing aircraft. The vibration response
of the wing is collected at multiple points along its span. The data is used to identify a dynamic model
of the system. The modal parameters are extracted from the identified model. The modal parameter
data is combined with the sensor position information to visualize the various bending modes of the
wing. This example requires Signal Processing Toolbox™.

The Flexible Wing Aircraft

In this example, we study the data gathered from a small flexible flying wing aircraft built at the
Uninhabited Aerial Vehicle Laboratories, University of Minnesota [1]. The geometry of the aircraft is
shown below.

The aircraft wing can undergo large deformations under loading. The flexible mode frequencies are
lower than those in common aircraft with more rigid wings. This flexible design reduces material
costs, increases agility and the flight range of the aircraft. However, if not controlled, the flexible
modes can lead to catastrophic aeroelastic instabilities (flutter). Designing effective control laws for
suppressing these instabilities requires accurate determination of the wing's various bending modes.

Experimental Setup

The objective of the experiment is to gather vibration response of the aircraft at various locations in
response to an external excitation. The aircraft is suspended from a wooden frame using a single
spring at its center of gravity. The spring is sufficiently flexible so that the natural frequency of the
spring-mass oscillation does not interfere with the fundamental frequencies of the aircraft. An input
force is applied via an Unholtz-Dickie Model 20 electrodynamic shaker near the center of the aircraft.
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Twenty PCB-353B16 accelerometers are placed along the wing span to collect the vibration response
as shown in the next figure.
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The shaker input command is specified as a constant amplitude chirp input of the form A sin ω t t .
The chirp frequency varies linearly with time, that is, ω t = c0 + c1t. The frequency range covered by
the input signal is 3–35 Hz. The data is collected by two accelerometers (leading and trailing edge
accelerometers at one x-location) at a time. Hence 10 experiments are conducted to collect all the 20
accelerometer responses. The accelerometer and force transducer measurements are all sampled at
2000 Hz.

Data Preparation

The data is represented by 10 sets of two-output/one-input signals, each containing 600K samples.
The data is available at the MathWorks support files site. See the disclaimer. Download the data file
and load the data into the MATLAB® workspace.

url = 'https://www.mathworks.com/supportfiles/ident/flexible-wing-GVT-data/FlexibleWingData.mat';
websave('FlexibleWingData.mat',url);
load FlexibleWingData.mat MeasuredData

The variable MeasuredData is a structure with fields Exp1, Exp2, ..., Exp10. Each field is a
structure with fields y and u containing the two responses and the corresponding input force data.
Plot the data for the first experiment.

fs = 2000;                % data sampling frequency
Ts = 1/fs;                % sample time
y = MeasuredData.Exp1.y;  % output data (2 columns, one for each accelerometer)
u = MeasuredData.Exp1.u;  % input force data
t = (0:length(u)-1)' * Ts;
figure
subplot(211)
plot(t,y)
ylabel('Outputs (m/s^2)')
legend('Leading edge','Trailing edge')
subplot(212)
plot(t,u)
ylabel('Input')
xlabel('Time (seconds)')
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In order to prepare data for model identification, the data is packaged into iddata objects. The
iddata objects are standard way of packaging time-domain data in System Identification Toolbox™.
The input signal is treated as bandlimited.

ExpNames = fieldnames(MeasuredData);
Data = cell(1, 10);
for k = 1:10
   y =  MeasuredData.(ExpNames{k}).y;
   u =  MeasuredData.(ExpNames{k}).u;
   Data{k} = iddata(y, u, Ts, 'InterSample', 'bl');
end

Merge the dataset objects into one multi-experiment data object.

Data = merge(Data{:})

Data =
Time domain data set containing 10 experiments.

Experiment   Samples      Sample Time           
   Exp1      600001            0.0005           
   Exp2      600001            0.0005           
   Exp3      600001            0.0005           
   Exp4      600001            0.0005           
   Exp5      600001            0.0005           
   Exp6      600001            0.0005           
   Exp7      600001            0.0005           
   Exp8      600001            0.0005           
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   Exp9      600001            0.0005           
   Exp10     600001            0.0005           
                                                
Outputs      Unit (if specified)                
   y1                                           
   y2                                           
                                                
Inputs       Unit (if specified)                
   u1                                           
                                                

Model Identification

We want to identify a dynamic model whose frequency response matches that of the actual aircraft as
closely as possible. A dynamic model encapsulates a mathematical relationship between the inputs
and outputs of the system as a differential or difference equation. Examples of dynamic models are
transfer functions and state-space models. In System Identification Toolbox, dynamic models are
encapsulated by objects such as idtf (for transfer functions), idpoly (for AR, ARMA models) and
idss (for state-space models). Dynamic models can be created by running estimation commands such
as tfest and ssest commands on measured data in either time-domain or frequency-domain.

For this example, we first convert the measured time-domain data into frequency response data by
empirical transfer function estimation using the etfe command. The estimated FRF is then used to
identify a state-space model of the aircraft's vibration response. It is possible to directly use time-
domain data for dynamic model identification. However, FRF form of data allows compression of large
datasets into fewer samples as well as more easily adjust estimation behavior to relevant frequency
ranges. FRFs are encapsulated by idfrd objects.

Estimate a two-output/one-input frequency response function (FRF) for each data experiment. Use no
windowing. Use 24,000 frequency points for response computation.

G = cell(1, 10);
N = 24000;
for k = 1:10
   % Convert time-domain data into a FRF using ETFE command
   Data_k = getexp(Data, k);
   G{k} = etfe(Data_k, [], N); % G{k} is an @idfrd object
end

Concatenate all FRFs into a single 20-output/one-input FRF.

G = cat(1, G{:});     % concatenate outputs of all estimated FRFs
G.OutputName = 'y';   % name outputs 'y1', 'y2', ..., 'y20'
G.InterSample = 'bl';

To get a feel for the estimated frequency response, plot the amplitude for outputs 1 and 15 (picked
arbitrarily). Zoom into the frequency range of interest (4–35 Hz).

opt = bodeoptions;           % plot options
opt.FreqUnits = 'Hz';        % show frequency in Hz
opt.PhaseVisible = 'off';    % do not show phase
OutputNum = [1 15];          % pick outputs 1 and 15 for plotting
clf
bodeplot(G(OutputNum, :), opt)   % plot frequency response
xlim([4 35])
grid on
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The FRF shows at least 9 resonant frequencies. For analysis we want to focus on 6-35 Hz frequency
span where the most critical flexible bending modes of the aircraft lie. Hence reduce the FRF to this
frequency region.

f = G.Frequency/2/pi;           % extract frequency vector in Hz (G stores frequency in rad/s)
Gs = fselect(G, f>6 & f<=32)    % "fselect" selects the FRF in the requested range (6.5 - 35 Hz)

Gs =
IDFRD model.
Contains Frequency Response Data for 20 output(s) and 1 input(s).
Response data is available at 624 frequency points, ranging from 37.96 rad/s to 201.1 rad/s.
 
Sample time: 0.0005 seconds
Output channels: 'y(1)', 'y(2)', 'y(3)', 'y(4)', 'y(5)', 'y(6)', 'y(7)', 'y(8)', 'y(9)', 'y(10)', 'y(11)', 'y(12)', 'y(13)', 'y(14)', 'y(15)', 'y(16)', 'y(17)', 'y(18)', 'y(19)', 'y(20)'
Input channels: 'u1'
Status:        
Estimated model

Gs thus contains the frequency response measurements at the 20 measurement locations. Next,
identify a state-space model to fit Gs. The subspace estimator n4sid provides a quick noniterative
estimate. The state-space model structure is configured as follows:

1 We estimate an 18th-order continuous-time model. The order was found after some trials with
various orders and checking the resulting fit of the model to the FRF.

2 The model contains a feedthrough term (D matrix is non-zero). This is because we are limiting
our analysis to ≤ 35 Hz while the wing's bandwidth is significantly larger than that (response is
significant at 35 Hz).
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3 To speed up computation, we suppress computation of parameter covariance.
4 The FRF magnitude varies significantly across the frequency range. In order to ensure that the

low amplitudes receive equal emphasis as the higher amplitudes, we apply a custom weighting
that varies inversely as the square root of the 11th response. The choice of 11th output is
somewhat arbitrary but works since all 20 FRFs have similar profiles.

We set up the estimation options for n4sid using n4sidOptions.

FRF = squeeze(Gs.ResponseData);
Weighting = mean(1./sqrt(abs(FRF))).';
n4Opt = n4sidOptions('EstimateCovariance',false,...
   'WeightingFilter',Weighting,...
   'OutputWeight',eye(20));
sys1 = n4sid(Gs,24,'Ts',0,'Feedthrough',true,n4Opt);
Fit = sys1.Report.Fit.FitPercent'

Fit = 1×20

   57.0200   57.9879   85.0160   86.3815   80.4879   80.4430   58.2216   45.2692   61.5057   76.7612   84.7305   86.2600   86.4266   85.0251   76.9208   82.1191   74.7982   79.6837   67.9078   76.7249

The "Fit" numbers shows the percentage fit between the data (Gs) and model's (sys1) frequency
response using a normalized root-mean-square-error (NRMSE) goodness-of-fit measure. The poorest
and best fits are plotted next.

[~,Imin] = min(Fit);
[~,Imax] = max(Fit);
clf
bodeplot(Gs([Imin, Imax],:), sys1([Imin, Imax],:), opt);
xlim([6 32])
title('Worst (top) and best (bottom) fits between data and model')
grid on
legend('Data', 'Model')
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The fits achieved with model sys1 can be improved even more by iterative nonlinear least-squares
refinement of model's parameters. This can be achieved using the ssest command. We set up the
estimation options for ssest using the ssestOptions command. This time the parameter
covariance is also estimated.

ssOpt = ssestOptions('EstimateCovariance',true,...
   'WeightingFilter',n4Opt.WeightingFilter,...
   'SearchMethod','lm',...     % use Levenberg-Marquardt search method
   'Display','on',...
   'OutputWeight',eye(20));
sys2 = ssest(Gs, sys1, ssOpt);  % estimate state-space model (this takes several minutes)
Fit = sys2.Report.Fit.FitPercent'

Fit = 1×20

   89.7225   89.5185   89.7260   90.4986   88.5522   88.8727   81.3225   83.5975   75.9215   83.1763   91.1358   89.7310   90.6844   89.8444   89.6685   89.1467   87.8532   88.0385   84.2898   83.3578

As before we plot the worst and the best fits. We also visualize the 1-sd confidence region for the
model's frequency response.

[~, Imin] = min(Fit);
[~, Imax] = max(Fit);
clf
h = bodeplot(Gs([Imin, Imax],:), sys2([Imin, Imax],:), opt);
showConfidence(h, 1)
xlim([6.5 35])
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title('Worst (top) and best (bottom) fits between data and refined model')
grid on
legend('Data', 'Model (sys2)')

The refined state-space model sys2 fits the FRFs quite well in the 7–20 Hz region. The uncertainty
bounds are tight around most resonant locations. We estimated a 24th-order model which means that
there are at most 12 oscillatory modes in the system sys2. Use the modalfit command to fetch the
natural frequencies in Hz for these modes.

f = Gs.Frequency/2/pi;     % data frequencies (Hz)
fn = modalfit(sys2, f, 12); % natural frequencies (Hz)
disp(fn)

    7.7721
    7.7953
    9.3147
    9.4009
    9.4910
   15.3463
   19.3291
   23.0219
   27.4164
   28.7256
   31.7014
   63.3034

The values in fn suggest two frequencies very close to 7.8 Hz and three close to 9.4 Hz. An
inspection of frequency responses near these frequencies reveals that the peaks location shift a little
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bit across outputs. These discrepancies may be removed by better control over the experiment
process, performing direct time-domain identification with input bandwidth limited to narrow range
centered at these frequencies, or fitting a single oscillatory mode to the frequency response around
these frequencies. These alternatives are not explored in this example.

Modal Parameter Computation

We can now use the model sys2 to extract the modal parameters. An inspection of the FRFs indicates
around 10 modal frequencies, roughly around the frequencies [5 7 10 15 17 23 27 30] Hz. We can
make this assessment more concrete by using the modalsd command that checks the stability of
modal parameters as the order of the underlying model is changed. This operation takes a long time.
Hence the resulting plot is inserted directly as an image. Execute the code inside the comment block
below to reproduce the figure.

FRF = permute(Gs.ResponseData,[3 1 2]);
f = Gs.Frequency/2/pi;
%{
 figure
 pf = modalsd(FRF,f,fs,'MaxModes',20,'FitMethod','lsrf');
%}

Inspection of the plot and pf values suggests a refined list of true natural frequencies:

Freq = [7.8 9.4 15.3 19.3 23.0 27.3 29.2 31.7];

We use the values in Freq vector as a guide for picking most dominant modes from the model sys2.
This is done using the modalfit command.
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[fn,dr,ms] = modalfit(sys2,f,length(Freq),'PhysFreq',Freq);

fn are the natural frequencies (in Hz), dr the corresponding damping coefficients and ms the
normalized residuals as column vectors (one column for each natural frequency). In the process of
extraction of these modal parameters, only the stable, under-damped poles of the model are used.
The ms columns contain data for only the poles with positive imaginary part.

Mode Shape Visualization

To visualize the various bending modes, we need the modal parameters extracted above. In addition
we need information on the location of the measurement points. These positions (x-y values) is
recorded for each accelerometer in the matrix AccePos:

AccelPos = [...   % see figure 2
   16.63 18.48;   % nearest right of center
   16.63 24.48;
   27.90 22.22;
   27.90 28.22;
   37.17 25.97;
   37.17 31.97;
   46.44 29.71;
   46.44 35.71;
   55.71 33.46;
   55.71 39.46;  % farthest right
   -16.63 18.48; % nearest left of center
   -16.63 24.18;
   -27.90 22.22;
   -27.90 28.22;
   -37.17 25.97;
   -37.17 31.97;
   -46.44 29.71;
   -46.44 35.71;
   -55.71 33.46;
   -55.71 39.46]; % farthest left

The mode shapes are contained in the matrix ms where each column corresponds to the shape for one
frequency. Animate the mode by superimposing mode shape amplitudes over the sensor coordinates
and varying the amplitudes at the mode's natural frequency. The animation shows the bending with
no damping. As an example, consider the mode at 15.3 Hz.

AnimateOneMode(3, fn, ms, AccelPos); 
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Conclusions

This example shows a parametric model identification based approach to modal parameter
estimation. Using a state-space model of 24th order, 8 stable oscillatory modes in the frequency
region 6–32 Hz were extracted. The modal information was combined with the knowledge of the
accelerometer positions to visualize the various bending modes. Some of these modes are shown in
the figures below.
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function AnimateOneMode(ModeNum, fn, ModeShapes, AccelPos)
% Animate one mode.
% ModeNum: Index of the mode.
    
% Reorder the sensor locations for plotting so that a continuous, 
% non-intersecting curve is traced around the body of the aircraft.
PlotOrder = [19:-2:11, 1:2:9, 10:-2:2, 12:2:20, 19];
Fwd = PlotOrder(1:10);
Aft = PlotOrder(20:-1:11); 
x = AccelPos(PlotOrder,1);
y = AccelPos(PlotOrder,2);
xAft = AccelPos(Aft,1);
yAft = AccelPos(Aft,2);
xFwd = AccelPos(Fwd,1);
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yFwd = AccelPos(Fwd,2);

wn = fn(ModeNum)*2*pi;  % Mode frequency in rad/sec
T = 1/fn(ModeNum);      % Period of modal oscillation
Np  = 2.25;             % Number of periods to simulate
tmax = Np*T;            % Simulate Np periods
Nt = 100;               % Number of time steps for animation
t = linspace(0,tmax,Nt);
ThisMode = ModeShapes(:,ModeNum)/max(abs(ModeShapes(:,ModeNum))); % normalized for plotting
z0 = ThisMode(PlotOrder);
zFwd = ThisMode(Fwd);
zAft = ThisMode(Aft);

clf
col1 = [1 1 1]*0.5;
xx = reshape([[xAft, xFwd]'; NaN(2,10)],[2 20]);
yy = reshape([[yAft, yFwd]'; NaN(2,10)],[2 20]);
plot3(x,y,0*z0,'-', x,y,0*z0,'.', xx(:), yy(:), zeros(40,1),'--',...
   'Color',col1,'LineWidth',1,'MarkerSize',10,'MarkerEdgeColor',col1);
xlabel('x')
ylabel('y')
zlabel('Amplitude')
ht = max(abs(z0));
axis([-100  100  10  40 -ht ht])
view(5,55)
title(sprintf('Mode %d. FN = %s Hz', ModeNum, num2str(fn(ModeNum),4)));

% Animate by updating z-coordinates.  
hold on
col2 = [0.87 0.5 0];
h1 = plot3(x,y,0*z0,'-', x,y,0*z0,'.', xx(:), yy(:), zeros(40,1),'--',...
   'Color',col2,'LineWidth',1,'MarkerSize',10,'MarkerEdgeColor',col2);
h2 = fill3(x,y,0*z0,col2,'FaceAlpha',0.6);
hold off

for k = 1:Nt
   Rot1 = cos(wn*t(k));
   Rot2 = sin(wn*t(k));
   z_t = real(z0)*Rot1 - imag(z0)*Rot2;
   zAft_t = real(zAft)*Rot1 - imag(zAft)*Rot2;
   zFwd_t = real(zFwd)*Rot1 - imag(zFwd)*Rot2;
   zz = reshape([[zAft_t, zFwd_t]'; NaN(2,10)],[2 20]);
   set(h1(1),'ZData',z_t)
   set(h1(2),'ZData',z_t)
   set(h1(3),'ZData',zz(:))
   h2.Vertices(:,3) = z_t;
   pause(0.1)
end

end
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Use LSTM Network for Linear System Identification
This example shows how to use long short-term memory (LSTM) neural networks to estimate a linear
system and compares this approach to transfer function estimation.

In this example, you investigate the ability of an LTSM network to capture the underlying dynamics of
a modeled system. To do this, you train an LSTM network on the input and output signal from a linear
transfer function, and measure the accuracy of the network response to a step change.

Transfer Function

This example uses a fourth-order transfer function with mixed fast and slow dynamics and moderate
damping. The moderate damping causes the system dynamics to damp out over a longer time horizon
and shows the ability of an LSTM network to capture the mixed dynamics without some of the
important response dynamics damping out. Construct the transfer function by specifying the poles
and zeros of the system.

fourthOrderMdl = zpk(-4,[-9+5i;-9-5i;-2+50i;-2-50i],5e5);
[stepResponse,stepTime] = step(fourthOrderMdl);

Plot the step response of the transfer function.

plot(stepTime,stepResponse)
grid on
axis tight
title('Fourth-order mixed step response')
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The Bode plot shows the bandwidth of the system, which is measured as the first frequency where the
gain drops below 70.8%, or around 3 dB, of its DC value.

bodeplot(fourthOrderMdl)

fb = bandwidth(fourthOrderMdl)

fb = 62.8858

Generate Training Data

Construct a data set of input and output signals that you can use to train an LSTM network. For the
input, generate a random Gaussian signal. Simulate the response of the transfer function
fourthOrderMdl to this input to obtain the output signal.

Gaussian Noise Data

Specify properties for the random Gaussian noise training signal.

signalType = 'rgs'; % Gaussian 
signalLength = 5000; % Number of points in the signal
fs = 100; % Sampling frequency
signalAmplitude = 1; % Maximum signal amplitude

Generate the Gaussian noise signal using idinput and scale the result.

urgs = idinput(signalLength,signalType);
urgs = (signalAmplitude/max(urgs))*urgs';
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Generate the time signal based on the sample rate.

trgs = 0:1/fs:length(urgs)/fs-1/fs;

Use the lsim function to generate the response of the system and store the result in yrgs. Transpose
the simulated output so that it corresponds to the LSTM data structure, which requires row vectors
and not column vectors.

yrgs = lsim(fourthOrderMdl,urgs,trgs);
yrgs = yrgs';

Similarly, create a shorter validation signal to use during network training.

xval = idinput(100,signalType);
yval = lsim(fourthOrderMdl,xval,trgs(1:100));

Create and Train Network

The following network architecture was determined by using a Bayesian optimization routine where
the Bayesian optimization cost function uses independent validation data (see the accompanying
bayesianOptimizationForLSTM.mlx for the details). Although multiple architectures may work,
this optimization provides the most computationally efficient one. The optimization process also
showed that as the complexity of the transfer function increases when applying LSTM to other linear
transfer functions, the architecture of the network does not change significantly. Rather, the number
of epochs needed to train the network increases. The number of hidden units required for modeling a
system is related to how long the dynamics take to damp out. In this case there are two distinct parts
to the response: a high frequency response and a low frequency response. A higher number of hidden
units are required to capture the low frequency response. If a lower number of units are selected the
high frequency response is still modeled. However, the estimation of the low frequency response
deteriorates.

Create the network architecture.

numResponses = 1;
featureDimension = 1;
numHiddenUnits = 100;
maxEpochs = 1000;
miniBatchSize = 200;

Networklayers = [sequenceInputLayer(featureDimension) ...
    lstmLayer(numHiddenUnits) ...
    lstmLayer(numHiddenUnits) ...
    fullyConnectedLayer(numResponses) ...
    regressionLayer];

The initial learning rate impacts the success of the network. Using an initial learning rate that is too
high results in high gradients, which lead to longer training times. Longer training times can lead to
saturation of the fully connected layer of the network. When the network saturates, the outputs
diverge and the network outputs a NaN value. Hence, use the default value of 0.01, which is a
relatively low initial learning rate. This results in a monotonically decreasing residual and loss curves.
Use a piecewise rate schedule to keep the optimization algorithm from getting trapped in local
minima at the start of the optimization routine.

options = trainingOptions('adam', ...
    'MaxEpochs',maxEpochs, ...
    'MiniBatchSize',miniBatchSize, ...
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    'GradientThreshold',10, ...
    'Shuffle','once', ...
    'Plots','training-progress',...
    'ExecutionEnvironment','gpu',...
    'LearnRateSchedule','piecewise',...
    'LearnRateDropPeriod',100,...
    'Verbose',0,...
    'ValidationData',[{xval'} {yval'}]);

loadNetwork = true; % Set to true to train the network using a parallel pool.
if loadNetwork
    load('fourthOrderMdlnet','fourthOrderNet')
else
    poolobj = parpool;
    fourthOrderNet = trainNetwork(urgs,yrgs,Networklayers,options);
    delete(poolobj)
    save('fourthOrderMdlnet','fourthOrderNet','urgs','yrgs');
end

Evaluate Model Performance

A network performs well if it is successful in capturing the system dynamic behavior. Evaluate the
network performance by measuring the ability of the network to accurately predict the system
response to a step input.

Construct a step input.

stepTime = 2; % In seconds
stepAmplitude = 0.1;
stepDuration = 4; % In seconds

% Construct step signal and system output.
time = (0:1/fs:stepDuration)';
stepSignal = [zeros(sum(time<=stepTime),1);stepAmplitude*ones(sum(time>stepTime),1)];
systemResponse = lsim(fourthOrderMdl,stepSignal,time);

% Transpose input and output signal for network inputs.
stepSignal = stepSignal';
systemResponse = systemResponse';

Use the trained network to evaluate the system response. Compare the system and estimated
responses in a plot.

fourthOrderMixedNetStep = predict(fourthOrderNet,stepSignal);

figure
title('Step response estimation')
plot(time,systemResponse,'k', time, fourthOrderMixedNetStep)
grid on
legend('System','Estimated')
title('Fourth-Order Step')
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The plot shows two issues with the fit. First, the initial state of the network is not stationary, which
results in transient behavior at the start of the signal. Second, the prediction of the network has a
slight offset.

Initialize Network and Adjust Fit

To initialize the network state to the correct initial condition, you must update the network state to
correspond to the state of the system at the start of the test signal.

You can adjust the initial state of the network by comparing the estimated response of the system at
the initial condition to the actual response of the system. Use the difference between the estimation
of the initial state by the network and the actual response of the initial state to correct for the offset
in the system estimation.

Set Network Initial State

As the network performs estimation using a step input from 0 to 1, the states of the LSTM network
(cell and hidden states of the LSTM layers) drift toward the correct initial condition. To visualize this,
extract the cell and hidden state of the network at every time step using the
predictAndUpdateState function.

Use only the cell and hidden state values prior to the step, which occurs at 2 seconds. Define a time
marker for 2 seconds, and extract the values up to this marker.

stepMarker = time <= 2;
yhat = zeros(sum(stepMarker),1);
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hiddenState = zeros(sum(stepMarker),200); % 200 LSTM units
cellState = zeros(sum(stepMarker),200);
for ntime = 1:sum(stepMarker)
    [fourthOrderNet,yhat(ntime)] = predictAndUpdateState(fourthOrderNet,stepSignal(ntime)');
    hiddenState(ntime,:) = fourthOrderNet.Layers(2,1).HiddenState;
    cellState(ntime,:) = fourthOrderNet.Layers(2,1).CellState;
end

Next, plot the hidden and cell states over the period before the step and confirm that they converge
to fixed values.

figure
subplot(2,1,1)
plot(time(1:200),hiddenState(1:200,:))
grid on
axis tight
title('Hidden State')
subplot(2,1,2)
plot(time(1:200),cellState(1:200,:))
grid on
axis tight
title('Cell State')

To initialize the network state for a zero input signal, choose an input signal of zero and choose the
duration so that the signal is long enough for the networks to reach steady state.

initializationSignalDuration = 10; % In seconds
initializationValue = 0;
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initializationSignal = initializationValue*ones(1,initializationSignalDuration*fs);

fourthOrderNet = predictAndUpdateState(fourthOrderNet,initializationSignal);

Even with the correct initial condition when the network is given a zero signal, the output is not quite
zero. This is because of an incorrect bias term that the algorithm learned during the training process.

figure
zeroMapping = predict(fourthOrderNet,initializationSignal);
plot(zeroMapping)
axis tight

Now that the network is correctly initialized, use the network to predict the step response again and
plot the results. The initial disturbance is gone.

fourthOrderMixedNetStep = predict(fourthOrderNet,stepSignal);

figure
title('Step response estimation')
plot(time,systemResponse,'k', ...
    time,fourthOrderMixedNetStep,'b')
grid on
legend('System','Estimated')
title('Fourth-Order Step - Adjusted State')
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Adjust Network Offset

Even after you set the network initial state to compensate for the initial condition of the test signal, a
small offset is still visible in the predicted response. This is because of the incorrect bias term that
the LSTM network learned during training. You can fix the offset by using the same initialization
signal that was used for updating the network states. The initialization signal is expected to map the
network to zero. The offset between zero and the network estimation is the error in the bias term
learned by the network. Summing the bias term calculated at each layer comes close to the bias
detected in the response. Adjusting for the network bias term at the network output, however, is
easier than adjusting the individual bias terms in each layer of the network.

bias = mean(predict(fourthOrderNet,initializationSignal));
fourthOrderMixedNetStep = fourthOrderMixedNetStep-bias;

figure
title('Step response estimation')
plot(time,systemResponse,'k',time,fourthOrderMixedNetStep,'b-')
legend('System','Estimated')
title('Fourth-Order Step - Adjusted Offset')
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Move Outside of Training Range

All the signals used to train the network had a maximum amplitude of 1 and the step function had an
amplitude of 0.1. Now, investigate the behavior of the network outside of these ranges.

Time Shift

Introduce a time shift by adjusting the time of the step. Set the time of the step to 3 seconds, 1
second longer than in the training set. Plot the resulting network output and note that the output is
correctly delayed by 1 second.

stepTime = 3; % In seconds
stepAmplitude = 0.1;
stepDuration = 5; % In seconds
[stepSignal,systemResponse,time] = generateStepResponse(fourthOrderMdl,stepTime,stepAmplitude,stepDuration);

fourthOrderMixedNetStep = predict(fourthOrderNet,stepSignal);
bias = fourthOrderMixedNetStep(1) - initializationValue;
fourthOrderMixedNetStep = fourthOrderMixedNetStep-bias;

figure
plot(time,systemResponse,'k', time,fourthOrderMixedNetStep,'b')
grid on
axis tight
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Amplitude Shift

Next, increase the amplitude of the step function to investigate the network behavior as the system
inputs move outside of the range of the training data. To measure the drift outside of the training
data range, you can measure the probability density function of the amplitudes in the Gaussian noise
signal. Visualize the amplitudes in a histogram.

figure
histogram(urgs,'Normalization','pdf')
grid on
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Set the amplitude of the step function according to the percentile of the distribution. Plot the error
rate as a function of the percentile.

pValues = [60:2:98, 90:1:98, 99:0.1:99.9 99.99];
stepAmps = prctile(urgs,pValues); % Amplitudes
stepTime = 3; % In seconds
stepDuration = 5; % In seconds

stepMSE = zeros(length(stepAmps),1);
fourthOrderMixedNetStep = cell(length(stepAmps),1);
steps = cell(length(stepAmps),1);

for nAmps = 1:length(stepAmps)
    % Fourth-order mixed
    [stepSignal,systemResponse,time] = generateStepResponse(fourthOrderMdl,stepTime,stepAmps(nAmps),stepDuration);
    
    fourthOrderMixedNetStep{nAmps} = predict(fourthOrderNet,stepSignal);
    bias = fourthOrderMixedNetStep{nAmps}(1) - initializationValue;
    fourthOrderMixedNetStep{nAmps} = fourthOrderMixedNetStep{nAmps}-bias;
    
    stepMSE(nAmps) = sqrt(sum((systemResponse-fourthOrderMixedNetStep{nAmps}).^2));
    steps{nAmps,1} = systemResponse;
end

figure
plot(pValues,stepMSE,'bo')
title('Prediction Error as a Function of Deviation from Training Rrange')
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grid on
axis tight

subplot(2,1,1)
plot(time,steps{1},'k', time,fourthOrderMixedNetStep{1},'b')
grid on
axis tight
title('Best Performance')
xlabel('time')
ylabel('System Response')
subplot(2,1,2)
plot(time,steps{end},'k', time,fourthOrderMixedNetStep{end},'b')
grid on
axis tight
title('Worst Performance')
xlabel('time')
ylabel('System Response')
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As the amplitude of the step response moves outside of the range of the training set, the LSTM
attempts to estimate the average value of the response.

These results show the importance of using training data that is in the same range as the data that
will be used for prediction. Otherwise, prediction results are unreliable.

Change System Bandwidth

Investigate the effect of the system bandwidth on the number of hidden units selected for the LSTM
network by modeling the fourth-order mixed-dynamics transfer function with four different networks:

• Small network with 5 hidden units and a single LSTM layer
• Medium network with 10 hidden units and a single LSTM layer
• Full network with 100 hidden units and a single LSTM layer
• Deep network with 2 LSTM layers (each with 100 hidden units)

Load the trained networks.

load('variousHiddenUnitNets.mat')

Generate a step signal.

stepTime = 2; % In seconds
stepAmplitude = 0.1;
stepDuration = 4; % In seconds
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% Construct step signal.
time = (0:1/fs:stepDuration)';

stepSignal = [zeros(sum(time<=stepTime),1);stepAmplitude*ones(sum(time>stepTime),1)];
systemResponse = lsim(fourthOrderMdl,stepSignal,time);

% Transpose input and output signal for network inputs.
stepSignal = stepSignal';
systemResponse = systemResponse';

Estimate the system response using the various trained networks.

smallNetStep = predict(smallNet,stepSignal)-smallNetZeroMapping(end);
medNetStep = predict(medNet,stepSignal)-medNetZeroMapping(end);
fullnetStep = predict(fullNet,stepSignal) - fullNetZeroMapping(end);
doubleNetStep = predict(doubleNet,stepSignal) - doubleNetZeroMapping(end);
 

Plot the estimated response.

figure
title('Step response estimation')
plot(time,systemResponse,'k', ...
    time,doubleNetStep,'g', ...
    time,fullnetStep,'r', ...
    time,medNetStep,'c', ...
    time,smallNetStep,'b')
grid on
legend({'System','Double Net','Full Net','Med Net','Small Net'},'Location','northwest')
title('Fourth-Order Step')
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Note all the networks capture the high frequency dynamics in the response well. However, plot a
moving average of the responses in order to compare the slow varying dynamics of the system. The
ability of the LSTM to capture the longer term dynamics (lower frequency dynamics) of the linear
system is directly related to the dynamics of the system and the number of hidden units in the LSTM.
The number of layers in the LSTM is not directly related to the long-term behavior but rather adds
flexibility to adjust the estimation from the first layer.

figure
title('Slow dynamics component')
plot(time,movmean(systemResponse,50),'k')
hold on
plot(time,movmean(doubleNetStep,50),'g')
plot(time,movmean(fullnetStep,50),'r')
plot(time,movmean(medNetStep,50),'c')
plot(time,movmean(smallNetStep,50),'b')
grid on
legend('System','Double Net','Full net','Med Net','Small Net','Location','northwest')
title('Fourth Order Step')
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Add Noise to Measured System Response

Add random noise to the system output to explore the effect of noise on the LSTM performance. To
this end, add white noise with levels of 1%, 5%, and 10% to the measured system responses. Use the
noisy data to train the LSTM network. With the same noisy data sets, estimate linear models by using
tfest. Simulate these models and use the simulated responses as the baseline for a performance
comparison.

Use the same step function as before:

stepTime = 2; % In seconds
stepAmplitude = 0.1;
stepDuration = 4; % In seconds

[stepSignal,systemResponse,time] = generateStepResponse(fourthOrderMdl,stepTime,stepAmplitude,stepDuration);

Load the trained networks and estimate the system response.

load('noisyDataNetworks.mat')
netNoise1Step = predictAndAdjust(netNoise1,stepSignal,initializationSignal,initializationValue);
netNoise5Step = predictAndAdjust(netNoise5,stepSignal,initializationSignal,initializationValue);
netNoise10Step = predictAndAdjust(netNoise10,stepSignal,initializationSignal,initializationValue);

A transfer function estimator (tfest) is used to estimate the function at the above noise levels to
compare the resilience of the networks to noise (see the accompanying noiseLevelModels.m for
more details).
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load('noisyDataTFs.mat')
tfStepNoise1 = lsim(tfNoise1,stepSignal,time);
tfStepNoise5 = lsim(tfNoise5,stepSignal,time);
tfStepNoise10 = lsim(tfNoise10,stepSignal,time);

Plot the generated responses.

figure
plot(time,systemResponse,'k', ...
    time,netNoise1Step, ...
    time,netNoise5Step, ...
    time,netNoise10Step)
grid on
legend('System Response','1% Noise','5% Noise','10% Noise')
title('Deep LSTM with noisy data')

Now, plot the estimated transfer functions.

figure
plot(time,systemResponse,'k', ...
    time,tfStepNoise1, ...
    time,tfStepNoise5, ...
    time,tfStepNoise10)
grid on
legend('System Response','1% Noise','5% Noise','10% Noise')
title('Transfer functions fitted to noisy data')
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Calculate the mean squared error to better assess the performance of the different models at
different noise levels.

msefun = @(y,yhat) mean(sqrt((y-yhat).^2)/length(y));

% LSTM errors
lstmMSE(1,:) = msefun(systemResponse,netNoise1Step);
lstmMSE(2,:) = msefun(systemResponse,netNoise5Step);
lstmMSE(3,:) = msefun(systemResponse,netNoise10Step);

% Transfer function errors
tfMSE(1,:) = msefun(systemResponse,tfStepNoise1');
tfMSE(2,:) = msefun(systemResponse,tfStepNoise5');
tfMSE(3,:) = msefun(systemResponse,tfStepNoise10');

mseTbl = array2table([lstmMSE tfMSE],'VariableNames',{'LSTMMSE','TFMSE'})

mseTbl=3×2 table
     LSTMMSE        TFMSE   
    __________    __________

    1.0115e-05    8.8621e-07
    2.5577e-05    9.9064e-06
    5.1791e-05    3.6831e-05

Noise has a similar effect on both the LSTM and transfer-function estimation results.
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Helper Functions

function [stepSignal,systemResponse,time] = generateStepResponse(model,stepTime,stepAmp,signalDuration)
%Generates a step response for the given model.
%

%Check model type
modelType = class(model);
if nargin < 2
    stepTime = 1;
end

if nargin < 3
    stepAmp = 1;
end

if nargin < 4
    signalDuration = 10;
end

% Constuct step signal
if model.Ts == 0
    Ts = 1e-2;
    time = (0:Ts:signalDuration)';
else
    time = (0:model.Ts:signalDuration)';
end
stepSignal = [zeros(sum(time<=stepTime),1);stepAmp*ones(sum(time>stepTime),1)];
switch modelType
    case {'tf', 'zpk'}
        systemResponse = lsim(model,stepSignal,time);
    case 'idpoly'
        systemResponse = sim(model,stepSignal,time);
    otherwise
        error('Model passed is not supported')
end

stepSignal = stepSignal';
systemResponse = systemResponse';
end

See Also
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Identifying Process Models

• “What Is a Process Model?” on page 5-2
• “Data Supported by Process Models” on page 5-3
• “Estimate Process Models Using the App” on page 5-4
• “Estimate Process Models at the Command Line” on page 5-8
• “Building and Estimating Process Models Using System Identification Toolbox™” on page 5-13
• “Process Model Structure Specification” on page 5-39
• “Estimating Multiple-Input, Multi-Output Process Models” on page 5-40
• “Disturbance Model Structure for Process Models” on page 5-41
• “Specifying Initial Conditions for Iterative Estimation Algorithms” on page 5-42
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What Is a Process Model?
The structure of a process model is a simple continuous-time transfer function that describes linear
system dynamics in terms of one or more of the following elements:

• Static gain Kp.
• One or more time constants Tpk. For complex poles, the time constant is called Tω—equal to the

inverse of the natural frequency—and the damping coefficient is ζ (zeta).
• Process zero Tz.
• Possible time delay Td before the system output responds to the input (dead time).
• Possible enforced integration.

Process models are popular for describing system dynamics in many industries and apply to various
production environments. The advantages of these models are that they are simple, support transport
delay estimation, and the model coefficients have an easy interpretation as poles and zeros.

You can create different model structures by varying the number of poles, adding an integrator, or
adding or removing a time delay or a zero. You can specify a first-, second-, or third-order model, and
the poles can be real or complex (underdamped modes). For more information, see “Process Model
Structure Specification” on page 5-39.

For example, the following model structure is a first-order continuous-time process model, where K is
the static gain, Tp1 is a time constant, and Td is the input-to-output delay:

G(s) =
Kp

1 + sTp1
e−sTd

Such that, Y(s) = G(s)U(s) + E(s), where Y(s), U(s), and E(s) represent the Laplace transforms of the
output, input, and output error, respectively. The output error, e(t), is white Gaussian noise with
variance λ. You can account for colored noise at the output by adding a disturbance model, H(s), such
that Y(s) = G(s)U(s) + H(s)E(s). For more information, see the NoiseTF property of idproc.

A multi-input multi-output (MIMO) process model contains a SISO process model corresponding to
each input-output pair in the system. For example, for a two-input, two-output process model:

Y1(s) = G11(s)U1(s) + G12(s)U2(s) + E1(s)
Y2(s) = G21(s)U1(s) + G22(s)U2(s) + E2(s)

Where, Gij(s) is the SISO process model between the ith output and the jth input. E1(s) and E2(s) are
the Laplace transforms of the two output errors.

See Also

Related Examples
• “Estimate Process Models Using the App” on page 5-4
• “Estimate Process Models at the Command Line” on page 5-8
• “Data Supported by Process Models” on page 5-3
• “Process Model Structure Specification” on page 5-39
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Data Supported by Process Models
You can estimate low-order (up to third order), continuous-time transfer functions using regularly
sampled time- or frequency-domain iddata or idfrd data objects. The frequency-domain data may
have a zero sample time.

You must import your data into the MATLAB workspace, as described in “Data Preparation”.

See Also

Related Examples
• “Estimate Process Models Using the App” on page 5-4
• “Estimate Process Models at the Command Line” on page 5-8

More About
• “What Is a Process Model?” on page 5-2
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Estimate Process Models Using the App
Before you can perform this task, you must have

• Imported data into the System Identification app. See “Import Time-Domain Data into the App” on
page 2-13. For supported data formats, see “Data Supported by Process Models” on page 5-3.

• Performed any required data preprocessing operations. If you need to model nonzero offsets, such
as when model contains integration behavior, do not detrend your data. In other cases, to improve
the accuracy of your model, you should detrend your data. See “Ways to Prepare Data for System
Identification” on page 2-5.

1 In the System Identification app, select Estimate > Process models to open the Process Models
dialog box.

To learn more about the options in the dialog box, click Help.
2 If your model contains multiple inputs or multiple outputs, you can specify whether to estimate

the same transfer function for all input-output pairs, or a different transfer function for each.
Select the input and output channels in the Input and Output fields. The fields only appears
when you have multiple inputs or outputs. For more information, see “Estimating Multiple-Input,
Multi-Output Process Models” on page 5-40.

3 In the Model Transfer Function area, specify the model structure using the following options:

• Under Poles, select the number of poles, and then select All real or Underdamped.

Note You need at least two poles to allow underdamped modes (complex-conjugate pair).
• Select the Zero check box to include a zero, which is a numerator term other than a constant,

or clear the check box to exclude the zero.
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• Select the Delay check box to include a delay, or clear the check box to exclude the delay.
• Select the Integrator check box to include an integrator (self-regulating process), or clear

the check box to exclude the integrator.

The Parameter area shows as many active parameters as you included in the model structure.

Note By default, the model Name is set to the acronym that reflects the model structure, as
described in “Process Model Structure Specification” on page 5-39.

4 In the Initial Guess area, select Auto-selected to calculate the initial parameter values for
the estimation. The Initial Guess column in the Parameter table displays Auto. If you do not
have a good guess for the parameter values, Auto works better than entering an ad hoc value.

5 (Optional) If you approximately know a parameter value, enter this value in the Initial Guess
column of the Parameter table, and press the Enter key. The estimation algorithm uses this value
as a starting point. If you know a parameter value exactly, enter this value in the Initial Guess
column, and press the Enter key. Select the corresponding Known check box in the table to fix
its value.

If you know the range of possible values for a parameter, enter these values into the
corresponding Bounds field to help the estimation algorithm. Press the Enter key after you
specify the values.

For example, the following figure shows that the delay value Td is fixed at 2 s and is not
estimated.
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6 In the Disturbance Model drop-down list, select one of the available options. For more
information about each option, see “Disturbance Model Structure for Process Models” on page 5-
41.

7 In the Focus drop-down list, select how to weigh the relative importance of the fit at different
frequencies. For more information about each option, see “Assigning Estimation Weightings” on
page 5-7.

8 In the Initial condition drop-down list, specify how you want the algorithm to treat initial
states. For more information about the available options, see “Specifying Initial Conditions for
Iterative Estimation Algorithms” on page 5-42.

Tip If you get a bad fit, you might try setting a specific method for handling initial states, rather
than choosing it automatically.

9 In the Covariance drop-down list, select Estimate if you want the algorithm to compute
parameter uncertainties. Effects of such uncertainties are displayed on plots as model confidence
regions.

To omit estimating uncertainty, select None. Skipping uncertainty computation might reduce
computation time for complex models and large data sets.

10 In the Model Name field, edit the name of the model or keep the default. The name of the model
should be unique in the Model Board.

11 To view the estimation progress, select the Display Progress check box. This opens a progress
viewer window in which the estimation progress is reported.

12 Click Regularization to obtain regularized estimates of model parameters. Specify the
regularization constants in the Regularization Options dialog box. To learn more, see
“Regularized Estimates of Model Parameters” on page 1-34.

13 Click Estimate to add this model to the Model Board in the System Identification app.
14 To stop the search and save the results after the current iteration has been completed, click Stop

Iterations. To continue iterations from the current model, click the Continue button to assign
current parameter values as initial guesses for the next search.
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Assigning Estimation Weightings
You can specify how the estimation algorithm weighs the fit at various frequencies. In the app, set
Focus to one of the following options:

• Prediction — Uses the inverse of the noise model H to weigh the relative importance of how
closely to fit the data in various frequency ranges. Corresponds to minimizing one-step-ahead
prediction, which typically favors the fit over a short time interval. Optimized for output prediction
applications.

• Simulation — Uses the input spectrum to weigh the relative importance of the fit in a specific
frequency range. Does not use the noise model to weigh the relative importance of how closely to
fit the data in various frequency ranges. Optimized for output simulation applications.

• Stability — Behaves the same way as the Prediction option, but also forces the model to be
stable. For more information about model stability, see “Unstable Models” on page 17-93.

• Filter — Specify a custom filter to open the Estimation Focus dialog box, where you can enter a
filter, as described in “Simple Passband Filter” on page 2-96 or “Defining a Custom Filter” on page
2-96. This prefiltering applies only for estimating the dynamics from input to output. The
disturbance model is determined from the estimation data.

Next Steps
• Validate the model by selecting the appropriate check box in the Model Views area of the System
Identification app. For more information about validating models, see “Validating Models After
Estimation” on page 17-2.

• Refine the model by clicking the Value —> Initial Guess button to assign current parameter
values as initial guesses for the next search, edit the Name field, and click Estimate.

• Export the model to the MATLAB workspace for further analysis by dragging it to the To
Workspace rectangle in the System Identification app.

See Also

Related Examples
• “Identify Low-Order Transfer Functions (Process Models) Using System Identification App”
• “Estimate Process Models at the Command Line” on page 5-8

 Estimate Process Models Using the App

5-7



Estimate Process Models at the Command Line

Prerequisites
Before you can perform this task, you must have

• Input-output data as an iddata object or frequency response data as frd or idfrd objects. See
“Representing Time- and Frequency-Domain Data Using iddata Objects” on page 2-34. For
supported data formats, see “Data Supported by Process Models” on page 5-3.

• Performed any required data preprocessing operations. When working with time domain data, if
you need to model nonzero offsets, such as when model contains integration behavior, do not
detrend your data. In other cases, to improve the accuracy of your model, you should detrend your
data. See “Ways to Prepare Data for System Identification” on page 2-5.

Using procest to Estimate Process Models
You can estimate process models using the iterative estimation method procest that minimizes the
prediction errors to obtain maximum likelihood estimates. The resulting models are stored as idproc
model objects.

You can use the following general syntax to both configure and estimate process models:

m = procest(data,mod_struc,opt)

data is the estimation data and mod_struc is one of the following:

• A character vector that represents the process model structure, as described in “Process Model
Structure Specification” on page 5-39.

• A template idproc model. opt is an option set for configuring the estimation of the process
model, such as handling of initial conditions, input offset and numerical search method.

Tip You do not need to construct the model object using idproc before estimation unless you want
to specify initial parameter guesses, minimum/maximum bounds, or fixed parameter values, as
described in “Estimate Process Models with Fixed Parameters” on page 5-10.

For more information about validating a process model, see “Validating Models After Estimation” on
page 17-2.

You can use procest to refine parameter estimates of an existing process model, as described in
“Refine Linear Parametric Models” on page 4-5.

For detailed information, see procest and idproc.

Estimate Process Models with Free Parameters
This example shows how to estimate the parameters of a first-order process model:

G(s) =
Kp

1 + sTp1
e−sTd
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This process has two inputs and the response from each input is estimated by a first-order process
model. All parameters are free to vary.

Load estimation data.

load co2data

Specify known sample time of 0.5 min.

Ts = 0.5;

Split data set into estimation data ze and validation data zv.

ze = iddata(Output_exp1,Input_exp1,Ts,...
                        'TimeUnit','min');
zv = iddata(Output_exp2,Input_exp2,Ts,...
                        'TimeUnit','min');

Estimate model with one pole, a delay, and a first-order disturbance component. The data contains
known offsets. Specify them using the InputOffset and OutputOffset options.

opt = procestOptions;
opt.InputOffset = [170;50];
opt.OutputOffset = -45;
opt.Display = 'on';
opt.DisturbanceModel = 'arma1';
m = procest(ze,'p1d',opt)

m =
Process model with 2 inputs: y = G11(s)u1 + G12(s)u2        
  From input "u1" to output "y1":                           
             Kp                                             
  G11(s) = ---------- * exp(-Td*s)                          
            1+Tp1*s                                         
                                                            
        Kp = 2.6553                                         
       Tp1 = 0.15515                                        
        Td = 2.3175                                         
                                                            
  From input "u2" to output "y1":                           
             Kp                                             
  G12(s) = ---------- * exp(-Td*s)                          
            1+Tp1*s                                         
                                                            
        Kp = 9.9756                                         
       Tp1 = 2.0653                                         
        Td = 4.9195                                         
                                                            
  An additive ARMA disturbance model exists for output "y1":
      y = G u + (C/D)e                                      
                                                            
      C(s) = s + 2.676                                      
      D(s) = s + 0.6228                                     
                                                            
Parameterization:
    {'P1D'}    {'P1D'}
   Number of free coefficients: 8
   Use "getpvec", "getcov" for parameters and their uncertainties.

 Estimate Process Models at the Command Line

5-9



Status:                                          
Estimated using PROCEST on time domain data "ze".
Fit to estimation data: 91.07% (prediction focus)
FPE: 2.431, MSE: 2.412                           

Use dot notation to get the value of any model parameter. For example, get the value of dc gain
parameter Kp .

m.Kp

ans = 1×2

    2.6553    9.9756

Estimate Process Models with Fixed Parameters
This example shows how to estimate a process model with fixed parameters.

When you know the values of certain parameters in the model and want to estimate only the values
you do not know, you must specify the fixed parameters after creating the idproc model object. Use
the following commands to prepare the data and construct a process model with one pole and a
delay:

Load estimation data.

load co2data

Specify known sample time is 0.5 minutes.

Ts = 0.5;

Split data set into estimation data ze and validation data zv.

ze = iddata(Output_exp1,Input_exp1,Ts,...
                        'TimeUnit','min');
zv = iddata(Output_exp2,Input_exp2,Ts,...
                        'TimeUnit','min');
mod = idproc({'p1d','p1d'},'TimeUnit','min')

mod =
Process model with 2 inputs: y = G11(s)u1 + G12(s)u2
  From input 1 to output 1:                         
             Kp                                     
  G11(s) = ---------- * exp(-Td*s)                  
            1+Tp1*s                                 
                                                    
        Kp = NaN                                    
       Tp1 = NaN                                    
        Td = NaN                                    
                                                    
  From input 2 to output 1:                         
             Kp                                     
  G12(s) = ---------- * exp(-Td*s)                  
            1+Tp1*s                                 
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        Kp = NaN                                    
       Tp1 = NaN                                    
        Td = NaN                                    
                                                    
Parameterization:
    {'P1D'}    {'P1D'}
   Number of free coefficients: 6
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

The model parameters Kp , Tp1 , and Td are assigned NaN values, which means that the parameters
have not yet been estimated from the data.

Use the Structure model property to specify the initial guesses for unknown parameters, minimum/
maximum parameter bounds and fix known parameters.

Set the value of Kp for the second transfer function to 10 and specify it as a fixed parameter. Initialize
the delay values for the two transfer functions to 2 and 5 minutes, respectively. Specify them as free
estimation parameters.

mod.Structure(2).Kp.Value = 10;
mod.Structure(2).Kp.Free = false;

mod.Structure(1).Tp1.Value = 2;
mod.Structure(2).Td.Value = 5;

Estimate Tp1 and Td only.

mod_proc = procest(ze,mod)

mod_proc =
Process model with 2 inputs: y = G11(s)u1 + G12(s)u2
  From input "u1" to output "y1":                   
             Kp                                     
  G11(s) = ---------- * exp(-Td*s)                  
            1+Tp1*s                                 
                                                    
        Kp = -3.2213                                
       Tp1 = 2.1707                                 
        Td = 4.44                                   
                                                    
  From input "u2" to output "y1":                   
             Kp                                     
  G12(s) = ---------- * exp(-Td*s)                  
            1+Tp1*s                                 
                                                    
        Kp = 10                                     
       Tp1 = 2.0764                                 
        Td = 4.5205                                 
                                                    
Parameterization:
    {'P1D'}    {'P1D'}
   Number of free coefficients: 5
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
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Estimated using PROCEST on time domain data "ze".
Fit to estimation data: 77.44%                   
FPE: 15.5, MSE: 15.39                            

In this case, the value of Kp is fixed, but Tp1 and Td are estimated.

See Also
idproc | procest

Related Examples
• “Building and Estimating Process Models Using System Identification Toolbox™” on page 5-13
• “Estimate Process Models Using the App” on page 5-4
• “Loss Function and Model Quality Metrics” on page 1-46
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Building and Estimating Process Models Using System
Identification Toolbox™

This example shows how to build simple process models using System Identification Toolbox™.
Techniques for creating these models and estimating their parameters using experimental data is
described. This example requires Simulink®.

Introduction

This example illustrates how to build simple process models often used in process industry. Simple,
low-order continuous-time transfer functions are usually employed to describe process behavior. Such
models are described by IDPROC objects which represent the transfer function in a pole-zero-gain
form.

Process models are of the basic type 'Static Gain + Time Constant + Time Delay'. They may be
represented as:

or as an integrating process:

where the user can determine the number of real poles (0, 1, 2 or 3), as well as the presence of a zero
in the numerator, the presence of an integrator term (1/s) and the presence of a time delay (Td). In
addition, an underdamped (complex) pair of poles may replace the real poles.

Representation of Process Models using IDPROC Objects

IDPROC objects define process models by using the letters P (for process model), D (for time delay), Z
(for a zero) and I (for integrator). An integer will denote the number of poles. The models are
generated by calling idproc with a character vector created using these letters.

For example:

idproc('P1') % transfer function with only one pole (no zeros or delay)
idproc('P2DIZ') % model with 2 poles, delay integrator and delay
idproc('P0ID') % model with no poles, but an integrator and a delay

ans =
Process model with transfer function:
             Kp                      
  G(s) = ----------                  
          1+Tp1*s                    
                                     
        Kp = NaN                     
       Tp1 = NaN                     
                                     
Parameterization:
    {'P1'}
   Number of free coefficients: 2
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   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

ans =
Process model with transfer function:         
                   1+Tz*s                     
  G(s) = Kp * ------------------- * exp(-Td*s)
              s(1+Tp1*s)(1+Tp2*s)             
                                              
         Kp = NaN                             
        Tp1 = NaN                             
        Tp2 = NaN                             
         Td = NaN                             
         Tz = NaN                             
                                              
Parameterization:
    {'P2DIZ'}
   Number of free coefficients: 5
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

ans =
Process model with transfer function:
          Kp                         
  G(s) = --- * exp(-Td*s)            
          s                          
                                     
        Kp = NaN                     
        Td = NaN                     
                                     
Parameterization:
    {'P0DI'}
   Number of free coefficients: 2
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

Creating an IDPROC Object (using a Simulink® Model as Example)

Consider the system described by the following SIMULINK model:

open_system('iddempr1')
set_param('iddempr1/Random Number','seed','0')
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The red part is the system, the blue part is the controller and the reference signal is a swept sinusoid
(a chirp signal). The data sample time is set to 0.5 seconds. As observed, the system is a continuous-
time transfer function, and can hence be described using model objects in System Identification
Toolbox, such as idss, idpoly or idproc.

Let us describe the system using idpoly and idproc objects. Using idpoly object, the system may
be described as:

m0 = idpoly(1,0.1,1,1,[1 0.5],'Ts',0,'InputDelay',1.57,'NoiseVariance',0.01);

The IDPOLY form used above is useful for describing transfer functions of arbitrary orders. Since the
system we are considering here is quite simple (one pole and no zeros), and is continuous-time, we
may use the simpler IDPROC object to capture its dynamics:

m0p = idproc('p1d','Kp',0.2,'Tp1',2,'Td',1.57) % one pole+delay, with initial values
                                               % for gain, pole and delay specified.

m0p =
Process model with transfer function:
             Kp                      
  G(s) = ---------- * exp(-Td*s)     
          1+Tp1*s                    
                                     
        Kp = 0.2                     
       Tp1 = 2                       
        Td = 1.57                    
                                     
Parameterization:
    {'P1D'}
   Number of free coefficients: 3
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

Estimating Parameters of IDPROC Models

Once a system is described by a model object, such as IDPROC, it may be used for estimation of its
parameters using measurement data. As an example, we consider the problem of estimation of
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parameters of the Simulink model's system (red portion) using simulation data. We begin by acquiring
data for estimation:

sim('iddempr1')
dat1e = iddata(y,u,0.5); % The IDDATA object for storing measurement data

Let us look at the data:

plot(dat1e)

We can identify a process model using procest command, by providing the same structure
information specified to create IDPROC models. For example, the 1-pole+delay model may be
estimated by calling procest as follows:

m1 = procest(dat1e,'p1d'); % estimation of idproc model using data 'dat1e'.

% Check the result of estimation:
m1

m1 =
Process model with transfer function:
             Kp                      
  G(s) = ---------- * exp(-Td*s)     
          1+Tp1*s                    
                                     
        Kp = 0.20045                 
       Tp1 = 2.0431                  
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        Td = 1.499                   
                                     
Parameterization:
    {'P1D'}
   Number of free coefficients: 3
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using PROCEST on time domain data "dat1e".
Fit to estimation data: 87.34%                      
FPE: 0.01069, MSE: 0.01062                          

To get information about uncertainties, use

present(m1)

                                                                  
m1 =                                                              
Process model with transfer function:                             
             Kp                                                   
  G(s) = ---------- * exp(-Td*s)                                  
          1+Tp1*s                                                 
                                                                  
        Kp = 0.20045 +/- 0.00077275                               
       Tp1 = 2.0431 +/- 0.061216                                  
        Td = 1.499 +/- 0.040854                                   
                                                                  
Parameterization:                                                 
    {'P1D'}                                                       
   Number of free coefficients: 3                                 
   Use "getpvec", "getcov" for parameters and their uncertainties.
                                                                  
Status:                                                           
Termination condition: Near (local) minimum, (norm(g) < tol)..    
Number of iterations: 4, Number of function evaluations: 9        
                                                                  
Estimated using PROCEST on time domain data "dat1e".              
Fit to estimation data: 87.34%                                    
FPE: 0.01069, MSE: 0.01062                                        
More information in model's "Report" property.                    

The model parameters, K, Tp1 and Td are now shown with one standard deviation uncertainty range.

Computing Time and Frequency Response of IDPROC Models

The model m1 estimated above is an IDPROC model object to which all of the toolbox's model
commands can be applied:

step(m1,m0) %step response of models m1 (estimated) and m0 (actual)
legend('m1 (estimated parameters)','m0 (known parameters)','location','northwest')
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Bode response with confidence region corresponding to 3 standard deviations may be computed by
doing:

h = bodeplot(m1,m0);
showConfidence(h,3)
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Similarly, the measurement data may be compared to the models outputs using compare as follows:

compare(dat1e,m0,m1)
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Other operations such as sim, impulse, c2d are also available, just as they are for other model
objects.

bdclose('iddempr1')

Accommodating the Effect of Intersample Behavior in Estimation

It may be important (at least for slow sampling) to consider the intersample behavior of the input
data. To illustrate this, let us study the same system as before, but without the sample-and-hold
circuit:

open_system('iddempr5')
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Simulate this system with the same sample time:

sim('iddempr5')
dat1f = iddata(y,u,0.5); % The IDDATA object for the simulated data

We estimate an IDPROC model using data1f while also imposing an upper bound on the allowable
value delay. We will use 'lm' as search method and also choose to view the estimation progress.

m2_init = idproc('P1D');
m2_init.Structure.Td.Maximum = 2;
opt = procestOptions('SearchMethod','lm','Display','on');
m2 = procest(dat1f,m2_init,opt);
m2

m2 =
Process model with transfer function:
             Kp                      
  G(s) = ---------- * exp(-Td*s)     
          1+Tp1*s                    
                                     
        Kp = 0.20038                 
       Tp1 = 2.01                    
        Td = 1.31                    
                                     
Parameterization:
    {'P1D'}
   Number of free coefficients: 3
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using PROCEST on time domain data "dat1f".
Fit to estimation data: 87.26%                      
FPE: 0.01067, MSE: 0.01061                          
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This model has a slightly less precise estimate of the delay than the previous one, m1:

[m0p.Td, m1.Td, m2.Td]
step(m0,m1,m2)
legend('m0 (actual)','m1 (estimated with ZOH)','m2 (estimated without ZOH)','location','southeast')

ans =

    1.5700    1.4990    1.3100
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However, by telling the estimation process that the intersample behavior is first-order-hold (an
approximation to the true continuous) input, we do better:

dat1f.InterSample = 'foh';
m3 = procest(dat1f,m2_init,opt);
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Compare the four models m0 (true) m1 (obtained from zoh input) m2 (obtained for continuous input,
with zoh assumption) and m3 (obtained for the same input, but with foh assumption)

[m0p.Td, m1.Td, m2.Td, m3.Td]
compare(dat1e,m0,m1,m2,m3)

ans =

    1.5700    1.4990    1.3100    1.5570
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step(m0,m1,m2,m3)
legend('m0','m1','m2','m3')
bdclose('iddempr5')
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Modeling a System Operating in Closed Loop

Let us now consider a more complex process, with integration, that is operated in closed loop:

open_system('iddempr2')

The true system can be represented by:
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m0 = idproc('P2ZDI','Kp',1,'Tp1',1,'Tp2',5,'Tz',3,'Td',2.2);

The process is controlled by a PD regulator with limited input amplitude and a zero order hold device.
The sample time is 1 second.

set_param('iddempr2/Random Number','seed','0')
sim('iddempr2')
dat2 = iddata(y,u,1); % IDDATA object for estimation

Two different simulations are made, the first for estimation and the second one for validation
purposes.

set_param('iddempr2/Random Number','seed','13')
sim('iddempr2')
dat2v = iddata(y,u,1); % IDDATA object for validation purpose

Let us look at the data (estimation and validation).

plot(dat2,dat2v)
legend('dat2 (estimation)','dat2v (validation)')

Let us now perform estimation using dat2.

Warn = warning('off','Ident:estimation:underdampedIDPROC');
m2_init = idproc('P2ZDI');
m2_init.Structure.Td.Maximum = 5;
m2_init.Structure.Tp1.Maximum = 2;
opt = procestOptions('SearchMethod','lsqnonlin','Display','on');
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opt.SearchOptions.MaxIterations  = 100;
m2 = procest(dat2, m2_init, opt)

m2 =
Process model with transfer function:         
                   1+Tz*s                     
  G(s) = Kp * ------------------- * exp(-Td*s)
              s(1+Tp1*s)(1+Tp2*s)             
                                              
         Kp = 0.98412                         
        Tp1 = 2                               
        Tp2 = 1.4838                          
         Td = 1.713                           
         Tz = 0.027244                        
                                              
Parameterization:
    {'P2DIZ'}
   Number of free coefficients: 5
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                            
Estimated using PROCEST on time domain data "dat2".
Fit to estimation data: 91.51%                     
FPE: 0.1128, MSE: 0.1092                           
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compare(dat2v,m2,m0) % Gives very good agreement with data
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bode(m2,m0)
legend({'m2 (est)','m0 (actual)'},'location','west')
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impulse(m2,m0)
legend({'m2 (est)','m0 (actual)'})
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Compare also with the parameters of the true system:

present(m2)
[getpvec(m0), getpvec(m2)]

                                                                             
m2 =                                                                         
Process model with transfer function:                                        
                   1+Tz*s                                                    
  G(s) = Kp * ------------------- * exp(-Td*s)                               
              s(1+Tp1*s)(1+Tp2*s)                                            
                                                                             
         Kp = 0.98412 +/- 0.013672                                           
        Tp1 = 2 +/- 8.2231                                                   
        Tp2 = 1.4838 +/- 10.193                                              
         Td = 1.713 +/- 63.703                                               
         Tz = 0.027244 +/- 65.516                                            
                                                                             
Parameterization:                                                            
    {'P2DIZ'}                                                                
   Number of free coefficients: 5                                            
   Use "getpvec", "getcov" for parameters and their uncertainties.           
                                                                             
Status:                                                                      
Termination condition: Change in cost was less than the specified tolerance..
Number of iterations: 3, Number of function evaluations: 4                   
                                                                             
Estimated using PROCEST on time domain data "dat2".                          
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Fit to estimation data: 91.51%                                               
FPE: 0.1128, MSE: 0.1092                                                     
More information in model's "Report" property.                               

ans =

    1.0000    0.9841
    1.0000    2.0000
    5.0000    1.4838
    2.2000    1.7130
    3.0000    0.0272

A word of caution. Identification of several real time constants may sometimes be an ill-conditioned
problem, especially if the data are collected in closed loop.

To illustrate this, let us estimate a model based on the validation data:

m2v = procest(dat2v, m2_init, opt)
[getpvec(m0), getpvec(m2), getpvec(m2v)]

m2v =
Process model with transfer function:         
                   1+Tz*s                     
  G(s) = Kp * ------------------- * exp(-Td*s)
              s(1+Tp1*s)(1+Tp2*s)             
                                              
         Kp = 0.95747                         
        Tp1 = 1.999                           
        Tp2 = 0.60819                         
         Td = 2.314                           
         Tz = 0.0010561                       
                                              
Parameterization:
    {'P2DIZ'}
   Number of free coefficients: 5
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using PROCEST on time domain data "dat2v".
Fit to estimation data: 90.65%                      
FPE: 0.1397, MSE: 0.1353                            

ans =

    1.0000    0.9841    0.9575
    1.0000    2.0000    1.9990
    5.0000    1.4838    0.6082
    2.2000    1.7130    2.3140
    3.0000    0.0272    0.0011
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This model has much worse parameter values. On the other hand, it performs nearly identically to the
true system m0 when tested on the other data set dat2:

compare(dat2,m0,m2,m2v)

5 Identifying Process Models

5-34



Fixing Known Parameters During Estimation

Suppose we know from other sources that one time constant is 1:

m2v.Structure.Tp1.Value = 1;
m2v.Structure.Tp1.Free = false;

We can fix this value, while estimating the other parameters:

m2v = procest(dat2v,m2v)
%

m2v =
Process model with transfer function:         
                   1+Tz*s                     
  G(s) = Kp * ------------------- * exp(-Td*s)
              s(1+Tp1*s)(1+Tp2*s)             
                                              
         Kp = 1.0111                          
        Tp1 = 1                               
        Tp2 = 5.3014                          
         Td = 2.195                           
         Tz = 3.231                           
                                              
Parameterization:
    {'P2DIZ'}
   Number of free coefficients: 4
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   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using PROCEST on time domain data "dat2v".
Fit to estimation data: 92.05%                      
FPE: 0.09952, MSE: 0.09794                          

As observed, fixing Tp1 to its known value dramatically improves the estimates of the remaining
parameters in model m2v.

This also indicates that simple approximation should do well on the data:

m1x_init = idproc('P2D'); % simpler structure (no zero, no integrator)
m1x_init.Structure.Td.Maximum = 2;
m1x = procest(dat2v, m1x_init)
compare(dat2,m0,m2,m2v,m1x)

m1x =
Process model with transfer function:  
                Kp                     
  G(s) = ----------------- * exp(-Td*s)
         (1+Tp1*s)(1+Tp2*s)            
                                       
         Kp = -1.2554                  
        Tp1 = 1.0249e-06               
        Tp2 = 0.078054                 
         Td = 1.959                    
                                       
Parameterization:
    {'P2D'}
   Number of free coefficients: 4
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using PROCEST on time domain data "dat2v".
Fit to estimation data: -23.87%                     
FPE: 24.15, MSE: 23.77                              
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Thus, the simpler model is able to estimate system output pretty well. However, m1x does not contain
any integration, so the open loop long time range behavior will be quite different:

step(m0,m2,m2v,m1x)
legend('m0','m2','m2v','m1x')
bdclose('iddempr2')
warning(Warn)
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Process Model Structure Specification
This topic describes how to specify the model structure in the estimation procedures “Estimate
Process Models Using the App” on page 5-4 and “Estimate Process Models at the Command Line” on
page 5-8.

In the System Identification app, specify the model structure by selecting the number of real or
complex poles, and whether to include a zero, delay, and integrator. The resulting transfer function is
displayed in the Process Models dialog box.

At the command line, specify the model structure using an acronym that includes the following letters
and numbers:

• (Required) P for a process model
• (Required) 0, 1, 2 or 3 for the number of poles
• (Optional) D to include a time-delay term e−sTd

• (Optional) Z to include a process zero (numerator term)
• (Optional) U to indicate possible complex-valued (underdamped) poles
• (Optional) I to indicate enforced integration

Typically, you specify the model-structure acronym as an argument in the estimation command
procest:

• procest(data,'P1D') to estimate the following structure:

G(s) =
Kp

1 + sTp1
e−sTd

• procest(data,'P2ZU') to estimate the following structure:

G(s) =
Kp 1 + sTz

1 + 2sζTw + s2Tw
2

• procest(data,'P0ID') to estimate the following structure:

G(s) =
Kp
s e−sTd

• procest(data,'P3Z') to estimate the following structure:

G(s) =
Kp 1 + sTz

1 + sTp1 1 + sTp2 1 + sTp3

For more information about estimating models, see “Estimate Process Models at the Command Line”
on page 5-8.

See Also

More About
• “What Is a Process Model?” on page 5-2
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Estimating Multiple-Input, Multi-Output Process Models
If your model contains multiple inputs, multiple outputs, or both, you can specify whether to estimate
the same transfer function for all input-output pairs, or a different transfer function for each. The
information in this section supports the estimation procedures “Estimate Process Models Using the
App” on page 5-4 and “Estimate Process Models at the Command Line” on page 5-8.

In the System Identification app — To fit a data set with multiple inputs, or multiple outputs, or both,
in the Process Models dialog box, configure the process model settings for one input-output pair at a
time. Use the input and output selection lists to switch to a different input/output pair.

If you want the same transfer function to apply to all input/output pairs, select the All same check
box. To apply a different structure to each channel, leave this check box clear, and create a different
transfer function for each input.

At the command line — Specify the model structure as a cell array of character vectors in the
estimation command procest. For example, use this command to specify the first-order transfer
function for the first input, and a second-order model with a zero and an integrator for the second
input:

m = idproc({'P1','P2ZI'})
m = procest(data,m)

To apply the same structure to all inputs, define a single structure in idproc.

See Also

More About
• “Data Supported by Process Models” on page 5-3
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Disturbance Model Structure for Process Models
This section describes how to specify a noise model in the estimation procedures “Estimate Process
Models Using the App” on page 5-4 and “Estimate Process Models at the Command Line” on page 5-
8.

In addition to the transfer function G, a linear system can include an additive noise term He, as
follows:

y = Gu + He

where e is white noise.

You can estimate only the dynamic model G, or estimate both the dynamic model and the disturbance
model H. For process models, H is a rational transfer function C/D, where the C and D polynomials
for a first- or second-order ARMA model.

In the System Identification app, to specify whether to include or exclude a noise model in the
Process Models dialog box, select one of the following options from the Disturbance Model list:

• None — The algorithm does not estimate a noise model (C=D=1). This option also sets Focus to
Simulation.

• Order 1 — Estimates a noise model as a continuous-time, first-order ARMA model.
• Order 2 — Estimates a noise model as a continuous-time, second-order ARMA model.

At the command line, specify the disturbance model using the procestOptions option set. For
example, use this command to estimate a first-order transfer function and a first-order noise model:

opt = procestOptions;
opt.DisturbanceModel = 'arma1';
model = procest(data, 'P1D', opt);

For a complete list of values for the DisturbanceModel model property, see the procestOptions
reference page.

See Also
procestOptions

More About
• “Estimate Process Models Using the App” on page 5-4
• “Estimate Process Models at the Command Line” on page 5-8
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Specifying Initial Conditions for Iterative Estimation
Algorithms

You can optionally specify how the iterative algorithm treats initial conditions for estimation of model
parameters. This information supports the estimation procedures “Estimate Process Models Using
the App” on page 5-4 and “Estimate Process Models at the Command Line” on page 5-8.

In the System Identification app, set Initial condition to one of the following options:

• Zero — Sets all initial states to zero.
• Estimate — Treats the initial states as an unknown vector of parameters and estimates these

states from the data.
• Backcast — Estimates initial states using a backward filtering method (least-squares fit).
• U-level est — Estimates both the initial conditions and input offset levels. For multiple inputs,

the input level for each input is estimated individually. Use if you included an integrator in the
transfer function.

• Auto — Automatically chooses one of the preceding options based on the estimation data. If the
initial conditions have negligible effect on the prediction errors, they are taken to be zero to
optimize algorithm performance.

At the command line, specify the initial conditions using the InitialCondition model estimation
option, configured using the procestOptions command. For example, use this command to
estimate a first-order transfer function and set the initial states to zero:

opt = procestOptions('InitialCondition','zero');
model = procest(data,'P1D',opt)

See Also
procestOptions

More About
• “Estimate Process Models Using the App” on page 5-4
• “Estimate Process Models at the Command Line” on page 5-8
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Identifying Input-Output Polynomial
Models

• “What Are Polynomial Models?” on page 6-2
• “Data Supported by Polynomial Models” on page 6-6
• “Preliminary Step – Estimating Model Orders and Input Delays” on page 6-8
• “Estimate Polynomial Models in the App” on page 6-14
• “Estimate Polynomial Models at the Command Line” on page 6-18
• “Polynomial Sizes and Orders of Multi-Output Polynomial Models” on page 6-21
• “Specifying Initial States for Iterative Estimation Algorithms” on page 6-24
• “Polynomial Model Estimation Algorithms” on page 6-25
• “Estimate Models Using armax” on page 6-26
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What Are Polynomial Models?

Polynomial Model Structure
A polynomial model uses a generalized notion of transfer functions to express the relationship
between the input, u(t), the output y(t), and the noise e(t) using the equation:

A(q)y(t) = ∑
i = 1

nu Bi(q)
Fi(q)ui t − nki + C(q)

D(q)e(t)

The variables A, B, C, D, and F are polynomials expressed in the time-shift operator q^-1. ui is the ith
input, nu is the total number of inputs, and nki is the ith input delay that characterizes the transport
delay. The variance of the white noise e(t) is assumed to be λ. For more information about the time-
shift operator, see “Understanding the Time-Shift Operator q” on page 6-2.

In practice, not all the polynomials are simultaneously active. Often, simpler forms, such as ARX,
ARMAX, Output-Error, and Box-Jenkins are employed. You also have the option of introducing an
integrator in the noise source so that the general model takes the form:

A(q)y(t) = ∑
i = 1

nu Bi(q)
Fi(q)ui t − nki + C(q)

D(q)
1

1− q−1e(t)

For more information, see “Different Configurations of Polynomial Models” on page 6-3.

You can estimate polynomial models using time or frequency domain data.

For estimation, you must specify the model order as a set of integers that represent the number of
coefficients for each polynomial you include in your selected structure—na for A, nb for B, nc for C,
nd for D, and nf for F. You must also specify the number of samples nk corresponding to the input
delay—dead time—given by the number of samples before the output responds to the input.

The number of coefficients in denominator polynomials is equal to the number of poles, and the
number of coefficients in the numerator polynomials is equal to the number of zeros plus 1. When the
dynamics from u(t) to y(t) contain a delay of nk samples, then the first nk coefficients of B are zero.

For more information about the family of transfer-function models, see the corresponding section in
System Identification: Theory for the User, Second Edition, by Lennart Ljung, Prentice Hall PTR,
1999.

Understanding the Time-Shift Operator q
The general polynomial equation is written in terms of the time-shift operator q–1. To understand this
time-shift operator, consider the following discrete-time difference equation:

y(t) + a1y(t − T) + a2y(t − 2T) =
       b1u(t − T) + b2u(t − 2T)

where y(t) is the output, u(t) is the input, and T is the sample time. q-1 is a time-shift operator that
compactly represents such difference equations using q−1u(t) = u(t − T):
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y(t) + a1q−1y(t) + a2q−2y(t) =

         b1q−1u(t) + b2q−2u(t)
or
A(q)y(t) = B(q)u(t)

In this case, A(q) = 1 + a1q−1 + a2q−2 and B(q) = b1q−1 + b2q−2.

Note This q description is completely equivalent to the Z-transform form: q corresponds to z.

Different Configurations of Polynomial Models
These model structures are subsets of the following general polynomial equation:

A(q)y(t) = ∑
i = 1

nu Bi(q)
Fi(q)ui t − nki + C(q)

D(q)e(t)

The model structures differ by how many of these polynomials are included in the structure. Thus,
different model structures provide varying levels of flexibility for modeling the dynamics and noise
characteristics.

The following table summarizes common linear polynomial model structures supported by the System
Identification Toolbox product. If you have a specific structure in mind for your application, you can
decide whether the dynamics and the noise have common or different poles. A(q) corresponds to
poles that are common for the dynamic model and the noise model. Using common poles for dynamics
and noise is useful when the disturbances enter the system at the input. F i determines the poles
unique to the system dynamics, and D determines the poles unique to the disturbances.

Model Structure Equation Description
ARX

A(q)y(t) = ∑
i = 1

nu
Bi(q)ui t − nki + e(t) The noise model is 1

A  and the noise is
coupled to the dynamics model. ARX
does not let you model noise and
dynamics independently. Estimate an
ARX model to obtain a simple model at
good signal-to-noise ratios.

ARIX Ay = Bu + 1
1− q−1e Extends the ARX structure by including

an integrator in the noise source, e(t).
This is useful in cases where the
disturbance is not stationary.

ARMAX
A(q)y(t) = ∑

i = 1

nu
Bi(q)ui t − nki + C(q)e(t)

Extends the ARX structure by
providing more flexibility for modeling
noise using the C parameters (a
moving average of white noise). Use
ARMAX when the dominating
disturbances enter at the input. Such
disturbances are called load
disturbances.
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Model Structure Equation Description
ARIMAX Ay = Bu + C 1

1− q−1e Extends the ARMAX structure by
including an integrator in the noise
source, e(t). This is useful in cases
where the disturbance is not
stationary.

Box-Jenkins (BJ)
y(t) = ∑

i = 1

nu Bi(q)
Fi(q)ui t − nki + C(q)

D(q)e(t)
Provides completely independent
parameterization for the dynamics and
the noise using rational polynomial
functions.

Use BJ models when the noise does not
enter at the input, but is primary a
measurement disturbance, This
structure provides additional flexibility
for modeling noise.

Output-Error (OE)
y(t) = ∑

i = 1

nu Bi(q)
Fi(q)ui t − nki + e(t)

Use when you want to parameterize
dynamics, but do not want to estimate
a noise model.

Note In this case, the noise models is
H = 1 in the general equation and the
white noise source e(t) affects only the
output.

The polynomial models can contain one or more outputs and zero or more inputs.

The System Identification app supports direct estimation of ARX, ARMAX, OE and BJ models. You can
add a noise integrator to the ARX, ARMAX and BJ forms. However, you can use polyest to estimate
all five polynomial or any subset of polynomials in the general equation. For more information about
working with pem, see “Using polyest to Estimate Polynomial Models” on page 6-19.

Continuous-Time Representation of Polynomial Models
In continuous time, the general frequency-domain equation is written in terms of the Laplace
transform variable s, which corresponds to a differentiation operation:

A(s)Y(s) = B(s)
F(s)U(s) + C(s)

D(s)E(s)

In the continuous-time case, the underlying time-domain model is a differential equation and the
model order integers represent the number of estimated numerator and denominator coefficients. For
example, na=3 and nb=2 correspond to the following model:

A(s) = s4 + a1s3 + a2s2 + a3
B(s) = b1s + b2

You can only estimate continuous-time polynomial models directly using continuous-time frequency-
domain data. In this case, you must set the Ts data property to 0 to indicate that you have
continuous-time frequency-domain data, and use the oe command to estimate an Output-Error
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polynomial model. Continuous-time models of other structures such as ARMAX or BJ cannot be
estimated. You can obtain those forms only by direct construction (using idpoly), conversion from
other model types, or by converting a discrete-time model into continuous-time (d2c). Note that the
OE form represents a transfer function expressed as a ratio of numerator (B) and denominator (F)
polynomials. For such forms consider using the transfer function models, represented by idtf
models. You can estimate transfer function models using both time and frequency domain data. In
addition to the numerator and denominator polynomials, you can also estimate transport delays. See
idtf and tfest for more information.

Multi-Output Polynomial Models
For a MIMO polynomial model with ny outputs and nu inputs, the relation between inputs and
outputs for the lth output can be written as:

∑
j = 1

ny
Al j(q)y j(t) = ∑

i = 1

nu Bli(q)
Fli(q)ui t − nki +

Cl(q)
Dl(q)el(t)

The A polynomial array (Aij; i=1:ny, j=1:ny) are stored in the A property of the idpoly object. The
diagonal polynomials (Aii; i=1:ny) are monic, that is, the leading coefficients are one. The off-diagonal
polynomials (Aij; i ≠j ) contain a delay of at least one sample, that is, they start with zero. For more
details on the orders of multi-output models, see “Polynomial Sizes and Orders of Multi-Output
Polynomial Models” on page 6-21.

You can create multi-output polynomial models by using the idpoly command or estimate them
using ar, arx, bj, oe, armax, and polyest. In the app, you can estimate such models by choosing a
multi-output data set and setting the orders appropriately in the Polynomial Models dialog box.

See Also
ar | armax | arx | bj | idpoly | oe | polyest

Related Examples
• “Estimate Polynomial Models in the App” on page 6-14
• “Estimate Polynomial Models at the Command Line” on page 6-18

More About
• “Data Supported by Polynomial Models” on page 6-6

 What Are Polynomial Models?

6-5



Data Supported by Polynomial Models

Types of Supported Data
You can estimate linear, black-box polynomial models from data with the following characteristics:

• Time- or frequency-domain data (iddata or idfrd data objects).

Note For frequency-domain data, you can only estimate ARX and OE models.

To estimate polynomial models for time-series data, see “Time Series Analysis”.
• Real data or complex data in any domain.
• Single-output and multiple-output.

You must import your data into the MATLAB workspace, as described in “Data Preparation”.

Designating Data for Estimating Continuous-Time Models
To get a linear, continuous-time model of arbitrary structure for time-domain data, you can estimate a
discrete-time model, and then use d2c to transform it to a continuous-time model.

For continuous-time frequency-domain data, you can estimate directly only Output-Error (OE)
continuous-time models. Other structures include noise models, which is not supported for frequency-
domain data.

Tip To denote continuous-time frequency-domain data, set the data sample time to 0. You can set the
sample time when you import data into the app or set the Ts property of the data object at the
command line.

Designating Data for Estimating Discrete-Time Models
You can estimate arbitrary-order, linear state-space models for both time- or frequency-domain data.

Set the data property Ts to:

• 0, for frequency response data that is measured directly from an experiment.
• Equal to the Ts of the original data, for frequency response data obtained by transforming time-

domain iddata (using spa and etfe).

Tip You can set the sample time when you import data into the app or set the Ts property of the data
object at the command line.
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See Also

Related Examples
• “Estimate Polynomial Models in the App” on page 6-14
• “Estimate Polynomial Models at the Command Line” on page 6-18

More About
• “What Are Polynomial Models?” on page 6-2
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Preliminary Step – Estimating Model Orders and Input Delays

Why Estimate Model Orders and Delays?
To estimate polynomial models, you must provide input delays and model orders. If you already have
insight into the physics of your system, you can specify the number of poles and zeros.

In most cases, you do not know the model orders in advance. To get initial model orders and delays
for your system, you can estimate several ARX models with a range of orders and delays and compare
the performance of these models. You choose the model orders that correspond to the best model
performance and use these orders as an initial guess for further modeling.

Because this estimation procedure uses the ARX model structure, which includes the A and B
polynomials, you only get estimates for the na, nb, and nk parameters. However, you can use these
results as initial guesses for the corresponding polynomial orders and input delays in other model
structures, such as ARMAX, OE, and BJ.

If the estimated nk is too small, the leading nb coefficients are much smaller than their standard
deviations. Conversely, if the estimated nk is too large, there is a significant correlation between the
residuals and the input for lags that correspond to the missing B terms. For information about
residual analysis plots, see topics on the “Residual Analysis” page.

Estimating Orders and Delays in the App
The following procedure assumes that you have already imported your data into the app and
performed any necessary preprocessing operations. For more information, see “Represent Data”.

To estimate model orders and input delays in the System Identification app:

1 In the System Identification app, select Estimate > Polynomial Models to open the Polynomials
Models dialog box.

The ARX model is already selected by default in the Structure list.

Note For time-series models, select the AR model structure.
2 Edit the Orders field to specify a range of poles, zeros, and delays. For example, enter the

following values for na, nb, and nk:

[1:10 1:10 1:10]

Tip As a shortcut for entering 1:10 for each required model order, click Order Selection.
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3 Click Estimate to open the ARX Model Structure Selection window, which displays the model
performance for each combination of model parameters. The following figure shows an example
plot.

4 Select a rectangle that represents the optimum parameter combination and click Insert to
estimates a model with these parameters. For information about using this plot, see “Selecting
Model Orders from the Best ARX Structure” on page 6-11.
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This action adds a new model to the Model Board in the System Identification app. The default
name of the parametric model contains the model type and the number of poles, zeros, and
delays. For example, arx692 is an ARX model with na=6, nb=9, and a delay of two samples.

5 Click Close to close the ARX Model Structure Selection window.

Note You cannot estimate model orders when using multi-output data.

After estimating model orders and delays, use these values as initial guesses for estimating other
model structures, as described in “Estimate Polynomial Models in the App” on page 6-14.

Estimating Model Orders at the Command Line
You can estimate model orders using the struc, arxstruc, and selstruc commands in
combination.

If you are working with a multiple-output system, you must use the struc, arxstruc, and selstruc
commands one output at a time. You must subreference the correct output channel in your estimation
and validation data sets.

For each estimation, you use two independent data sets—an estimation data set and a validation data
set. These independent data set can be from different experiments, or data subsets from a single
experiment. For more information about subreferencing data, see “Select Data Channels, I/O Data
and Experiments in iddata Objects” on page 2-37 and “Select I/O Channels and Data in idfrd Objects”
on page 2-62.

For an example of estimating model orders for a multiple-input system, see “Estimating Delays in the
Multiple-Input System” in System Identification Toolbox Getting Started Guide.

struc

The struc command creates a matrix of possible model-order combinations for a specified range of
na, nb, and nk values.

For example, the following command defines the range of model orders and delays na=2:5, nb=1:5,
and nk=1:5:

NN = struc(2:5,1:5,1:5))

arxstruc

The arxstruc command takes the output from struc, estimates an ARX model for each model
order, and compares the model output to the measured output. arxstruc returns the loss for each
model, which is the normalized sum of squared prediction errors.

For example, the following command uses the range of specified orders NN to compute the loss
function for single-input/single-output estimation data data_e and validation data data_v:

V = arxstruc(data_e,data_v,NN);

Each row in NN corresponds to one set of orders:

[na nb nk]
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selstruc

The selstruc command takes the output from arxstruc and opens the ARX Model Structure
Selection window to guide your choice of the model order with the best performance.

For example, to open the ARX Model Structure Selection window and interactively choose the
optimum parameter combination, use the following command:

selstruc(V);

For more information about working with the ARX Model Structure Selection window, see “Selecting
Model Orders from the Best ARX Structure” on page 6-11.

To find the structure that minimizes Akaike's Information Criterion, use the following command:

nn = selstruc(V,'AIC');

where nn contains the corresponding na, nb, and nk orders.

Similarly, to find the structure that minimizes the Rissanen's Minimum Description Length (MDL), use
the following command:

nn = selstruc(V,'MDL');

To select the structure with the smallest loss function, use the following command:

nn = selstruc(V,0);

After estimating model orders and delays, use these values as initial guesses for estimating other
model structures, as described in “Using polyest to Estimate Polynomial Models” on page 6-19.

Estimating Delays at the Command Line
The delayest command estimates the time delay in a dynamic system by estimating a low-order,
discrete-time ARX model and treating the delay as an unknown parameter.

By default, delayest assumes that na=nb=2 and that there is a good signal-to-noise ratio, and uses
this information to estimate nk.

To estimate the delay for a data set data, type the following at the prompt:

delayest(data);

If your data has a single input, MATLAB computes a scalar value for the input delay—equal to the
number of data samples. If your data has multiple inputs, MATLAB returns a vector, where each value
is the delay for the corresponding input signal.

To compute the actual delay time, you must multiply the input delay by the sample time of the data.

You can also use the ARX Model Structure Selection window to estimate input delays and model order
together, as described in “Estimating Model Orders at the Command Line” on page 6-10.

Selecting Model Orders from the Best ARX Structure
You generate the ARX Model Structure Selection window for your data to select the best-fit model.

 Preliminary Step – Estimating Model Orders and Input Delays

6-11



For a procedure on generating this plot in the System Identification app, see “Estimating Orders and
Delays in the App” on page 6-8. To open this plot at the command line, see “Estimating Model Orders
at the Command Line” on page 6-10.

The following figure shows a sample plot in the ARX Model Structure Selection window.

You use this plot to select the best-fit model.

• The horizontal axis is the total number of parameters — na + nb.
• The vertical axis, called Unexplained output variance (in %), is the portion of the output not

explained by the model—the ARX model prediction error for the number of parameters shown on
the horizontal axis.

The prediction error is the sum of the squares of the differences between the validation data
output and the model one-step-ahead predicted output.

• nk is the delay.

Three rectangles are highlighted on the plot in green, blue, and red. Each color indicates a type of
best-fit criterion, as follows:

• Red — Best fit minimizes the sum of the squares of the difference between the validation data
output and the model output. This rectangle indicates the overall best fit.

• Green — Best fit minimizes Rissanen MDL criterion.
• Blue — Best fit minimizes Akaike AIC criterion.

In the ARX Model Structure Selection window, click any bar to view the orders that give the best fit.
The area on the right is dynamically updated to show the orders and delays that give the best fit.
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For more information about the AIC criterion, see “Loss Function and Model Quality Metrics” on page
1-46.

See Also

Related Examples
• “Estimate Polynomial Models in the App” on page 6-14
• “Estimate Polynomial Models at the Command Line” on page 6-18
• “Model Structure Selection: Determining Model Order and Input Delay” on page 4-40

More About
• “What Are Polynomial Models?” on page 6-2
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Estimate Polynomial Models in the App
Prerequisites

Before you can perform this task, you must have:

• Imported data into the System Identification app. See “Import Time-Domain Data into the App” on
page 2-13. For supported data formats, see “Data Supported by Polynomial Models” on page 6-6.

• Performed any required data preprocessing operations. To improve the accuracy of your model,
you should detrend your data. Removing offsets and trends is especially important for Output-
Error (OE) models and has less impact on the accuracy of models that include a flexible noise
model structure, such as ARMAX and Box-Jenkins. See “Ways to Prepare Data for System
Identification” on page 2-5.

• Select a model structure, model orders, and delays. For a list of available structures, see “What
Are Polynomial Models?” on page 6-2 For more information about how to estimate model orders
and delays, see “Estimating Orders and Delays in the App” on page 6-8. For multiple-output
models, you must specify order matrices in the MATLAB workspace, as described in “Polynomial
Sizes and Orders of Multi-Output Polynomial Models” on page 6-21.

1 In the System Identification app, select Estimate > Polynomial Models to open the Polynomial
Models dialog box.

For more information on the options in the dialog box, click Help.
2 In the Structure list, select the polynomial model structure you want to estimate from the

following options:
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• ARX:[na nb nk]
• ARMAX:[na nb nc nk]
• OE:[nb nf nk]
• BJ:[nb nc nd nf nk]

This action updates the options in the Polynomial Models dialog box to correspond with this
model structure. For information about each model structure, see “What Are Polynomial
Models?” on page 6-2.

Note For time-series data, only AR and ARMA models are available. For more information about
estimating time-series models, see “Time Series Analysis”.

3 In the Orders field, specify the model orders and delays, as follows:

• For single-output polynomial models, enter the model orders and delays according to the
sequence displayed in the Structure field. For multiple-input models, specify nb and nk as
row vectors with as many elements as there are inputs. If you are estimating BJ and OE
models, you must also specify nf as a vector.

For example, for a three-input system, nb can be [1 2 4], where each element corresponds
to an input.

• For multiple-output models, enter the model orders as described in “Polynomial Sizes and
Orders of Multi-Output Polynomial Models” on page 6-21.

Tip To enter model orders and delays using the Order Editor dialog box, click Order Editor.
4 (ARX models only) Select the estimation Method as ARX or IV (instrumental variable method).

For information about the algorithms, see “Polynomial Model Estimation Algorithms” on page 6-
25.

5 (ARX, ARMAX, and BJ models only) Check the Add noise integration check box to add an
integrator to the noise source, e.

6 Specify the delay using the Input delay edit box. The value must be a vector of length equal to
the number of input channels in the data. For discrete-time estimations (any estimation using
data with nonzero sample-time), the delay must be expressed in the number of lags. These delays
are separate from the “in-model” delays specified by the nk order in the Orders edit box.

7 In the Name field, edit the name of the model or keep the default.
8 In the Focus list, select how to weigh the relative importance of the fit at different frequencies.

For more information about each option, see “Assigning Estimation Weightings” on page 6-16.
9 In the Initial state list, specify how you want the algorithm to treat initial conditions. For more

information about the available options, see “Specifying Initial Conditions for Iterative Estimation
Algorithms” on page 5-42.

Tip If you get an inaccurate fit, try setting a specific method for handling initial states rather
than choosing it automatically.

10 In the Covariance list, select Estimate if you want the algorithm to compute parameter
uncertainties. Effects of such uncertainties are displayed on plots as model confidence regions.

To omit estimating uncertainty, select None. Skipping uncertainty computation for large,
multiple-output models might reduce computation time.
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11 Click Regularization to obtain regularized estimates of model parameters. Specify the
regularization constants in the Regularization Options dialog box. To learn more, see
“Regularized Estimates of Model Parameters” on page 1-34.

12 (ARMAX, OE, and BJ models only) To view the estimation progress in the MATLAB Command
Window, select the Display progress check box. This launches a progress viewer window in
which estimation progress is reported.

13 Click Estimate to add this model to the Model Board in the System Identification app.
14 (Prediction-error method only) To stop the search and save the results after the current iteration

has been completed, click Stop Iterations. To continue iterations from the current model, click
the Continue iter button to assign current parameter values as initial guesses for the next
search.

Assigning Estimation Weightings
You can specify how the estimation algorithm weighs the fit at various frequencies. In the app, set
Focus to one of the following options:

• Prediction — Uses the inverse of the noise model H to weigh the relative importance of how
closely to fit the data in various frequency ranges. Corresponds to minimizing one-step-ahead
prediction, which typically favors the fit over a short time interval. Optimized for output prediction
applications.

• Simulation — Uses the input spectrum to weigh the relative importance of the fit in a specific
frequency range. Does not use the noise model to weigh the relative importance of how closely to
fit the data in various frequency ranges. Optimized for output simulation applications.

• Stability — Estimates the best stable model. For more information about model stability, see
“Unstable Models” on page 17-93.

• Filter — Specify a custom filter to open the Estimation Focus dialog box, where you can enter a
filter, as described in “Simple Passband Filter” on page 2-96 or “Defining a Custom Filter” on page
2-96. This prefiltering applies only for estimating the dynamics from input to output. The
disturbance model is determined from the unfiltered estimation data.

Next Steps
• Validate the model by selecting the appropriate check box in the Model Views area of the System
Identification app. For more information about validating models, see “Validating Models After
Estimation” on page 17-2.

• Export the model to the MATLAB workspace for further analysis by dragging it to the To
Workspace rectangle in the System Identification app.

Tip For ARX and OE models, you can use the exported model for initializing a nonlinear
estimation at the command line. This initialization may improve the fit of the model. See “Initialize
Nonlinear ARX Estimation Using Linear Model” on page 11-18, and “Initialize Hammerstein-
Wiener Estimation Using Linear Model” on page 12-7.
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See Also

Related Examples
• “Preliminary Step – Estimating Model Orders and Input Delays” on page 6-8
• “Estimate Polynomial Models at the Command Line” on page 6-18

More About
• “What Are Polynomial Models?” on page 6-2
• “Data Supported by Polynomial Models” on page 6-6
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Estimate Polynomial Models at the Command Line
Prerequisites

Before you can perform this task, you must have

• Input-output data as an iddata object or frequency response data as an frd or idfrd object. See
“Representing Time- and Frequency-Domain Data Using iddata Objects” on page 2-34. For
supported data formats, see “Data Supported by Polynomial Models” on page 6-6.

• Performed any required data preprocessing operations. To improve the accuracy of results when
using time domain data, you can detrend the data or specify the input/output offset levels as
estimation options. Removing offsets and trends is especially important for Output-Error (OE)
models and has less impact on the accuracy of models that include a flexible noise model
structure, such as ARMAX and Box-Jenkins. See “Ways to Prepare Data for System Identification”
on page 2-5.

• Select a model structure, model orders, and delays. For a list of available structures, see “What
Are Polynomial Models?” on page 6-2 For more information about how to estimate model orders
and delays, see “Estimating Model Orders at the Command Line” on page 6-10 and “Estimating
Delays at the Command Line” on page 6-11. For multiple-output models, you must specify order
matrices in the MATLAB workspace, as described in “Polynomial Sizes and Orders of Multi-Output
Polynomial Models” on page 6-21.

Using arx and iv4 to Estimate ARX Models
You can estimate single-output and multiple-output ARX models using the arx and iv4 commands.
For information about the algorithms, see “Polynomial Model Estimation Algorithms” on page 6-25.

You can use the following general syntax to both configure and estimate ARX models:

% Using ARX method
m = arx(data,[na nb nk],opt);
% Using IV method
m = iv4(data,[na nb nk],opt);

data is the estimation data and [na nb nk] specifies the model orders, as discussed in “What Are
Polynomial Models?” on page 6-2.

The third input argument opt contains the options for configuring the estimation of the ARX model,
such as handling of initial conditions and input offsets. You can create and configure the option set
opt using the arxOptions and iv4Options commands. The three input arguments can also be
followed by name and value pairs to specify optional model structure attributes such as InputDelay,
IODelay, and IntegrateNoise.

To get discrete-time models, use the time-domain data (iddata object).

Note Continuous-time polynomials of ARX structure are not supported.

For more information about validating your model, see “Validating Models After Estimation” on page
17-2.

You can use pem or polyest to refine parameter estimates of an existing polynomial model, as
described in “Refine Linear Parametric Models” on page 4-5.
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For detailed information about these commands, see the corresponding reference page.

Tip You can use the estimated ARX model for initializing a nonlinear estimation at the command line,
which improves the fit of the model. See “Initialize Nonlinear ARX Estimation Using Linear Model” on
page 11-18.

Using polyest to Estimate Polynomial Models
You can estimate any polynomial model using the iterative prediction-error estimation method
polyest. For Gaussian disturbances of unknown variance, this method gives the maximum likelihood
estimate. The resulting models are stored as idpoly model objects.

Use the following general syntax to both configure and estimate polynomial models:

m = polyest(data,[na nb nc nd nf nk],opt,Name,Value);

where data is the estimation data. na, nb, nc, nd, nf are integers that specify the model orders, and
nk specifies the input delays for each input.For more information about model orders, see “What Are
Polynomial Models?” on page 6-2.

Tip You do not need to construct the model object using idpoly before estimation.

If you want to estimate the coefficients of all five polynomials, A, B, C, D, and F, you must specify an
integer order for each polynomial. However, if you want to specify an ARMAX model for example,
which includes only the A, B, and C polynomials, you must set nd and nf to zero matrices of the
appropriate size. For some simpler configurations, there are dedicated estimation commands such as
arx, armax, bj, and oe, which deliver the required model by using just the required orders. For
example, oe(data,[nb nf nk],opt) estimates an output-error structure polynomial model.

Note To get faster estimation of ARX models, use arx or iv4 instead of polyest.

In addition to the polynomial models listed in “What Are Polynomial Models?” on page 6-2, you can
use polyest to model the ARARX structure—called the generalized least-squares model—by setting
nc=nf=0. You can also model the ARARMAX structure—called the extended matrix model—by setting
nf=0.

The third input argument, opt, contains the options for configuring the estimation of the polynomial
model, such as handling of initial conditions, input offsets and search algorithm. You can create and
configure the option set opt using the polyestOptions command. The three input arguments can
also be followed by name and value pairs to specify optional model structure attributes such as
InputDelay, IODelay, and IntegrateNoise.

For ARMAX, Box-Jenkins, and Output-Error models—which can only be estimated using the iterative
prediction-error method—use the armax, bj, and oe estimation commands, respectively. These
commands are versions of polyest with simplified syntax for these specific model structures, as
follows:

m = armax(Data,[na nb nc nk]);
m = oe(Data,[nb nf nk]);
m = bj(Data,[nb nc nd nf nk]);
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Similar to polyest, you can specify as input arguments the option set configured using commands
armaxOptions, oeOptions, and bjOptions for the estimators armax, oe, and bj respectively. You
can also use name and value pairs to configure additional model structure attributes.

Tip If your data is sampled fast, it might help to apply a lowpass filter to the data before estimating
the model, or specify a frequency range for the WeightingFilter property during estimation. For
example, to model only data in the frequency range 0-10 rad/s, use the WeightingFilter property,
as follows:

opt = oeOptions('WeightingFilter',[0 10]);
m = oe(Data, [nb nf nk], opt);

For more information about validating your model, see “Validating Models After Estimation” on page
17-2.

You can use pem or polyest to refine parameter estimates of an existing polynomial model (of any
configuration), as described in “Refine Linear Parametric Models” on page 4-5.

For more information, see polyest, pem and idpoly.

See Also

Related Examples
• “Estimate Models Using armax” on page 6-26
• “Preliminary Step – Estimating Model Orders and Input Delays” on page 6-8
• “Estimate Polynomial Models in the App” on page 6-14

More About
• “What Are Polynomial Models?” on page 6-2
• “Data Supported by Polynomial Models” on page 6-6
• “Loss Function and Model Quality Metrics” on page 1-46
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Polynomial Sizes and Orders of Multi-Output Polynomial
Models

For a model with Ny (Ny > 1) outputs and Nu inputs, the polynomials A, B, C, D, and F are specified
as cell arrays of row vectors. Each entry in the cell array contains the coefficients of a particular
polynomial that relates input, output, and noise values. Orders are matrices of integers used as input
arguments to the estimation commands.

Polynomial Dimension Relation Described Orders
A Ny-by-Ny array of row vectors A{i,j} contains coefficients of relation

between output yi and output yj

na: Ny-by-Ny
matrix such
that each
entry
contains the
degree of
the
correspondi
ng A
polynomial.

B Ny-by-Nu array of row vectors B{i,j} contain coefficients of relations
between output yi and input uj

nk: Ny-by-
Nu matrix
such that
each entry
contains the
number of
leading
fixed zeros
of the
correspondi
ng B
polynomial
(input
delay).

nb: Ny-by-
Nu matrix
such
nb(i,j) =
length(B{
i,j})-
nk(i,j).
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Polynomial Dimension Relation Described Orders
C,D Ny-by-1 array of row vectors C{i} and D{i} contain coefficients of

relations between output yi and noise ei

nc and nd
are Ny-by-1
matrices
such that
each entry
contains the
degree of
the
correspondi
ng C and D
polynomial,
respectively.

F Ny-by-Nu array of row vectors F{i,j} contains coefficients of relations
between output yi and input uj

nf: Ny-by-
Nu matrix
such that
each entry
contains the
degree of
the
correspondi
ng F
polynomial.

For more information, see idpoly.

For example, consider the ARMAX set of equations for a 2 output, 1 input model:

y1(t) + 0.5 y1(t‐1) + 0.9 y2(t‐1) + 0.1 y2(t‐2) = u(t)  + 5 u(t‐1)  + 2 u(t‐2) + e1(t) + 0.01 e1(t‐1)
y2(t) + 0.05 y2(t‐1)  + 0.3 y2(t‐2)   = 10 u(t‐2) + e2(t) + 0.1 e2(t‐1) + 0.02 e2(t‐2)

y1 andy2 represent the two outputs and u represents the input variable. e1 and e2 represent the white
noise disturbances on the outputs, y1 and y2, respectively. To represent these equations as an ARMAX
form polynomial using idpoly, configure the A, B, and C polynomials as follows:

A = cell(2,2);
A{1,1} = [1 0.5];
A{1,2} = [0 0.9 0.1];
A{2,1} = [0];
A{2,2} = [1 0.05 0.3];

B = cell(2,1);
B{1,1} = [1 5 2];
B{2,1}  = [0 0 10];

C = cell(2,1);
C{1} = [1 0.01];
C{2} = [1 0.1 0.02];

model = idpoly(A,B,C)

model =
Discrete-time ARMAX model:                                                      
  Model for output number 1: A(z)y_1(t) = - A_i(z)y_i(t) + B(z)u(t) + C(z)e_1(t)
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    A(z) = 1 + 0.5 z^-1                                                         
                                                                                
    A_2(z) = 0.9 z^-1 + 0.1 z^-2                                                
                                                                                
    B(z) = 1 + 5 z^-1 + 2 z^-2                                                  
                                                                                
    C(z) = 1 + 0.01 z^-1                                                        
                                                                                
  Model for output number 2: A(z)y_2(t) = B(z)u(t) + C(z)e_2(t)
    A(z) = 1 + 0.05 z^-1 + 0.3 z^-2                            
                                                               
    B(z) = 10 z^-2                                             
                                                               
    C(z) = 1 + 0.1 z^-1 + 0.02 z^-2                            
                                                               
Sample time: unspecified
  
Parameterization:
   Polynomial orders:   na=[1 2;0 2]   nb=[3;1]   nc=[1;2]
   nk=[0;2]
   Number of free coefficients: 12
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

model is a discrete-time ARMAX model with unspecified sample-time. When estimating such models,
you need to specify the orders of these polynomials as input arguments.

In the System Identification app, you can enter the matrices directly in the Orders field.

At the command line, define variables that store the model order matrices and specify these variables
in the model-estimation command.

Tip To simplify entering large matrices orders in the System Identification app, define the variable
NN=[NA NB NK] at the command line. You can specify this variable in the Orders field.

See Also
ar | armax | arx | bj | idpoly | oe | polyest

Related Examples
• “Estimate Polynomial Models in the App” on page 6-14
• “Estimate Polynomial Models at the Command Line” on page 6-18

More About
• “What Are Polynomial Models?” on page 6-2
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Specifying Initial States for Iterative Estimation Algorithms
When you use the pem or polyest functions to estimate ARMAX, Box-Jenkins (BJ), Output-Error
(OE), you must specify how the algorithm treats initial conditions.

This information supports the estimation procedures “Estimate Polynomial Models in the App” on
page 6-14 and “Using polyest to Estimate Polynomial Models” on page 6-19.

In the System Identification app, for ARMAX, OE, and BJ models, set Initial state to one of the
following options:

• Auto — Automatically chooses Zero, Estimate, or Backcast based on the estimation data. If
initial states have negligible effect on the prediction errors, the initial states are set to zero to
optimize algorithm performance.

• Zero — Sets all initial states to zero.
• Estimate — Treats the initial states as an unknown vector of parameters and estimates these

states from the data.
• Backcast — Estimates initial states using a smoothing filter.

At the command line, specify the initial conditions as an estimation option. Use polyestOptions to
configure options for the polyest command, armaxOptions for the armax command etc. Set the
InitialCondition option to the desired value in the option set. For example, use this command to
estimate an ARMAX model and set the initial states to zero:

opt = armaxOptions('InitialCondition','zero');
m = armax(data,[2 2 2 3],opt);

For a complete list of values for the InitialCondition estimation option, see the armaxOptions
reference page.

See Also
armaxOptions | arxOptions | bjOptions | iv4Options | oeOptions | polyestOptions

Related Examples
• “Estimate Polynomial Models in the App” on page 6-14
• “Estimate Polynomial Models at the Command Line” on page 6-18
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Polynomial Model Estimation Algorithms
For linear ARX and AR models, you can choose between the ARX and IV algorithms. ARX implements
the least-squares estimation method that uses QR-factorization for overdetermined linear equations.
IV is the instrument variable method. For more information about IV, see the section on variance-
optimal instruments in System Identification: Theory for the User, Second Edition, by Lennart Ljung,
Prentice Hall PTR, 1999.

The ARX and IV algorithms treat noise differently. ARX assumes white noise. However, the
instrumental variable algorithm, IV, is not sensitive to noise color. Thus, use IV when the noise in your
system is not completely white and it is incorrect to assume white noise. If the models you obtained
using ARX are inaccurate, try using IV.

Note AR models apply to time-series data, which has no input. For more information, see “Time
Series Analysis”. For more information about working with AR and ARX models, see “Input-Output
Polynomial Models”.

See Also
ar | arx | iv4

More About
• “What Are Polynomial Models?” on page 6-2
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Estimate Models Using armax
This example shows how to estimate a linear, polynomial model with an ARMAX structure for a three-
input and single-output (MISO) system using the iterative estimation method armax. For a summary
of all available estimation commands in the toolbox, see “Model Estimation Commands” on page 1-31.

Load a sample data set z8 with three inputs and one output, measured at 1 -second intervals and
containing 500 data samples.

load iddata8

Use armax to both construct the idpoly model object, and estimate the parameters:

A(q)y(t) = ∑
i = 1

nu
Bi(q)ui t − nki + C(q)e(t)

Typically, you try different model orders and compare results, ultimately choosing the simplest model
that best describes the system dynamics. The following command specifies the estimation data set,
z8 , and the orders of the A , B , and C polynomials as na , nb , and nc, respectively. nk of [0 0 0]
specifies that there is no input delay for all three input channels.

opt = armaxOptions;
opt.Focus = 'simulation';
opt.SearchOptions.MaxIterations = 50;
opt.SearchOptions.Tolerance = 1e-5;
na = 4;
nb = [3 2 3];
nc = 4;
nk = [0 0 0];
m_armax = armax(z8, [na nb nc nk], opt);

Focus, Tolerance, and MaxIter are estimation options that configure the estimation objective
function and the attributes of the search algorithm. The Focus option specifies whether the model is
optimized for simulation or prediction applications. The Tolerance and MaxIter search options
specify when to stop estimation. For more information about these properties, see the
armaxOptions reference page.

armax is a version of polyest with simplified syntax for the ARMAX model structure. The armax
method both constructs the idpoly model object and estimates its parameters.

View information about the resulting model object.

m_armax

m_armax =
Discrete-time ARMAX model: A(z)y(t) = B(z)u(t) + C(z)e(t)            
  A(z) = 1 - 1.284 z^-1 + 0.3048 z^-2 + 0.2648 z^-3 - 0.05708 z^-4   
                                                                     
  B1(z) = -0.07547 + 1.087 z^-1 + 0.7166 z^-2                        
                                                                     
  B2(z) = 1.019 + 0.1142 z^-1                                        
                                                                     
  B3(z) = -0.06739 + 0.06828 z^-1 + 0.5509 z^-2                      
                                                                     
  C(z) = 1 - 0.06096 z^-1 - 0.1296 z^-2 + 0.02489 z^-3 - 0.04699 z^-4
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Sample time: 1 seconds
  
Parameterization:
   Polynomial orders:   na=4   nb=[3 2 3]   nc=4   nk=[0 0 0]
   Number of free coefficients: 16
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using ARMAX on time domain data "z8".  
Fit to estimation data: 80.86% (simulation focus)
FPE: 2.888, MSE: 0.9868                          

m_armax is an idpoly model object. The coefficients represent estimated parameters of this
polynomial model. You can use present(m_armax) to show additional information about the model,
including parameter uncertainties.

View all property values for this model.

get(m_armax)

                 A: [1 -1.2836 0.3048 0.2648 -0.0571]
                 B: {[-0.0755 1.0870 0.7166]  [1.0188 0.1142]  [1x3 double]}
                 C: [1 -0.0610 -0.1296 0.0249 -0.0470]
                 D: 1
                 F: {[1]  [1]  [1]}
    IntegrateNoise: 0
          Variable: 'z^-1'
           IODelay: [0 0 0]
         Structure: [1x1 pmodel.polynomial]
     NoiseVariance: 2.7984
        InputDelay: [3x1 double]
       OutputDelay: 0
                Ts: 1
          TimeUnit: 'seconds'
         InputName: {3x1 cell}
         InputUnit: {3x1 cell}
        InputGroup: [1x1 struct]
        OutputName: {'y1'}
        OutputUnit: {''}
       OutputGroup: [1x1 struct]
             Notes: [0x1 string]
          UserData: []
              Name: ''
      SamplingGrid: [1x1 struct]
            Report: [1x1 idresults.polyest]

The Report model property contains detailed information on the estimation results. To view the
properties and values inside Report, use dot notation. For example:

m_armax.Report

ans = 
              Status: 'Estimated using ARMAX with simulation focus'
              Method: 'ARMAX'
    InitialCondition: 'zero'
                 Fit: [1x1 struct]
          Parameters: [1x1 struct]
         OptionsUsed: [1x1 idoptions.polyest]
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           RandState: [1x1 struct]
            DataUsed: [1x1 struct]
         Termination: [1x1 struct]

This action displays the contents of estimation report such as model quality measures (Fit), search
termination criterion (Termination), and a record of estimation data (DataUsed) and options
(OptionsUsed).

See Also

Related Examples
• “Estimate Polynomial Models at the Command Line” on page 6-18

More About
• “What Are Polynomial Models?” on page 6-2
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Identifying State-Space Models

• “What Are State-Space Models?” on page 7-2
• “Data Supported by State-Space Models” on page 7-5
• “Supported State-Space Parameterizations” on page 7-6
• “Estimate State-Space Model With Order Selection” on page 7-7
• “Use State-Space Estimation to Reduce Model Order” on page 7-11
• “Estimate State-Space Models in System Identification App” on page 7-16
• “Estimate State-Space Models at the Command Line” on page 7-25
• “Estimate State-Space Models with Free-Parameterization” on page 7-30
• “Estimate State-Space Models with Canonical Parameterization” on page 7-31
• “Estimate State-Space Models with Structured Parameterization” on page 7-32
• “Estimate State-Space Equivalent of ARMAX and OE Models” on page 7-38
• “Specifying Initial States for Iterative Estimation Algorithms” on page 7-40
• “State-Space Model Estimation Methods” on page 7-41
• “Canonical State-Space Realizations” on page 7-42
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What Are State-Space Models?

Definition of State-Space Models
State-space models are models that use state variables to describe a system by a set of first-order
differential or difference equations, rather than by one or more nth-order differential or difference
equations. State variables x(t) can be reconstructed from the measured input-output data, but are not
themselves measured during an experiment.

The state-space model structure is a good choice for quick estimation because it requires you to
specify only one input, the model order, n. The model order is an integer equal to the dimension of
x(t) and relates to, but is not necessarily equal to, the number of delayed inputs and outputs used in
the corresponding linear difference equation.

Continuous-Time Representation
It is often easier to define a parameterized state-space model in continuous time because physical
laws are most often described in terms of differential equations. In continuous-time, the state-space
description has the following form:

ẋ(t) = Fx(t) + Gu(t) + Kw(t)
y(t) = Hx(t) + Du(t) + w(t)
x(0) = x0

The matrices F, G, H, and D contain elements with physical significance—for example, material
constants. x0 specifies the initial states.

Note K = 0 gives the state-space representation of an Output-Error model. For more information,
see “What Are Polynomial Models?” on page 6-2.

You can estimate continuous-time state-space model using both time- and frequency-domain data.

Discrete-Time Representation
The discrete-time state-space model structure is often written in the innovations form that describes
noise:

x(kT + T) = Ax(kT) + Bu(kT) + Ke(kT)
y(kT) = Cx(kT) + Du(kT) + e(kT)
x(0) = x0

where T is the sample time, u(kT) is the input at time instant kT, and y(kT) is the output at time
instant kT.

Note K=0 gives the state-space representation of an Output-Error model. For more information
about Output-Error models, see “What Are Polynomial Models?” on page 6-2.
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Discrete-time state-space models provide the same type of linear difference relationship between the
inputs and outputs as the linear ARMAX model, but are rearranged such that there is only one delay
in the expressions.

You cannot estimate a discrete-time state-space model using continuous-time frequency-domain data.

The innovations form uses a single source of noise, e(kT), rather than independent process and
measurement noise. If you have prior knowledge about the process and measurement noise, you can
use linear grey-box estimation to identify a state-space model with structured independent noise
sources. For more information, see “Identifying State-Space Models with Separate Process and
Measurement Noise Descriptions” on page 13-54.

Relationship Between Continuous-Time and Discrete-Time State
Matrices
The relationships between the discrete state-space matrices A, B, C, D, and K and the continuous-
time state-space matrices F, G, H, D, and K are given for piece-wise-constant input, as follows:

A = eFT

B = ∫
0

T
eFτGdτ

C = H

These relationships assume that the input is piece-wise-constant over time intervals
kT ≤ t < (k + 1)T.

The exact relationship between K and K is complicated. However, for short sample time T, the
following approximation works well:

K = ∫
0

T
eFτKdτ

State-Space Representation of Transfer Functions
For linear models, the general model description is given by:

y = Gu + He

G is a transfer function that takes the input u to the output y. H is a transfer function that describes
the properties of the additive output noise model.

The relationships between the transfer functions and the discrete-time state-space matrices on page
7-2 are given by the following equations:

G(q) = C(qB + D

H(q) = C(qK + Iny

Here, Inx is the nx-by-nx identity matrix, and nx is the number of states. Iny is the ny-by-ny identity
matrix, and ny is the dimension of y and e.
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The state-space representation in the continuous-time case is similar.

See Also

Related Examples
• “Estimate State-Space Models in System Identification App” on page 7-16
• “Estimate State-Space Models at the Command Line” on page 7-25

More About
• “Data Supported by State-Space Models” on page 7-5
• “Supported State-Space Parameterizations” on page 7-6
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Data Supported by State-Space Models
You can estimate linear state-space models from data with the following characteristics:

• Time- or frequency-domain data

To estimate state-space models for time-series data, see “Time Series Analysis”.
• Real data or complex data
• Single-output and multiple-output

To estimate state-space models, you must first import your data into the MATLAB workspace, as
described in “Data Preparation”.
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Supported State-Space Parameterizations
System Identification Toolbox software supports the following parameterizations that indicate which
parameters are estimated and which remain fixed at specific values:

• Free parameterization results in the estimation of all elements of the system matrices A, B, C, D,
and K. See “Estimate State-Space Models with Free-Parameterization” on page 7-30.

• Canonical parameterization represents a state-space system in a reduced-parameter form
where many entries of the A, B and C matrices are fixed to zeros and ones. The free parameters
appear in only a few of the rows and columns in the system matrices A, B, C and D. The software
supports companion, modal decomposition and observability canonical forms. See “Estimate
State-Space Models with Canonical Parameterization” on page 7-31.

• Structured parameterization lets you specify the fixed values of specific parameters and
exclude these parameters from estimation. You choose which entries of the system matrices to
estimate and which to treat as fixed. See “Estimate State-Space Models with Structured
Parameterization” on page 7-32.

• Completely arbitrary mapping of parameters to state-space matrices. See “Estimate Linear
Grey-Box Models” on page 13-6.

See Also

• “Estimate State-Space Models with Free-Parameterization” on page 7-30
• “Estimate State-Space Models with Canonical Parameterization” on page 7-31
• “Estimate State-Space Models with Structured Parameterization” on page 7-32
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Estimate State-Space Model With Order Selection
To estimate a state-space model, you must provide a value of its order, which represents the number
of states. When you do not know the order, you can search and select an order using the following
procedures.

Estimate Model With Selected Order in the App
You must have already imported your data into the app, as described in “Represent Data”.

To estimate model orders for a specific model structure and configuration:

1 In the System Identification app, select Estimate > State Space Models to open the State
Space Models dialog box.

2 In the Model Structure tab, select the Pick best value in the range option and specify a
range in the adjacent field. The default range is 1:10.

This action opens the Model Order Selection window, which displays the relative measure of how
much each state contributes to the input-output behavior of the model (log of singular values of
the covariance matrix). The following figure shows an example plot. In this figure, states 1 and 2
provide the most significant contribution. The contributions to the right of state 2 drop
significantly. The red bar illustrates the cutoff. The order of this bar represents the best-value
recommendation, and this value appears in Order. You can override the recommendation by
clicking on another bar or by overwriting the contents of Order. For information about using the
Model Order Selection window, see “Using the Model Order Selection Window” on page 7-9

 Estimate State-Space Model With Order Selection

7-7



3 (Optional) Specify additional attributes of the model structure, such as input delay and
feedthrough. You can also modify the estimation options in the Estimation Options tab. As you
modify your selections, the software re-evaluates the model-order recommendation.

4 Click Estimate. This action adds a new model to the Model Board in the System Identification
app. The default name of the model is ss1. You can use this model as an initial guess for
estimating other state-space models, as described in “Estimate State-Space Models in System
Identification App” on page 7-16.

5 Click Close to close the window.

Estimate Model With Selected Order at the Command Line
You can estimate a state-space model with selected order using n4sid, ssest or ssregest.

Use the following syntax to specify the range of model orders to try for a specific input delay:

m = n4sid(data,n1:n2);

where data is the estimation data set, n1 and n2 specify the range of orders.
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The command opens the Model Order Selection window. For information about using this plot, see
“Using the Model Order Selection Window” on page 7-9.

Alternatively, use ssest or ssregest:

m1 = ssest(data,nn)
m2 = ssregest(data,nn)

where nn = [n1,n2,...,nN] specifies the vector or range of orders you want to try.

n4sid and ssregest estimate a model whose sample time matches that of data by default, hence a
discrete-time model for time-domain data. ssest estimates a continuous-time model by default. You
can change the default setting by including the Ts name-value pair input arguments in the estimation
command. For example, to estimate a discrete-time model of optimal order, assuming Data.Ts>0,
type:

model = ssest(data,nn,'Ts',data.Ts);

or

model = ssregest(data,nn,'Ts',data.Ts);

To automatically select the best order without opening the Model Order Selection window, type m =
n4sid(data,'best'), m = ssest(data,'best') or m = ssregest(data,'best').

Using the Model Order Selection Window
The following figure shows a sample Model Order Selection window.
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You use this plot to decide which states provide a significant relative contribution to the input-output
behavior, and which states provide the smallest contribution. Based on this plot, select the rectangle
that represents the cutoff for the states on the left that provide a significant contribution to the input-
output behavior. The recommended choice is shown in red. To learn how to generate this plot, see
“Estimate Model With Selected Order in the App” on page 7-7 or “Estimate Model With Selected
Order at the Command Line” on page 7-8.

The horizontal axis corresponds to the model order n. The vertical axis, called Log of Singular
values, shows the singular values of a covariance matrix constructed from the observed data.

For example, in the previous figure, states 1 and 2 provide the most significant contribution.
However, the contributions of the states to the right of state 2 drop significantly. This sharp decrease
in the log of the singular values after n=2 indicates that using two states is sufficient to get an
accurate model.
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Use State-Space Estimation to Reduce Model Order
Reduce the order of a Simulink model by linearizing the model and estimating a lower-order model
that retains model dynamics.

This example requires Simulink and the Simulink Control Design™ toolbox.

Consider the Simulink model idF14Model. Linearizing this model gives a ninth-order model.
However, the dynamics of the model can be captured, without compromising the fit quality too much,
using a lower-order model.

Obtain the linearized model.

load_system('idF14Model');
io = getlinio('idF14Model');
sys_lin = linearize('idF14Model',io);

sys_lin is a ninth-order state-space model with two outputs and one input.

Simulate the step response of the linearized model, and use the data to create an iddata object.

Ts = 0.0444;
t = (0:Ts:4.44)';
y = step(sys_lin,t);

data = iddata([zeros(20,2);y],[zeros(20,1); ones(101,1)],Ts);

data is an iddata object that encapsulates the step response of sys_lin.

Compare the data to the model linearization.

compare(data,sys_lin);
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Because the data was obtained by simulating the linearized model, there is a complete match
between the data and model linearization response.

Identify a state-space model with a reduced order that adequately fits the data.

Determine an optimal model order.

nx = 1:9;
sys1 = ssest(data,nx,'DisturbanceModel','none');

A plot showing the Hankel singular values (SVD) for models of the orders specified by nx appears.
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States with relatively small Hankel singular values can be safely discarded. The plot suggests using a
fifth-order model.

At the MATLAB command prompt, select the model order for the estimated state-space model.
Specify the model order as 5, or press Enter to use the default order value.

Compare the data to the estimated model.

compare(data,sys1);
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The plot displays the fit percentages for the two sys1 outputs. The four-state reduction in model
order results in a relatively small reduction in fit percentage.

Examine the stopping condition for the search algorithm.

sys1.Report.Termination.WhyStop

ans = 
'Maximum number of iterations reached.'

Create an estimation options set. Specify the 'lm' search method. Increase the maximum number of
search iterations to 50 from the default maximum of 20.

opt = ssestOptions('SearchMethod','lm');
opt.SearchOptions.MaxIterations = 50;
opt.Display = 'on';

Identify a state-space model using the estimation option set and sys1 as the estimation initialization
model.

sys2 = ssest(data,sys1,opt);

Compare the response of the linearized and the estimated models.

compare(data,sys_lin,sys2);
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The updated option set results in better fit percentages for sys2.

See Also
getlinio | linearize
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Estimate State-Space Models in System Identification App
Prerequisites

• Import data into the System Identification app. See “Represent Data”. For supported data formats,
see “Data Supported by State-Space Models” on page 7-5.

• Perform data preprocessing. To improve the accuracy of your model, you detrend your data. See
“Ways to Prepare Data for System Identification” on page 2-5.

1 Select Estimate > State Space Models.

The State Space Models dialog box opens.
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Tip For more information on the options in the dialog box, click Help.
2 Model name displays the default model name. To change the name, enter a new name. The

name of the model must be unique in the Model Board.
3 Select the Specify value option (if not already selected) and specify the model order in the edit

field. Model order refers to the number of states in the state-space model.

Tip When you do not know the model order, search for and select an order. For more
information, see “Estimate Model With Selected Order in the App” on page 7-7.

4 Select the Continuous-time or Discrete-time option to specify the type of model to estimate.

You cannot estimate a discrete-time model if the working data is continuous-time frequency-
domain data.

5 Specify the elements to include in the model structure, including feedthrough (D matrix) and the
disturbance component (K matrix.) Specify the model form, such as canonical form, by selecting
from the options in Form. To specify delays, expand the Delay section.
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For more information about the type of state-space parameterization, see “Supported State-
Space Parameterizations” on page 7-6.

6 Select the Estimation Options tab to select the estimation method and configure the cost
function.

Select one of the methods in Estimation method and configure the options. For more
information about these methods, see “State-Space Model Estimation Methods” on page 7-41.

Subspace (N4SID)
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a In the N4Weight drop-down list, specify the weighting scheme used for singular-value
decomposition by the N4SID algorithm.

The N4SID algorithm is used both by the subspace and Prediction Error
Minimization (PEM) methods.

b In the N4Horizon field, specify the forward and backward prediction horizons used by the
N4SID algorithm.

c In the Estimation Focus drop-down list, select whether to optimize the estimation for one-
step-ahead prediction or for simulation. For more information about these options, options
see “Assigning Estimation Weightings” on page 7-24.

d Select the Allow unstable models check box to specify whether to allow the estimation
process to use parameter values that may lead to unstable models.

This option is available only when Estimation Focus is Prediction. An unstable model is
delivered only if it produces a better fit to the data than other stable models computed
during the estimation process.

e Select the Estimate covariance check box if you want the algorithm to compute parameter
uncertainties.

Effects of such uncertainties are displayed on plots as model confidence regions. Skipping
uncertainty computation reduces computation time for complex models and large data sets.

f Select the Display progress check box to open a progress viewer window during
estimation.

g In the Initial conditions list, specify how you want the algorithm to treat initial states. For
more information about the available options, see “Specifying Initial States for Iterative
Estimation Algorithms” on page 7-40.

h If you want to limit the estimation process to a specific frequency range, expand Fit
Frequency Range. Create a passband filter by specifying the minimum and maximum
passband frequencies.
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Prediction Error Minimization (PEM)

a In the N4Weight drop-down list, specify the weighting scheme used for singular-value
decomposition by the N4SID algorithm.

The N4SID algorithm is used both by the subspace and Prediction Error
Minimization (PEM) methods.

b In the N4Horizon field, specify the forward and backward prediction horizons used by the
N4SID algorithm.

c In the Estimation Focus drop-down list, select whether to optimize the estimation for one-
step-ahead prediction or for simulation. For more information about these options, options
see “Assigning Estimation Weightings” on page 7-24.

d Select the Allow unstable models check box to specify whether to allow the estimation
process to use parameter values that may lead to unstable models.

This option is available only when Estimation Focus is Prediction. An unstable model is
delivered only if it produces a better fit to the data than other stable models computed
during the estimation process.

e Select the Estimate covariance check box if you want the algorithm to compute parameter
uncertainties.

Effects of such uncertainties are displayed on plots as model confidence regions. Skipping
uncertainty computation reduces computation time for complex models and large data sets.

f Select the Display progress check box to open a progress viewer window during
estimation.
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g In Initial conditions, specify how you want the algorithm to treat initial states. For more
information about the available options, see “Specifying Initial States for Iterative Estimation
Algorithms” on page 7-40.

h If you want to limit the estimation process to a specific frequency range, expand Fit
Frequency Range. Create a passband filter by specifying the minimum and maximum
passband frequencies.

i Expand Search Options to specify options for controlling the search iterations.

Search Options

In the Search Options section of Estimation Options, you can specify the following
options:

• Search method — Method used by the iterative search algorithm. Search method is
auto by default. Search methods include Gauss-Newton(gn), Adaptive Gauss-
Newton(gna), Levenberg-Marquardt(lm), Trust-Region Reflective Newton
(lsqnonlin), Gradient Search (grad), Sequential Quadratic Programming
(fmincon:sqp), or Interior Point (fmincon: interior-point). The descent
direction is calculated successively at each iteration until a sufficient reduction in error is
achieved.

Output weight — Weighting applied to the loss function to be minimized. Use this option
for multi-output estimations only. Specify as 'noise' or a positive semidefinite matrix of
size equal the number of outputs.
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• Maximum iterations — Maximum number of iterations to use during search.
• Tolerance — Tolerance value when the iterations should terminate.
• Outlier threshold — Robustification of the quadratic criterion of fit.

j Expand Regularization to obtain regularized estimates of model parameters. Specify the
regularization constants Lambda and R.

To learn more about regularization, see “Regularized Estimates of Model Parameters” on
page 1-34.

Regularized Reduction

a In the Regularization Kernel drop-down list, select the regularizing kernel to use for
regularized estimation of the underlying ARX model. To learn more, see “Regularized
Estimates of Model Parameters” on page 1-34.

b In the ARX Orders field, specify the order of the underlying ARX model. By default, the
orders are automatically computed by the estimation algorithm. If you specify a value, it is

7 Identifying State-Space Models

7-22



recommended that you use a large value for nb order. To learn more about ARX orders, see
arx.

c In the Estimation Focus drop-down list, select whether to optimize the estimation for one-
step-ahead prediction or for simulation. For more information about these options, options
see “Assigning Estimation Weightings” on page 7-24.

d In the Reduction Method drop-down list, specify the reduction method:

• Truncate — Discards the specified states without altering the remaining states. This
method tends to product a better approximation in the frequency domain, but the DC
gains are not guaranteed to match.

• MatchDC — Discards the specified states and alters the remaining states to preserve the
DC gain.

e Select the Estimate covariance check box if you want the algorithm to compute parameter
uncertainties.

Effects of such uncertainties are displayed on plots as model confidence regions. Skipping
uncertainty computation reduces computation time for complex models and large data sets.

f Select the Display progress check box to open a progress viewer window during
estimation.

g In Initial conditions, specify how you want the algorithm to treat initial states. For more
information about the available options, see “Specifying Initial States for Iterative Estimation
Algorithms” on page 7-40.

h If you want to limit the estimation process to a specific frequency range, expand Fit
Frequency Range. Create a passband filter by specifying the minimum and maximum
passband frequencies.

This estimation process uses parameter values that always lead to a stable model.
7 Click Estimate to estimate the model. A new model gets added to the System Identification app.

Next Steps

• Validate the model by selecting the appropriate response type in the Model Views area of the
app. For more information about validating models, see “Validating Models After Estimation” on
page 17-2.

• Export the model to the MATLAB workspace for further analysis by dragging it to the To
Workspace rectangle in the app.
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Assigning Estimation Weightings
You can specify both how the estimation algorithm weights the fit at various frequencies and what
frequency range the app uses. In the app, set Estimation Focus to one of the following options:

• Prediction — Uses the ratio of the input spectrum U to the inverse of the noise model H to
weight the relative importance of data across the full frequency range. This weighting
corresponds to minimizing one-step-ahead prediction, which typically favors the fit over a short
time interval. Optimized for output prediction applications.

• Simulation — Uses the input spectrum only, and not the noise model, for weighting. Optimized
for output simulation applications.

You can apply a passband to limit the frequency range over which the estimation algorithm performs
the fit.

For more information on estimation weighting, see the section Effects of Focus and
WeightingFilter Options in “Loss Function and Model Quality Metrics” on page 1-46.
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Estimate State-Space Models at the Command Line

Black Box vs. Structured State-Space Model Estimation
You can estimate state-space models in two ways at the command line, depending upon your prior
knowledge of the nature of the system and your requirements.

Black Box Estimation

In this approach, you specify the model order, and, optionally, additional model structure attributes
that configure the overall structure of the state-space matrices. You call ssest, ssregest or n4sid
with data and model order as primary input arguments, and use name-value pairs to specify any
additional attributes, such as model sample time, presence of feedthrough, absence of noise
component, etc. You do not work directly with the coefficients of the A, B, C, D, K, and X0 matrices.

Structured Estimation

In this approach, you create and configure an idss model that contains the initial values for all the
system matrices. You use the Structure property of the idss model to specify all the parameter
constraints. For example, you can designate certain coefficients of system matrices as fixed and
impose minimum/maximum bounds on the values of the others. For quick configuration of the
parameterization and whether to estimate feedthrough and disturbance dynamics, use ssform.

After configuring the idss model with desired constraints, you specify this model as an input
argument to the ssest command. You cannot use n4sid or ssregest for structured estimation.

Note

• The structured estimation approach is also referred to as grey-box modeling. However, in this
toolbox, the “grey box modeling” terminology is used only when referring to idgrey and
idnlgrey models.

• Using the structured estimation approach, you cannot specify relationships among state-space
coefficients. Each coefficient is essentially considered to be independent of others. For imposing
dependencies, or to use more complex forms of parameterization, use the idgrey model and
greyest estimator.

Estimating State-Space Models Using ssest, ssregest and n4sid
Prerequisites

• Represent input-output data as an iddata object or frequency-response data as an frd or idfrd
object. See “Representing Time- and Frequency-Domain Data Using iddata Objects” on page 2-34.
For supported data formats, see “Data Supported by State-Space Models” on page 7-5.

• Perform data preprocessing. To improve the accuracy of results when using time-domain data, you
can detrend the data or specify the input/output offset levels as estimation options. See “Ways to
Prepare Data for System Identification” on page 2-5.

• Select a model order. When you do not know the model order, search and select for an order. For
more information, see “Estimate Model With Selected Order at the Command Line” on page 7-8.
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You can estimate continuous-time and discrete-time state-space models using the iterative estimation
command ssest that minimizes the prediction errors to obtain maximum-likelihood values.

Use the following general syntax to both configure and estimate state-space models:

m = ssest(data,n,opt,Name,Value)

where data is the estimation data, n is the model order, and opt contains options for configuring the
estimation of the state-space models. These options include the handling of the initial conditions,
input and output offsets, estimation focus and search algorithm options. opt can be followed by name-
value pair input arguments that specify optional model structure attributes such as the presence of
feedthrough, the canonical form of the model, and input delay.

As an alternative to ssest, you can use the noniterative subspace estimators n4sid or ssregest:

m = n4sid(data,n,opt,Name,Value)
m = ssregest(data,n,opt,Name,Value)

Unless you specify the sample time as a name-value pair input argument, n4sid and ssregest
estimate a discrete-time model, while ssest estimates a continuous-time model.

Note ssest uses n4sid to initialize the state-space matrices, and takes longer than n4sid to
estimate a model but typically provides a better fit to data.

For information about validating your model, see “Validating Models After Estimation” on page 17-
2

Choosing the Structure of A, B, C Matrices
By default, all entries of the A, B, and C state-space matrices are treated as free parameters. Using
the Form name-value pair input argument of ssest , you can choose various canonical forms, such as
the companion and modal forms, that use fewer parameters.

For more information about estimating a specific state-space parameterization, see:

• “Estimate State-Space Models with Free-Parameterization” on page 7-30
• “Estimate State-Space Models with Canonical Parameterization” on page 7-31
• “Estimate State-Space Models with Structured Parameterization” on page 7-32

Choosing Between Continuous-Time and Discrete-Time
Representations
For estimation of state-space models, you have the option of switching the model sample time
between zero and that of the estimation data. You can do this using the Ts name-value pair input
argument.

• By default, ssest estimates a continuous-time model. If you are using data set with nonzero
sample time, data, which includes all time domain data, you can also estimate a discrete-time
model by using:

model = ssest(data,nx,'Ts',data.Ts);
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If you are using continuous-time frequency-domain data, you cannot estimate a discrete-time
model.

• By default, n4sid and ssregest estimate a model whose sample time matches that of the data.
Thus, for time-domain data, n4sid and ssregest deliver a discrete-time model. You can estimate
a continuous-time model by using:

model = n4sid(data,nx,'Ts',0);

or

model = ssregest(data,nx,'Ts',0);

Choosing to Estimate D, K, and X0 Matrices
For state-space models with any parameterization, you can specify whether to estimate the D, K and
X0 matrices, which represent the input-to-output feedthrough, noise model and the initial states,
respectively.

For state-space models with structured parameterization, you can also specify to estimate the D
matrix. However, for free and canonical forms, the structure of the D matrix is set based on your
choice for the 'Feedthrough' name-value pair input argument.

D Matrix

By default, the D matrix is not estimated and its value is fixed to zero, except for static models.

• Black box estimation: Use the Feedthrough name-value pair input argument to denote the
presence or absence of feedthrough from individual inputs. For example, in case of a two input
model such that there is feedthrough from only the second input, use:

model = n4sid(data,n,'Feedthrough',[false true]);
• Structured estimation: Configure the values of the init_sys.Structure.D, where init_sys

is an idss model that represents the desired model structure. To force no feedthrough for the i-th
input, set:

init_sys.Structure.D.Value(:,i) = 0;
init_sys.Structure.D.Free = true;
init_sys.Structure.D.Free(:,i) = false;

The first line specifies the value of the i-th column of D as zero. The next line specifies all the
elements of D as free, estimable parameters. The last line specifies that the i-th column of the D
matrix is fixed for estimation.

Alternatively, use ssform with 'Feedthrough' name-value pair.

K Matrix

K represents the noise matrix of the model, such that the noise component of the model is:.

ẋ = Ax + Ke
yn = Cx + e

For frequency-domain data, no noise model is estimated and K is set to 0. For time-domain data, K is
estimated by default in the black box estimation setup. yn is the contribution of the disturbances to
the model output.
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• Black box estimation: Use the DisturbanceModel name-value pair input argument to indicate
if the disturbance component is fixed to zero (specify Value = 'none') or estimated as a free
parameter (specify Value = 'estimate'). For example, use :

model = n4sid(data,n,'DisturbanceModel','none');

• Structured estimation: Configure the value of the init_sys.Structure.K parameter, where
init_sys is an idss model that represents the desired model structure. You can fix some K
matrix coefficients to known values and prescribe minimum/maximum bounds for free coefficients.
For example, to estimate only the first column of the K matrix for a two output model:

kpar = init_sys.Structure.K;
kpar.Free(:,1) = true;
kpar.Free(:,2) = false;
kpar.Value(:,2) = 0; % second column value is fixed to zero
init_sys.Structure.K = kpar;

Alternatively, use ssform.

When not sure how to easily fix or free all coefficients of K, initially you can omit estimating the noise
parameters in K to focus on achieving a reasonable model for the system dynamics. After estimating
the dynamic model, you can use ssest to refine the model while configuring the K parameters to be
free. For example:

init_sys = ssest(data, n,'DisturbanceModel','none');
init_sys.Structure.K.Free = true;
sys = ssest(data,init_sys);

where init_sys is the dynamic model without noise.

To set K to zero in an existing model, you can set its Value to 0 and Free flag to false:

m.Structure.K.Value = 0;
m.Structure.K.Free = false;

X0 Matrices

The initial state vector X0 is obtained as the by-product of model estimation. The n4sid, ssest and
ssregest commands return the value of X0 as their second output arguments. You can choose how
to handle initial conditions during model estimation by using the InitialState estimation option.
Use n4sidOptions (for n4sid), ssestOptions (for ssest) or ssregestOptions (for ssregest)
to create the estimation option set. For example, in order to hold the initial states to zero during
estimation using n4sid:

opt = n4sidOptions;
opt.InitialState = 'zero';
[m,X0] = n4sid(data,n,opt);

The returned X0 variable is a zero vector of length n.

When you estimate models using multiexperiment data, the X0 matrix contains as many columns as
data experiments.

For a complete list of values for the InitialStates option, see “Specifying Initial States for
Iterative Estimation Algorithms” on page 7-40.
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See Also

More About
• “Loss Function and Model Quality Metrics” on page 1-46
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Estimate State-Space Models with Free-Parameterization
The default parameterization of the state-space matrices A, B, C, D, and K is free; that is, any
elements in the matrices are adjustable by the estimation routines. Because the parameterization of
A, B, and C is free, a basis for the state-space realization is automatically selected to give well-
conditioned calculations.

To estimate the disturbance model K, you must use time-domain data.

Suppose that you have no knowledge about the internal structure of the discrete-time state-space
model. To quickly get started, use the following syntax:

m = ssest(data)

or

m = ssregest(data)

where data is your estimation data. ssest estimates a continuous-time state-space model for an
automatically selected order between 1 and 10. ssregest estimates a discrete-time model.

To find a model of a specific order n, use the following syntax:

m = ssest(data,n)

or

m = ssregest(dat,n)

The iterative algorithm ssest is initialized by the subspace method n4sid. You can use n4sid
directly, as an alternative to ssest:

m = n4sid(data)

which automatically estimates a discrete-time model of the best order in the 1:10 range.
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Estimate State-Space Models with Canonical Parameterization

What Is Canonical Parameterization?
Canonical parameterization represents a state-space system in a reduced parameter form where
many elements of A, B and C matrices are fixed to zeros and ones. The free parameters appear in only
a few of the rows and columns in state-space matrices A, B, C, D, and K. The free parameters are
identifiable — they can be estimated to unique values. The remaining matrix elements are fixed to
zeros and ones.

The software supports the following canonical forms:

• Companion form: The characteristic polynomial appears in the rightmost column of the A matrix.
• Modal decomposition form: The state matrix A is block diagonal, with each block corresponding

to a cluster of nearby modes.

Note The modal form has a certain symmetry in its block diagonal elements. If you update the
parameters of a model of this form (as a structured estimation using ssest), the symmetry is not
preserved, even though the updated model is still block-diagonal.

• Observability canonical form: The free parameters appear only in select rows of the A matrix
and in the B and K matrices.

For more information about the distribution of free parameters in the observability canonical
form, see the Appendix 4A, pp 132-134, on identifiability of black-box multivariable model
structures in System Identification: Theory for the User, Second Edition, by Lennart Ljung,
Prentice Hall PTR, 1999 (equation 4A.16).

For more information on canonical forms, see “Canonical State-Space Realizations” on page 7-42.

Estimating Canonical State-Space Models
You can estimate state-space models with chosen parameterization at the command line.

For example, to specify an observability canonical form, use the 'Form' name-value pair input
argument, as follows:

m = ssest(data,n,'Form','canonical')

Similarly, set 'Form' as 'modal' or 'companion' to specify modal decomposition and companion
canonical forms, respectively.

If you have time-domain data, the preceding command estimates a continuous-time model. If you
want a discrete-time model, specify the data sample time using the 'Ts' name-value pair input
argument:

md = ssest(data, n,'Form','canonical','Ts',data.Ts)

If you have continuous-time frequency-domain data, you can only estimate a continuous-time model.
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Estimate State-Space Models with Structured Parameterization

What Is Structured Parameterization?
Structured parameterization lets you exclude specific parameters from estimation by setting these
parameters to specific values. This approach is useful when you can derive state-space matrices from
physical principles and provide initial parameter values based on physical insight. You can use this
approach to discover what happens if you fix specific parameter values or if you free certain
parameters.

There are two stages to the structured estimation procedure:

1 Specify the state-space model structure, as described in “Specify the State-Space Model
Structure” on page 7-32

2 Estimate the free model parameters, as described in “Estimate State-Space Models at the
Command Line” on page 7-25

This approach differs from estimating models with free and canonical parameterizations, where it is
not necessary to specify initial parameter values before the estimation. For free parameterization,
there is no structure to specify because it is assumed to be unknown. For canonical parameterization,
the structure is fixed to a specific form.

Note To estimate structured state-space models in the System Identification app, define the
corresponding model structures at the command line and import them into the System Identification
app.

Specify the State-Space Model Structure
To specify the state-space model structure:

1 Use idss to create a state-space model. For example:

A = [0 1; 0 -1]; 
B = [0; 0.28]; 
C = eye(2);
D = zeros(2,1);
m = idss(A,B,C,D,K,'Ts',T)

creates a discrete-time state-space structure, where A, B, C, D, and K specify the initial values for
the free parameters. T is the sample time.

2 Use the Structure property of the model to specify which parameters to estimate and which to
set to specific values.

More about Structure

Structure contains parameters for the five state-space matrices, A, B, C, D, and K.

For each parameter, you can set the following attributes:

• Value — Parameter values. For example, sys.Structure.A.Value contains the initial or
estimated values of the A matrix.
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NaN represents unknown parameter values.

Each property sys.A, sys.B, sys.C, and sys.D is an alias to the corresponding Value entry
in the Structure property of sys. For example, sys.A is an alias to the value of the property
sys.Structure.A.Value

• Minimum — Minimum value that the parameter can assume during estimation. For example,
sys.Structure.K.Minimum = 0 constrains all entries in the K matrix to be greater than or
equal to zero.

• Maximum — Maximum value that the parameter can assume during estimation.
• Free — Boolean specifying whether the parameter is a free estimation variable. If you want

to fix the value of a parameter during estimation, set the corresponding Free = false. For
example, if A is a 3-by-3 matrix, sys.Structure.A.Free = eyes(3) fixes all of the off-
diagonal entries in A, to the values specified in sys.Structure.A.Value. In this case, only
the diagonal entries in A are estimable.

• Scale — Scale of the parameter’s value. Scale is not used in estimation.
• Info — Structure array for storing parameter units and labels. The structure has Label and

Unit fields.

Specify parameter units and labels as character vectors. For example, 'Time'.

For example, if you want to fix A(1,2)=A(2,1)=0, use:

m.Structure.A.Value(1,2) = 0;
m.Structure.A.Value(2,1) = 0;
m.Structure.A.Free(1,2) = false;
m.Structure.A.Free(2,1) = false;

The estimation algorithm only estimates the parameters in A for which m.Structure.A.Free is
true.

Use physical insight, whenever possible, to initialize the parameters for the iterative search
algorithm. Because it is possible that the numerical minimization gets stuck in a local minimum,
try several different initialization values for the parameters. For random initialization, use init.
When the model structure contains parameters with different orders of magnitude, try to scale
the variables so that the parameters are all roughly the same magnitude.

Alternatively, to quickly configure the parameterization and whether to estimate feedthrough and
disturbance dynamics, use ssform.

3 Use ssest to estimate the model, as described in “Estimate State-Space Models at the Command
Line” on page 7-25.

The iterative search computes gradients of the prediction errors with respect to the parameters using
numerical differentiation. The step size is specified by the nuderst command. The default step size is
equal to 10–4 times the absolute value of a parameter or equal to 10–7, whichever is larger. To specify
a different step size, edit the nuderst MATLAB file.

Are Grey-Box Models Similar to State-Space Models with Structured
Parameterization?
You estimate state-space models with structured parameterization on page 7-32 when you know some
parameters of a linear system and need to estimate the others. These models are therefore similar to
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grey-box models. However, in this toolbox, the "grey box modeling" terminology is used only when
referring to idgrey and idnlgrey models. In these models, you can specify complete linear or
nonlinear models with complicated relationships between the unknown parameters.

If you have independent unknown matrix elements in a linear state-space model structure, then it is
easier and quicker to use state-space models with structured parameterizations. For imposing
dependencies, or to use more complex forms of parameterization, use the idgrey model and the
associated greyest estimator. For more information, see “Grey-Box Model Estimation”.

If you want to incorporate prior knowledge regarding the state and output covariances into the
estimation process, use an idgrey model to identify your system using a general state-space model
structure. For more information, see “Identifying State-Space Models with Separate Process and
Measurement Noise Descriptions” on page 13-54.

Estimate Structured Discrete-Time State-Space Models
This example shows how to estimate the unknown parameters of a discrete-time model.

In this example, you estimate θ1, θ2, θ3, θ4, θ5 in the following discrete-time model:

x(t + 1) =
1 θ1
0 1

x(t) +
θ2

θ3
u(t) +

θ4

θ5
e(t)

y(t) = 1 0 x(t) + e(t)

x(0) =
0
0

Suppose that the nominal values of the unknown parameters ( θ1, θ2, θ3, θ4, θ5) are -1, 2, 3, 4,and 5,
respectively.

The discrete-time state-space model structure is defined by the following equation:

x(kT + T) = Ax(kT) + Bu(kT) + Ke(kT)
y(kT) = Cx(kT) + Du(kT) + e(kT)
x(0) = x0

Construct the parameter matrices and initialize the parameter values using the nominal parameter
values.

A = [1,-1;0,1];
B = [2;3];
C = [1,0];
D = 0;
K = [4;5];

Construct the state-space model object.

m = idss(A,B,C,D,K);

Specify the parameter values in the structure matrices that you do not want to estimate.

S = m.Structure;
S.A.Free(1,1) = false;
S.A.Free(2,:) = false;
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S.C.Free = false;
m.Structure = S;

D is initialized, by default, as a fixed value, and K and B are initialized as free values. Suppose you
want to fix the initial states to known zero values. To enforce this, configure the InitialState
estimation option.

opt = ssestOptions;
opt.InitialState = 'zero';

Load estimation data.

load iddata1 z1;

Estimate the model structure.

m = ssest(z1,m,opt);

where z1 is name of the iddata object. The data can be time-domain or frequency-domain data. The
iterative search starts with the nominal values in the A, B, C, D, and K matrices.

Estimate Structured Continuous-Time State-Space Models
This example shows how to estimate the unknown parameters of a continuous-time model.

In this example, you estimate θ1, θ2, θ3 in the following continuous-time model:

ẋ(t) =
0 1
0 θ1

x(t) +
0
θ2

u(t)

y(t) =
1 0
0 1

x(t) + e(t)

x(0) =
θ3
0

This equation represents an electrical motor, where y1(t) = x1(t) is the angular position of the motor
shaft, and y2(t) = x2(t) is the angular velocity. The parameter −θ1 is the inverse time constant of the
motor, and θ2 / θ1 is the static gain from the input to the angular velocity.

The motor is at rest at t=0 , but its angular position θ3 is unknown. Suppose that the approximate
nominal values of the unknown parameters are θ1 = − 1 and θ2 = 0 . 25.

The variance of the errors in the position measurement is 0.01 , and the variance in the angular
velocity measurements is 0.1 . For more information about this example, see the section on state-
space models in System Identification: Theory for the User, Second Edition, by Lennart Ljung,
Prentice Hall PTR, 1999.

The continuous-time state-space model structure is defined by the following equation:

ẋ(t) = Fx(t) + Gu(t) + K∼w(t)
y(t) = Hx(t) + Du(t) + w(t)
x(0) = x0
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Construct the parameter matrices and initialize the parameter values using the nominal parameter
values.

A = [0 1;0 -1];
B = [0;0.25];
C = eye(2);
D = [0;0];
K = zeros(2,2);
x0 = [0;0];

The matrices correspond to continuous-time representation. However, to be consistent with the idss
object property name, this example uses A, B, and C instead of F, G, and H.

Construct the continuous-time state-space model object.

m = idss(A,B,C,D,K,'Ts',0);

Specify the parameter values in the structure matrices that you do not want to estimate.

S = m.Structure;
S.A.Free(1,:) = false;
S.A.Free(2,1) = false;
S.B.Free(1) = false;
S.C.Free = false;
S.D.Free = false;
S.K.Free = false;
m.Structure = S;
m.NoiseVariance = [0.01 0; 0 0.1];

The initial state is partially unknown. Use the InitialState option of the ssestOptions option set
to configure the estimation behavior of X0.

opt = ssestOptions;
opt.InitialState = idpar(x0);
opt.InitialState.Free(2) = false;

Estimate the model structure.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','dcmotordata'));
z = iddata(y,u,0.1);
m = ssest(z,m,opt);

The iterative search for a minimum is initialized by the parameters in the nominal model m . The
continuous-time model is sampled using the same sample time as the data during estimation.

Simulate this system using the sample time T=0.1 for input u and the noise realization e.

e = randn(300,2);
u1 = idinput(300);
simdat = iddata([],u1,'Ts',0.1);
simopt = simOptions('AddNoise',true,'NoiseData',e);
y1 = sim(m,simdat,simopt);

The continuous system is sampled using Ts=0.1 for simulation purposes. The noise sequence is
scaled according to the matrix m.NoiseVariance .

If you discover that the motor was not initially at rest, you can estimate x2(0) by setting the second
element of the InitialState parameter to be free.
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opt.InitialState.Free(2) = true;
m_new = ssest(z,m,opt);
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Estimate State-Space Equivalent of ARMAX and OE Models
This example shows how to estimate ARMAX and OE-form models using the state-space estimation
approach.

You can estimate the equivalent of multiple-output ARMAX and Output-Error (OE) models using state-
space model structures:

• For an armax model, specify to estimate the K matrix for the state-space model.
• For an oe model, set K = 0.

Convert the resulting models into idpoly models to see them in the commonly defined ARMAX or OE
forms.

Load measured data.

load iddata1 z1

Estimate state-space models.

mss_noK = n4sid(z1,2,'DisturbanceModel','none');
mss = n4sid(z1,2);

mss_noK is a second order state-space model with no disturbance model used during estimation. mss
is also a second order state-space model, but with an estimated noise component. Both models use
the measured data set z1 for estimation.

Convert the state-space models to polynomial models.

mOE = idpoly(mss_noK);
mARMAX = idpoly(mss);

Converting to polynomial models results in the parameter covariance information for mOE and
mARMAX to be lost.

You can use one of the following to recompute the covariance:

• Zero-iteration update using the same estimation data.
• translatecov as a Gauss approximation formula-based translation of covariance of mss_noK

and mss into covariance of mOE and mARMAX.

Reestimate mOE and mARMAX for the parameters of the polynomial model using a zero iteration
update.

opt = polyestOptions;
opt.SearchOptions.MaxIterations = 0;

mOE = polyest(z1,mOE,opt);
mARMAX = polyest(z1,mARMAX,opt);

The options object, opt, specifies a zero iteration update for mOE and mARMAX. Consequently, the
model parameters remain unchanged and only their covariance information is updated.

Alternatively, you can use translatecov to convert the estimated models into polynomial form.
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fcn = @(x)idpoly(x);
mOEt = translatecov(fcn,mss_noK);
mARMAXt = translatecov(fcn,mss);

Because polyest and translatecov use different computation algorithms, the covariance data
obtained by running a zero-iteration update may not match that obtained using translatecov.

You can view the uncertainties of the model parameters using present(mOE) and
present(mARMAX).

You can use a state-space model with K = 0 (Output-Error (OE) form) for initializing a Hammerstein-
Wiener estimation at the command line. This initialization may improve the fit of the model. See
“Initialize Hammerstein-Wiener Estimation Using Linear Model” on page 12-7.

For more information about ARMAX and OE models, see “Input-Output Polynomial Models”.
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Specifying Initial States for Iterative Estimation Algorithms
When you estimate state-space models, you can specify how the algorithm treats initial states. This
information supports the estimation procedures “Estimate State-Space Models in System
Identification App” on page 7-16 and “Estimate State-Space Models at the Command Line” on page 7-
25.

In the System Identification app, set Initial state to one of the following options:

• Auto — Automatically chooses Zero, Estimate, or Backcast based on the estimation data. If
initial states have negligible effect on the prediction errors, the initial states are set to zero to
optimize algorithm performance.

• Zero — Sets all initial states to zero.
• Estimate — Treats the initial states as an unknown vector of parameters and estimates these

states from the data.
• Backcast — Estimates initial states using a backward filtering method (least-squares fit).

At the command line, specify the method for handling initial states using the InitialState
estimation option. For example, to estimate a fourth-order state-space model and set the initial states
to be estimated from the data:

opt = ssestOptions('InitialState','estimate');
m = ssest(data,4,opt)

For a complete list of values for the InitialState model property, see the ssestOptions,
n4sidOptions and ssregestOptions reference pages.

Note For the n4sid algorithm, 'auto' and 'backcast' are equivalent to 'estimate'.
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State-Space Model Estimation Methods
You can estimate state-space models using one of the following estimation methods:

• N4SID — Noniterative, subspace method. The method works on both time-domain and frequency-
domain data and is typically faster than the SSEST algorithm. You can choose the subspace
algorithms such as CVA, SSARX, or MOESP using the n4Weight option. You can also use this
method to get an initial model (see n4sid), and then refine the initial estimate using the iterative
prediction-error method ssest.

For more information about this algorithm, see [1].
• SSEST — Iterative method that uses prediction error minimization algorithm. The method works

on both time-domain and frequency-domain data. For black-box estimation, the method initializes
the model parameters using n4sid and then updates the parameters using an iterative search to
minimize the prediction errors. You can also use this method for structured estimation using an
initial model with initial values of one or more parameters fixed in value.

For more information on this algorithm, see [2].
• SSREGEST — Noniterative method. The method works on discrete time-domain data and

frequency-domain data. It first estimates a high-order regularized ARX or FIR model, converts it to
a state-space model and then performs balanced reduction on it. This method provides improved
accuracy on short, noisy data sets.

With all the estimation methods, you have the option of specifying how to handle initial state, delays,
feedthrough behavior and disturbance component of the model.

References

[1] van Overschee, P., and B. De Moor. Subspace Identification of Linear Systems: Theory,
Implementation, Applications. Springer Publishing: 1996.

[2] Ljung, L. System Identification: Theory For the User, Second Edition, Upper Saddle River, N.J:
Prentice Hall, 1999.

[3] T. Chen, H. Ohlsson, and L. Ljung. “On the Estimation of Transfer Functions, Regularizations and
Gaussian Processes - Revisited”, Automatica, Volume 48, August 2012.

 State-Space Model Estimation Methods

7-41



Canonical State-Space Realizations
State-space models can be realized in the following standard forms:

• Modal Canonical Form
• Companion Canonical Form
• Observable Canonical Form
• Controllable Canonical Form

Modal Canonical Form
In modal form, A is a block-diagonal matrix. The block size is typically 1-by-1 for real eigenvalues and
2-by-2 for complex eigenvalues. However, if there are repeated eigenvalues or clusters of nearby
eigenvalues, the block size can be larger.

For example, for a system with eigenvalues (λ1, σ ± jω, λ2), the modal A matrix is of the form

λ1 0 0 0
0 σ ω 0
0 −ω σ 0
0 0 0 λ2

Companion Canonical Form
In the companion realization, the characteristic polynomial of the system appears explicitly in the
rightmost column of the A matrix. You can obtain the companion canonical form of your system by
using the canon command in the following way:

csys = canon(sys,'companion')

For a system with characteristic polynomial

P(s) = sn + α1sn− 1 + … + αn− 1s + αn

the corresponding companion A matrix is

A =

0
1
0
0
⋮
0

0
0
1
0
⋮
0

0
0
0
1
⋮
0

…
…
…
…
⋱
…

0
0
0
0
⋮
1

−αn
−αn− 1
−αn− 2
−αn− 3

  ⋮
−α1

The companion transformation requires that the system is controllable from the first input. The
transformation to companion form is based on the controllability matrix which is almost always
numerically singular for mid-range orders. Hence, avoid using it for computation when possible. The
companion canonical form is that same as the observable canonical form.
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Observable Canonical Form
The observable canonical form is the same as the companion canonical form where the characteristic
polynomial of the system appears explicitly in the rightmost column of the A matrix. You can obtain
the observable canonical form of your system by using the canon command in the following way:

csys = canon(sys,'companion')

For a system with defined by the transfer function

Q s
P s   =  

b0sn + b1sn− 1 + … + bn− 1s + bn
sn + α1sn− 1 + … + αn− 1s + αn

the corresponding matrices are:

Ao =

0
1
0
0
⋮
0

0
0
1
0
⋮
0

0
0
0
1
⋮
0

…
…
…
…
⋱
…

0
0
0
0
⋮
1

−αn
−αn− 1
−αn− 2
−αn− 3

  ⋮
−α1

Bo =

   bn− anb0
bn− 1− an− 1b0
bn− 2− an− 2b0

         ⋮
    b1− a1b0

Co = 0 0 ⋯ 0 1

Do = b0

The observable canonical form which is the same as the companion form is poorly conditioned for
most state-space computation. The transformation of the system to companion form is based on the
controllability matrix which is almost always numerically singular for mid-range orders. Hence, avoid
using it for computation when possible.

Controllable Canonical Form
The controllable canonical form of a system is the transpose of its observable canonical form where
the characteristic polynomial of the system appears explicitly in the last row of the A matrix.

For a system with defined by the transfer function

Q s
P s   =  

b0sn + b1sn− 1 + … + bn− 1s + bn
sn + α1sn− 1 + … + αn− 1s + αn

the corresponding matrices are:
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Ac =

  0
  0
  ⋮
  0
−αn

    1
    0
    ⋮
    0
−αn− 1

    0
    1
    ⋮
    0
−αn− 2

⋯
⋯
⋱
⋯
⋯

  0
  0
  ⋮
  1
−α1

Bc =

0
0
⋮
0
1

Cc = bn− anb0    bn− 1− an− 1b0 bn− 2− an− 2b0 ⋯ b1− a1b0

Dc = b0

The relationship between the observable and controllable canonical realizations are as follows:

Ac = Ao
T

Bc = Co
T

Cc = Bo
T

Dc = Do

The controllable canonical form is useful for controller design using pole placement method.
However, the transformation of the system to companion form is based on the controllability matrix
which is almost always numerically singular for mid-range orders. Hence, avoid using the controllable
form for computation when possible.

See Also
canon | ss

More About
• “Scaling State-Space Models” (Control System Toolbox)
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Identifying Transfer Function Models

• “What are Transfer Function Models?” on page 8-2
• “Data Supported by Transfer Function Models” on page 8-4
• “Estimate Transfer Function Models in the System Identification App” on page 8-5
• “Estimate Transfer Function Models at the Command Line” on page 8-10
• “Transfer Function Structure Specification” on page 8-11
• “Estimate Transfer Function Models by Specifying Number of Poles” on page 8-12
• “Estimate Transfer Function Models with Transport Delay to Fit Given Frequency-Response Data”

on page 8-13
• “Estimate Transfer Function Models With Prior Knowledge of Model Structure and Constraints”

on page 8-14
• “Estimate Transfer Function Models with Unknown Transport Delays” on page 8-15
• “Estimate Transfer Functions with Delays” on page 8-16
• “Specifying Initial Conditions for Iterative Estimation of Transfer Functions” on page 8-17
• “Troubleshoot Frequency-Domain Identification of Transfer Function Models” on page 8-18
• “Estimating Transfer Function Models for a Heat Exchanger” on page 8-25
• “Estimating Transfer Function Models for a Boost Converter” on page 8-38
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What are Transfer Function Models?

Definition of Transfer Function Models
Transfer function models describe the relationship between the inputs and outputs of a system using
a ratio of polynomials. The model order is equal to the order of the denominator polynomial. The
roots of the denominator polynomial are referred to as the model poles. The roots of the numerator
polynomial are referred to as the model zeros.

The parameters of a transfer function model are its poles, zeros and transport delays.

Continuous-Time Representation
In continuous-time, a transfer function model has the form:

Y(s) = num(s)
den(s) U(s) + E(s)

Where, Y(s), U(s) and E(s) represent the Laplace transforms of the output, input and noise,
respectively. num(s) and den(s) represent the numerator and denominator polynomials that define the
relationship between the input and the output.

Discrete-Time Representation
In discrete-time, a transfer function model has the form:

y(t) = num(q−1)
den(q−1)

u(t) + e(t)

num(q−1) = b0 + b1q−1 + b2q−2 + …

den(q−1) = 1 + a1q−1 + a2q−2 + …

The roots of num(q^-1) and den(q^-1) are expressed in terms of the lag variable q^-1.

If you take the Z-transform, the transfer function has the form:

Y(z−1) = num(z−1)
den(z−1)

U(z−1) + E(z−1)

num(z−1) = b0 + b1z−1 + b2z−2 + …

den(z−1) = 1 + a1z−1 + a2z−2 + …

Where, Y(z-1), U(z-1) and E(z-1) represent the Z-transforms of the output, input and noise, respectively.
z-1 is the Z-transform of the lag operator.

Delays
In continuous-time, input and transport delays are of the form:

Y(s) = num(s)
den(s) e−sτU(s) + E(s)
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Where τ represents the delay.

In discrete-time:

y(t) = num
den u(t − τ) + e(t)

where num and den are polynomials in the lag operator q^(-1).

Multi-Input Multi-Output Models

A single-input single-output (SISO) continuous transfer function has the form G(s) = num(s)
den(s) . The

corresponding transfer function model can be represented as:

Y(s) = G(s)U(s) + E(s)

A multi-input multi-output (MIMO) transfer function contains a SISO transfer function corresponding
to each input-output pair in the system. For example, a continuous-time transfer function model with
two inputs and two outputs has the form:

Y1(s) = G11(s)U1(s) + G12(s)U2(s) + E1(s)
Y2(s) = G21(s)U1(s) + G22(s)U2(s) + E2(s)

Where, Gij(s) is the SISO transfer function between the ith output and the jth input. E1(s) and E2(s) are
the Laplace transforms of the noise corresponding to the two outputs.

The representation of discrete-time MIMO transfer function models is analogous.

See Also
idtf | tfest

More About
• “Data Supported by Transfer Function Models” on page 8-4
• “Estimate Transfer Function Models in the System Identification App” on page 8-5
• “Estimate Transfer Function Models at the Command Line” on page 8-10
• “Transfer Function Models”
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Data Supported by Transfer Function Models
You can estimate transfer function models from data with the following characteristics:

• Real data or complex data
• Single-output and multiple-output
• Time- or frequency-domain data

Note that you cannot use time-series data for transfer function model identification.

You must first import your data into the MATLAB workspace, as described in “Data Preparation”.

See Also

More About
• “Estimate Transfer Function Models in the System Identification App” on page 8-5
• “Estimate Transfer Function Models at the Command Line” on page 8-10
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Estimate Transfer Function Models in the System Identification
App

This topic shows how to estimate transfer function models in the System Identification app.

Prerequisites

• Import data into the System Identification app. See “Represent Data”. For supported data formats,
see “Data Supported by Transfer Function Models” on page 8-4.

• Perform any required data preprocessing operations. If input and/or output signals contain
nonzero offsets, consider detrending your data. See “Ways to Prepare Data for System
Identification” on page 2-5.

1 In the System Identification app, select Estimate > Transfer Function Models

The Transfer Functions dialog box opens.

 Estimate Transfer Function Models in the System Identification App
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Tip For more information on the options in the dialog box, click Help.
2 In the Number of poles and Number of zeros fields, specify the number of poles and zeros of

the transfer function as nonnegative integers.

Multi-Input, Multi-Output Models

For systems that are multiple input, multiple output, or both:

• To use the same number of poles or zeros for all the input/output pairs, specify a scalar.
• To use a different number of poles and zeros for the input/output pairs, specify an ny-by-nu

matrix. ny is the number of outputs and nu is the number of inputs.

Alternatively, click .

The Transfer Function Orders dialog box opens where you specify the number of poles and
zeros for each input/output pair, as well as whether to include feedthrough if you have
specified your model as Discrete-time. Use the Output list to select an output.

3 Select Continuous-time or Discrete-time to specify whether the model is a continuous- or
discrete-time transfer function.

For discrete-time models, the number of poles and zeros refers to the roots of the numerator and
denominator polynomials expressed in terms of the lag variable q^-1.

4 (For discrete-time models only) Specify whether to estimate the model feedthrough. Select the
Feedthrough check box.
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A discrete-time model with 2 poles and 3 zeros takes the following form:

H(z−1) = b0 + b1z−1 + b2z−2 + b3z−3

1 + a1z−1 + a2z−2

When the model has direct feedthrough, b0 is a free parameter whose value is estimated along
with the rest of the model parameters b1, b2, b3, a1, a2. When the model has no feedthrough,
b0 is fixed to zero.

Multi-Input, Multi-Output Models

For models that are multi input, multi output or both, click Feedthrough.

The Model Orders dialog box opens, where you specify to estimate the feedthrough for each
input/output pair separately. Use the Output list to select an output.

5 Expand the Delay section to specify nominal values and constraints for transport delays for
different input/output pairs.

Use the Output list to select an output. Select the Fixed check box to specify a transport delay
as a fixed value. Specify its nominal value in the Delay field.

6 Expand the Estimation Options section to specify estimation options.

 Estimate Transfer Function Models in the System Identification App
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• Select Display progress to view the progress of the optimization.
• Select Estimate covariance to estimate the covariance of the transfer function parameters.
• (For frequency-domain data only) Specify whether to allow the estimation process to use

parameter values that may lead to unstable models. Select the Allow unstable models
option. An unstable model is delivered only if it produces a better fit to the data than other
stable models computed during the estimation process.

• Specify how to treat the initial conditions in the Initial condition list. For more information,
see “Specifying Initial Conditions for Iterative Estimation of Transfer Functions” on page 8-
17.

• Expand Fit Frequency Range and set the range sliders to the desired passband to specify
the frequency range over which the transfer function model must fit the data. By default the
entire frequency range (0 to Nyquist frequency) is covered.

7 Expand Search Options to specify options for controlling the search iterations.
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Search Options

In the Search Options section of Estimation Options, you can specify the following options:

• Search method — Method used by the iterative search algorithm. Search method is auto by
default. Search methods include Gauss-Newton(gn), Adaptive Gauss-Newton(gna),
Levenberg-Marquardt(lm), Trust-Region Reflective Newton (lsqnonlin),
Gradient Search (grad), Sequential Quadratic Programming (fmincon:sqp), or
Interior Point (fmincon: interior-point). The descent direction is calculated
successively at each iteration until a sufficient reduction in error is achieved.

Output weight — Weighting applied to the loss function to be minimized. Use this option for
multi-output estimations only. Specify as 'noise' or a positive semidefinite matrix of size
equal the number of outputs.

• Maximum iterations — Maximum number of iterations to use during search.
• Tolerance — Tolerance value when the iterations should terminate.
• Outlier threshold — Robustification of the quadratic criterion of fit.

8 Expand Regularization to obtain regularized estimates of model parameters. Specify the
regularization constants Lambda and R.

To learn more about regularization, see “Regularized Estimates of Model Parameters” on page 1-
34.

9 Click Estimate to estimate the model. A new model gets added to the System Identification app.

Next Steps

• Validate the model by selecting the appropriate check box in the Model Views area of the System
Identification app. For more information about validating models, see “Validating Models After
Estimation” on page 17-2.

• Export the model to the MATLAB workspace for further analysis. Drag the model to the To
Workspace rectangle in the System Identification app.
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Estimate Transfer Function Models at the Command Line
This topic shows how to estimate transfer function models at the command line.

Before you estimate a transfer function model, you must have:

• Input/Output data. See “Representing Time- and Frequency-Domain Data Using iddata Objects”
on page 2-34. For supported data formats, see “Data Supported by Transfer Function Models” on
page 8-4.

• Performed any required data preprocessing operations. You can detrend your data before
estimation. For more information, see “Ways to Prepare Data for System Identification” on page 2-
5.

Alternatively, you can specify the input/output offset for the data using an estimation option set.
Use tfestOptions to create the estimation option set. Use the InputOffset and
OutputOffset name and value pairs to specify the input/output offset.

Estimate continuous-time and discrete-time transfer function models using tfest. The output of
tfest is an idtf object, which represents the identified transfer function.

The general workflow in estimating a transfer function model is:

1 Create a data object (iddata or idfrd) that captures the experimental data.
2 (Optional) Specify estimation options using tfestOptions.
3 (Optional) Create a transfer function model that specifies the expected model structure and any

constraints on the estimation parameters.
4 Use tfest to identify the transfer function model, based on the data.
5 Validate the model. See “Model Validation”.

See Also

Related Examples
• “Troubleshoot Frequency-Domain Identification of Transfer Function Models” on page 8-18
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Transfer Function Structure Specification
You can use a priori knowledge of the expected transfer function model structure to initialize the
estimation. The Structure property of an idtf model contains parameters that allow you to specify
the values and constraints for the numerator, denominator and transport delays.

For example, specify a third-order transfer function model that contains an integrator and has a
transport delay of at most 1.5 seconds:

init_sys = idtf([nan nan],[1 2 1 0]);
init_sys.Structure.IODelay.Maximum = 1.5;
init_sys.Structure.Denominator.Free(end) = false;

int_sys is an idtf model with three poles and one zero. The denominator coefficient for the s^0
term is zero and implies that one of the poles is an integrator.

init_sys.Structure.IODelay.Maximum = 1.5 constrains the transport delay to a maximum of
1.5 seconds. The last element of the denominator coefficients (associated with the s^0 term) is not a
free estimation variable. This constraint forces one of the estimated poles to be at s = 0.

For more information regarding configuring the initial parameterization of an estimated transfer
function, see Structure in idtf.

 Transfer Function Structure Specification
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Estimate Transfer Function Models by Specifying Number of
Poles

This example shows how to identify a transfer function containing a specified number of poles for
given data.

Load time-domain system response data and use it to estimate a transfer function for the system.

load iddata1 z1;
np = 2;
sys = tfest(z1,np);

z1 is an iddata object that contains time-domain, input-output data.

np specifies the number of poles in the estimated transfer function.

sys is an idtf model containing the estimated transfer function.

To see the numerator and denominator coefficients of the resulting estimated model sys, enter:

sys.Numerator;
sys.Denominator;

To view the uncertainty in the estimates of the numerator and denominator and other information,
use tfdata.
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Estimate Transfer Function Models with Transport Delay to Fit
Given Frequency-Response Data

This example shows how to identify a transfer function to fit a given frequency response data (FRD)
containing additional phase roll off induced by input delay.

This example requires a Control System Toolbox™ license.

Obtain frequency response data.

For this example, use bode to obtain the magnitude and phase response data for the following
system:

H(s) = e− . 5s s + 0 . 2
s3 + 2s2 + s + 1

Use 100 frequency points, ranging from 0.1 rad/s to 10 rad/s, to obtain the frequency response data.
Use frd to create a frequency-response data object.

freq = logspace(-1,1,100);
[mag, phase] = bode(tf([1 .2],[1 2 1 1],'InputDelay',.5),freq);
data = frd(mag.*exp(1j*phase*pi/180),freq);

data is an iddata object that contains frequency response data for the described system.

Estimate a transfer function using data. Specify an unknown transport delay for the identified
transfer function.

np = 3;
nz = 1;
iodelay = NaN;
sys = tfest(data,np,nz,iodelay);

np and nz specify the number of poles and zeros in the identified transfer function, respectively.

iodelay specifies an unknown transport delay for the identified transfer function.

sys is an idtf model containing the identified transfer function.
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Estimate Transfer Function Models With Prior Knowledge of
Model Structure and Constraints

This example shows how to estimate a transfer function model when the structure of the expected
model is known and apply constraints to the numerator and denominator coefficients.

Load time-domain data.

load iddata1 z1;
z1.y = cumsum(z1.y);

cumsum integrates the output data of z1. The estimated transfer function should therefore contain an
integrator.

Create a transfer function model with the expected structure.

init_sys = idtf([100 1500],[1 10 10 0]);

int_sys is an idtf model with three poles and one zero. The denominator coefficient for the s^0
term is zero which indicates that int_sys contains an integrator.

Specify constraints on the numerator and denominator coefficients of the transfer function model. To
do so, configure fields in the Structure property:

init_sys.Structure.Numerator.Minimum = eps;
init_sys.Structure.Denominator.Minimum = eps;
init_sys.Structure.Denominator.Free(end) = false;

The constraints specify that the numerator and denominator coefficients are nonnegative.
Additionally, the last element of the denominator coefficients (associated with the s^0 term) is not an
estimable parameter. This constraint forces one of the estimated poles to be at s = 0.

Create an estimation option set that specifies using the Levenberg–Marquardt search method.

opt = tfestOptions('SearchMethod','lm');

Estimate a transfer function for z1 using init_sys and the estimation option set.

sys = tfest(z1,init_sys,opt);

tfest uses the coefficients of init_sys to initialize the estimation of sys. Additionally, the
estimation is constrained by the constraints you specify in the Structure property of init_sys.
The resulting idtf model sys contains the parameter values that result from the estimation.
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Estimate Transfer Function Models with Unknown Transport
Delays

This example shows how to estimate a transfer function model with unknown transport delays and
apply an upper bound on the unknown transport delays.

Create a transfer function model with the expected numerator and denominator structure and delay
constraints.

For this example, the experiment data consists of two inputs and one output. Both transport delays
are unknown and have an identical upper bound. Additionally, the transfer functions from both inputs
to the output are identical in structure.

init_sys = idtf(NaN(1,2),[1, NaN(1,3)],'IODelay',NaN);
init_sys.Structure(1).IODelay.Free = true;
init_sys.Structure(1).IODelay.Maximum = 7;

init_sys is an idtf model describing the structure of the transfer function from one input to the
output. The transfer function consists of one zero, three poles and a transport delay. NaN indicates
unknown coefficients.

init_sys.Structure(1).IODelay.Free = true indicates that the transport delay is not fixed.

init_sys.Structure(1).IODelay.Maximum = 7 sets the upper bound for the transport delay to
7 seconds.

Specify the transfer function from both inputs to the output.

init_sys = [init_sys,init_sys];

Load time-domain system response data and detrend the data.

load co2data;
Ts = 0.5; 
data = iddata(Output_exp1,Input_exp1,Ts);
T = getTrend(data);
T.InputOffset = [170,50];
T.OutputOffset = mean(data.y(1:75));
data = detrend(data, T);

Identify a transfer function model for the measured data using the specified delay constraints.

sys = tfest(data,init_sys);

sys is an idtf model containing the identified transfer function.
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Estimate Transfer Functions with Delays
This example shows how to estimate transfer function models with I/O delays.

The tfest command supports estimation of IO delays. In the simplest case, if you specify NaN as the
value for the IODelay input argument, tfest estimates the corresponding delay value.

load iddata1 z1
sys = tfest(z1,2,2,NaN); % 2 poles, 2 zeros, unknown transport delay

If you want to assign an initial guess to the value of delay or prescribe bounds for its value, you must
first create a template idtf model and configure IODelay using the model's Structure property:

sys0 = idtf([nan nan nan],[1 nan nan]);
sys0.Structure.IODelay.Value = 0.1; % initial guess
sys0.Structure.IODelay.Maximum = 1; % maximum allowable value for delay 
sys0.Structure.IODelay.Free = true; % treat delay as estimatable quantity
sys = tfest(z1,sys0);

If estimation data is in the time-domain, the delays are not estimated iteratively. If a finite initial value
is specified, that value is retained as is with no iterative updates. The same is true of discrete-time
frequency domain data. Thus in the example above, if data has a nonzero sample time, the estimated
value of delay in the returned model sys is 0.1 (same as the initial guess specified for sys0 ). The
delays are updated iteratively only for continuous-time frequency domain data. If, on the other hand,
a finite initial value for delay is not specified (e.g., sys0.Structure.IODelay.Value = NaN ),
then a value for delay is determined using the delayest function, regardless of the nature of the
data.

Determination of delay as a quantity independent of the model's poles and zeros is a difficult task.
Estimation of delays becomes especially difficult for multi-input or multi-output data. It is strongly
recommended that you perform some investigation to determine delays before estimation. You can
use functions such as delayest, arxstruc, selstruc and impulse response analysis to determine
delays. Often, physical knowledge of the system or dedicated transient tests (how long does it take
for a step change in input to show up in a measured output?) will reveal the value of transport delays.
Use the results of such analysis to assign initial guesses as well as minimum and maximum bounds on
the estimated values of delays.
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Specifying Initial Conditions for Iterative Estimation of
Transfer Functions

If you estimate transfer function models using tfest, you can specify how the algorithm treats initial
conditions.

In the System Identification app, set Initial condition to one of the following options:

• auto — Automatically chooses Zero, Estimate, or Backcast based on the estimation data. If
initial conditions have negligible effect on the prediction errors, the initial conditions are set to
zero to optimize algorithm performance.

• Zero — Sets all initial conditions to zero.
• Estimate — Treats the initial conditions as an estimation parameters.
• Backcast — Estimates initial conditions using a backward filtering method (least-squares fit).

At the command line, specify the initial conditions by using an estimation option set. Use
tfestOptions to create the estimation option set. For example, create an options set that sets the
initial conditions to zero:

opt = tfestOptions('InitialCondition','zero');

See Also
tfest | tfestOptions

More About
• “Estimate Transfer Function Models in the System Identification App” on page 8-5
• “Estimate Transfer Function Models at the Command Line” on page 8-10
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Troubleshoot Frequency-Domain Identification of Transfer
Function Models

This example shows how to perform and troubleshoot the identification of a SISO system using
frequency-response data (FRD). The techniques explained here can also be applied to MIMO models
and frequency-domain input-output data.

When you use the tfest command to estimate a SISO transfer function model from the frequency-
response data, the estimation algorithm minimizes the following least-squares loss (cost) function:

minimize
G(ω)

∑
k = 1

Nf
W(ωk) G(ωk)− f (ωk) 2

Here W is a frequency-dependent weight that you specify, G is the transfer function that is to be
estimated, f is the measured frequency-response data, and w is the frequency. Nf is the number
frequencies at which the data is available. G(w)− f (w) is the frequency-response error.

In this example, you first estimate the model without preprocessing the data or using estimation
options to specify a weighting filter. You then apply these troubleshooting techniques to improve the
model estimation.

Estimate the Model Without Preprocessing and Filtering

Load the measured continuous-time frequency response data.

load troubleshooting_example_data Gfrd;

Gfrd is an idfrd object that stores the data.

Estimate an initial transfer function model with 11 poles and 10 zeros by using the estimation data.

Gfit = tfest(Gfrd,11,10);

Plot the frequency-response magnitude of the estimated model and the measured frequency-response
data.

bodemag(Gfrd,Gfit);
ylim([-100 0])
legend('Measured','Estimated')
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The estimated model contains spurious dynamics. The estimation algorithm misses the valley at 60
rad/s and the resonant peaks after that. Therefore, the model is not a good fit to the data.

The algorithm minimizes the squared error magnitude, |W(w) (G(w)− f (w))|2, in the loss function.
Plot this quantity as a function of frequency. This error plot provides a view of which data points
contribute the most to the loss function, and so are the likely limiting factors during estimation. The
plot can help you identify why there are spurious or uncaptured dynamics.

Because you have not specified a frequency-dependent weight, W(w) is 1.

w = Gfrd.Frequency;
r1 = squeeze(freqresp(Gfit,w));
r2 = squeeze(freqresp(Gfrd,w));
fitError = r1-r2;
semilogx(w,abs(fitError).^2)
title('Weighted Estimation Error');
xlabel('Frequency (rad/s)');
ylabel('Magnitude (abs)')
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From the data, model, and error plots you can see that:

• The largest fitting errors are below 10 rad/s.
• The algorithm focusses on fitting the noisy high magnitude data points below 10 rad/s, which have

a large contribution to the optimization loss function. As a result, the algorithm assigns spurious
poles and zeros to this data region. To address this issue, you can preprocess the data to improve
signal-to-noise ratio in this region. You can also use frequency-dependent weights to make the
algorithm put less focus on this region.

• Below approximately 40 rad/s, most variations in data are due to noise. There are no significant
system modes (valleys or peaks) in the data. To address this issue, you can use a moving-average
filter over the data to smooth the measured response.

• The algorithm ignores the valley around 60 rad/s and the three lightly damped resonant peaks
that follow it. These features contribute little to the loss function because the fitting error is small
at these frequencies. To address this issue, you can specify frequency-dependent weights to make
the algorithm pay more attention to these frequencies.

Preprocess Data

To improve the estimated model quality, preprocess the data. To do so, you truncate the low signal-to-
noise portions of data below 1 rad/s and above 2e4 rad/s that are not interesting. Then you use a
moving-average filter to smooth data in the low-frequency high-magnitude region below 40 rad/s. At
these frequencies, the data has a low signal-to-noise ratio, but has dynamics that you are interested
in capturing. Do not apply the filter at frequencies above 40 rad/s to avoid smoothing data where you
see the valley and the three peaks that follow it.
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Make a copy of the original idfrd data object.

GfrdProcessed = Gfrd;

Truncate the data below 1 rad/s and above 2e4 rad/s.

GfrdProcessed = fselect(GfrdProcessed,1,2e4);

Apply a three-point centered moving-average filter to smooth out the frequency-response data below
40 rad/s that contains spurious dynamics. The response data is stored in the ResponseData property
of the object.

w = GfrdProcessed.Frequency;
f = squeeze(GfrdProcessed.ResponseData);
idx = w<40;
f(idx) = movmean(f(idx),3);

Here f(idx) is the frequency-response data at frequencies less than 40 rad/s.

Place the filtered data back into the original data object.

GfrdProcessed.ResponseData = f;

Plot the original and preprocessed data.

bodemag(Gfrd,GfrdProcessed);
ylim([-100 0]);
legend('Original data','Preprocessed data');
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The plot shows that all desired dynamics are intact after preprocessing.

Specify Weighting Filter

Use a low weight for the low frequency region under 10 rad/s where spurious dynamics exist. This
low weight and the smoothing applied earlier to this data reduce the chance of spurious peaks in the
estimated model response in this region.

Weight = ones(size(f));
idx = w<10;
Weight(idx) = Weight(idx)/10;

Use a high weight for data in the frequency range 40-6e3 rad/s where you want to capture the
dynamics but the response data magnitude is low.

idx = w>40 & w<6e3;
Weight(idx) = Weight(idx)*30;

Specify the weights in the WeightingFilter option of the estimation option set.

tfestOpt = tfestOptions('WeightingFilter',Weight);

Note that Weight is a custom weighting filter. You can also specify WeightingFilter as 'inv' or
'invsqrt' for frequency-response data. These options specify the weight as 1/ | f (w)| and 1/ |f (w)|,
respectively. These options enable you to quickly test the effect of using a higher weight for low
magnitude regions of data. 'invsqrt' is typically a good initial choice. If these weights do not yield
good estimation results, you can provide custom weights as shown in this example.

Estimate Model Using Preprocessed and Filtered Data

Estimate a transfer function model with 11 poles and 10 zeros using the preprocessed data and
specified weighting filter.

GfitNew = tfest(GfrdProcessed,11,10,tfestOpt);

Plot the original data, the initial model response, and the new model response.

bodemag(Gfrd,Gfit,GfitNew);
ylim([-100 0]);
legend('Original Data','Original Model','New Model');
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Plot the estimation error. Compute the estimation error by including the weighting filter Weight that
you used for estimating GfitNew.

w = GfrdProcessed.Frequency;
r1 = squeeze(freqresp(GfitNew,w));
r2 = squeeze(freqresp(GfrdProcessed,w));
fitErrorNew = Weight.*(r1-r2);
semilogx(w,abs(fitErrorNew).^2)
title('Weighted Estimation Error');
xlabel('Frequency (rad/s)');
ylabel('Magnitude (abs)');

 Troubleshoot Frequency-Domain Identification of Transfer Function Models

8-23



The new model successfully captures all system dynamics of interest.

You can use the weighted error plot for further troubleshooting if your initial choice of weights does
not yield a satisfactory result.

See Also
tfest | tfestOptions

More About
• “Estimating Models Using Frequency-Domain Data”
• “Estimate Transfer Function Models at the Command Line” on page 8-10
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Estimating Transfer Function Models for a Heat Exchanger
This example shows how to estimate a transfer function from measured signal data.

Heat Exchanger

In this example we estimate the transfer function for a heat exchanger. The heat exchanger consists
of a coolant temperature, product temperature, and disturbance ambient temperature. We will
estimate the coolant to product temperature transfer function.

Configuring the Measured Data

The measured data is stored in a MATLAB file and includes measurements of changes in coolant
temperature around a nominal and changes in product temperature around a nominal.

load iddemo_heatexchanger_data

Collect the measured data using the iddata command and plot it.

data = iddata(pt,ct,Ts);
data.InputName  = '\Delta CTemp';
data.InputUnit  = 'C';
data.OutputName = '\Delta PTemp';
data.OutputUnit = 'C';
data.TimeUnit   = 'minutes';
plot(data)
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Transfer Function Estimation

From the physics of the problem we know that the heat exchanger can be described by a first order
system with delay. Use the tfest command specifying one pole, no zeroes, and an unknown input/
output delay to estimate a transfer function.

sysTF = tfest(data,1,0,nan)

sysTF =
 
  From input "\Delta CTemp" to output "\Delta PTemp":
                    1.467
  exp(-0.0483*s) * --------
                   s + 1.56
 
Continuous-time identified transfer function.

Parameterization:
   Number of poles: 1   Number of zeros: 0
   Number of free coefficients: 2
   Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using TFEST on time domain data "data".
Fit to estimation data: 36%                      
FPE: 0.02625, MSE: 0.02622                       

The compare and resid commands allow us to investigate how well the estimated model matches
the measured data.

set(gcf,'DefaultAxesTitleFontSizeMultiplier',1,...
   'DefaultAxesTitleFontWeight','normal',...
   'Position',[100 100 780 520]);
resid(sysTF,data);
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clf
compare(data,sysTF)
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The figure shows that residuals are strongly correlated implying there is information in the measured
data that has not been adequately captured by the estimated model.

Transfer Function Estimation from an Initial System

Previously we estimated a transfer function from data but apart for the system order did not include
much apriori knowledge. From the physics of the problem we know that the system is stable and has
positive gain. Inspecting the measured data we also know that the input/output delay is around 1/5 of
a minute. We use this information to create an initial system and estimate a transfer function using
this system as the initial guess.

sysInit = idtf(NaN,[1 NaN],'ioDelay',NaN);
sysInit.TimeUnit = 'minutes';

Restrict the transfer function numerator and denominator terms so that the system is stable with
positive gain.

sysInit.Structure.num.Value   = 1;
sysInit.Structure.num.Minimum = 0;
sysInit.Structure.den.Value   = [1 1];
sysInit.Structure.den.Minimum = [0 0];

Restrict the input/output delay to the range [0 1] minute and use 1/5 minute as an initial value.
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sysInit.Structure.ioDelay.Value   = 0.2;
sysInit.Structure.ioDelay.Minimum = 0;
sysInit.Structure.ioDelay.Maximum = 1;

Use the system as an initial guess for the estimation problem

sysTF_initialized = tfest(data,sysInit)

sysTF_initialized =
 
  From input "\Delta CTemp" to output "\Delta PTemp":
                    1.964
  exp(-0.147*s) * ---------
                  s + 2.115
 
Continuous-time identified transfer function.

Parameterization:
   Number of poles: 1   Number of zeros: 0
   Number of free coefficients: 2
   Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                          
Estimated using TFEST on time domain data "data".
Fit to estimation data: 54.09%                   
FPE: 0.01351, MSE: 0.01349                       

resid(sysTF_initialized,data);
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clf
compare(data,sysTF,sysTF_initialized)

8 Identifying Transfer Function Models

8-30



Process Model Estimation

In the above we treated the estimation problem as a transfer function estimation problem, but we
know that there is some additional structure we can impose. Specifically the heat exchanger system
is known to be a 1st order process with delay, or 'P1D' model of the form:

Use the procest command to further impose this structure on the problem.

sysP1D  = procest(data,'P1D')

sysP1D =
Process model with transfer function:
             Kp                      
  G(s) = ---------- * exp(-Td*s)     
          1+Tp1*s                    
                                     
        Kp = 0.90548                 
       Tp1 = 0.32153                 
        Td = 0.25435                 
                                     
Parameterization:
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    {'P1D'}
   Number of free coefficients: 3
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                            
Estimated using PROCEST on time domain data "data".
Fit to estimation data: 70.4%                      
FPE: 0.005614, MSE: 0.005607                       

resid(sysP1D,data);

clf
compare(data,sysTF,sysTF_initialized,sysP1D)
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Process Model Estimation with Disturbance Model

The residual plots of all the estimations performed so far show that the residual correlation is still
high, implying that the model is not rich enough to explain all the information in the measured data.
The key missing piece is the disturbance ambient temperature which we have not yet included in the
model.

Create a 'P1D' process model with restriction on delay and time constant values and use this as the
initial guess for the estimation problem.

sysInit = idproc('P1D','TimeUnit','minutes');

Restrict the model to have positive gain, and delay in the range [0 1] minute.

sysInit.Structure.Kp.Value    = 1;
sysInit.Structure.Kp.Minimum  = 0;
sysInit.Structure.Tp1.Value   = 1;
sysInit.Structure.Tp1.Maximum = 10;
sysInit.Structure.Td.Value    = 0.2;
sysInit.Structure.Td.Minimum  = 0;
sysInit.Structure.Td.Maximum  = 1;

Specify the option to use a first-order model ('ARMA1') for the disturbance component. Use the
template model sysInit along with the option set to estimate the model.
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opt = procestOptions('DisturbanceModel','ARMA1');
sysP1D_noise = procest(data,sysInit,opt)

sysP1D_noise =
Process model with transfer function:                
             Kp                                      
  G(s) = ---------- * exp(-Td*s)                     
          1+Tp1*s                                    
                                                     
        Kp = 0.91001                                 
       Tp1 = 0.3356                                  
        Td = 0.24833                                 
                                                     
An additive ARMA disturbance model has been estimated
      y = G u + (C/D)e                               
                                                     
      C(s) = s + 591.6                               
      D(s) = s + 3.217                               
                                                     
Parameterization:
    {'P1D'}
   Number of free coefficients: 5
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                            
Estimated using PROCEST on time domain data "data".
Fit to estimation data: 96.86% (prediction focus)  
FPE: 6.307e-05, MSE: 6.294e-05                     

resid(sysP1D_noise,data);
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clf
compare(data,sysTF,sysTF_initialized,sysP1D,sysP1D_noise)
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The residual plot clearly shows that the residuals are uncorrelated implying that we have a model
that explains the measured data. The 'ARMA1' disturbance component we estimated is stored as
numerator and denominator values in the "NoiseTF" property of the model.

sysP1D_noise.NoiseTF

ans = 

  struct with fields:

    num: {[1 591.6038]}
    den: {[1 3.2172]}

Compare Different Models

Although we have identified a model that explains the measured data we note that the model fit to
measured data is around 70%. The loss in fit value is a consequence of the strong effect of the
ambient temperature disturbance which is illustrated as follows.

The measured data was obtained from a Simulink model with the following exact values (d is a
Gaussian noise disturbance)

   y = (1-pi/100)*exp(-15s)/(21.3s+1)*u + 1/(25s+1)*d
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Create a 'P1D' model with these values and see how well that model fits the measured data.

sysReal = idproc('P1D','TimeUnit','minutes');
sysReal.Kp  = 1-pi/100;
sysReal.Td  = 15/60;
sysReal.Tp1 = 21.3/60;
sysReal.NoiseTF = struct('num',{[1 10000]},'den',{[1 0.04]});

compare(data,sysReal,sysTF,sysTF_initialized,sysP1D,sysP1D_noise);

The comparison plot shows that the true system fit to measured data is also around 70% confirming
that our estimated models are no worse than the real model in fitting measured data - a consequence
of the strong effect of the ambient temperature disturbance.

Additional Information

For more information on identification of dynamic systems with System Identification Toolbox visit the
System Identification Toolbox product information page.
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Estimating Transfer Function Models for a Boost Converter
This example shows how to estimate a transfer function from frequency response data. You use
Simulink® Control Design™ to collect frequency response data from a Simulink model and the tfest
command to estimate a transfer function from the measured data. To run the example with previously
saved frequency response data start from the Estimating a Transfer Function section.

Boost Converter

Open the Simulink model.

mdl = 'iddemo_boost_converter';
open_system(mdl);

The model is of a Boost Converter circuit that converts a DC voltage to another DC voltage (typically
a higher voltage) by controlled chopping or switching of the source voltage. In this model an IGBT
driven by a PWM signal is used for switching.

For this example we are interested in the transfer function from the PWM duty cycle set-point to the
load voltage, Uout.

Collect Frequency Response Data

We use the frestimate command to perturb the duty cycle set-point with sinusoids of different
frequencies and log the resulting load voltage. From these we find how the system modifies the
magnitude and phase of the injected sinusoids giving us discrete points on the frequency response.

Using frestimate requires two preliminary steps

• Specifying the frequency response input and output points

• Defining the sinusoids to inject at the input point

The frequency response input and output points are created using the linio command and for this
example are the outputs of the DutyCycle and Voltage Measurement blocks.

ios = [...
    linio([mdl,'/DutyCycle'],1,'input'); ...
    linio([mdl,'/PS-Simulink Converter'],1,'output')];

8 Identifying Transfer Function Models

8-38



We use the frest.Sinestream command to define the sinusoids to inject at the input point. We are
interested in the frequency range 200 to 20k rad/s, and want to perturb the duty cycle by 0.03.

f = logspace(log10(200),log10(20000),10);
in = frest.Sinestream('Frequency',f,'Amplitude',0.03);

The simulation time required to simulate the model with this sine-stream signal is determined using
the getSimulationTime command and as we know the simulation end time used by the model we
can get an idea of how much longer the sine-stream simulation will take over simply running the
model.

getSimulationTime(in)/0.02

ans =

   15.5933

We use the defined inputs and sine-stream with frestimate to compute discrete points on the
frequency response.

[sysData,simlog] = frestimate(mdl,ios,in);
bopt               = bodeoptions;
bopt.Grid          = 'on';
bopt.PhaseMatching = 'on';
figure, bode(sysData,'*r',bopt)
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The Bode response shows a system with a 56db gain, some minor resonance around 2500 rad/s and a
high frequency roll off of around 20 db/decade matching what we would expect for this circuit.

The frest.simView command allows us to inspect the frestimate process showing the injected
signal, measured output, and frequency response in one graphical interface.

frest.simView(simlog,in,sysData);
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The figure shows the model response to injected sinusoids and the FFT of the model response. Notice
that the injected sinusoids result in signals with a dominant frequency and limited harmonics
indicating a linear model and successful frequency response data collection.

Estimating a Transfer Function

In the previous step we collected frequency response data. This data describes the system as discrete
frequency points and we now fit a transfer function to the data.

We generated the frequency response data using Simulink Control Design, if Simulink Control Design
is not installed use the following command to load the saved frequency response data

load iddemo_boostconverter_data

Inspecting the frequency response data we expect that the system can be described by a second
order system.
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sysA = tfest(sysData,2)
figure, bode(sysData,'r*',sysA,bopt)

sysA =
 
  From input "DutyCycle" to output "PS-Simulink Converter":
  -4.456e06 s + 6.175e09
  -----------------------
  s^2 + 6995 s + 9.834e06
 
Continuous-time identified transfer function.

Parameterization:
   Number of poles: 2   Number of zeros: 1
   Number of free coefficients: 4
   Use "tfdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                    
Estimated using TFEST on frequency response data "sysData".
Fit to estimation data: 98.04%                             
FPE: 281.4, MSE: 120.6                                     

The estimated transfer function is accurate over the provided frequency range.

bdclose(mdl)
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Identifying Frequency-Response Models

• “What is a Frequency-Response Model?” on page 9-2
• “Data Supported by Frequency-Response Models” on page 9-3
• “Estimate Frequency-Response Models in the App” on page 9-4
• “Estimate Frequency-Response Models at the Command Line” on page 9-6
• “Selecting the Method for Computing Spectral Models” on page 9-7
• “Controlling Frequency Resolution of Spectral Models” on page 9-8
• “Spectrum Normalization” on page 9-10
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What is a Frequency-Response Model?
A frequency-response model is the frequency response of a linear system evaluated over a range of
frequency values. The model is represented by an idfrd model object that stores the frequency
response, sample time, and input-output channel information.

The frequency-response function describes the steady-state response of a system to sinusoidal inputs.
For a linear system, a sinusoidal input of a specific frequency results in an output that is also a
sinusoid with the same frequency, but with a different amplitude and phase. The frequency-response
function describes the amplitude change and phase shift as a function of frequency.

You can estimate frequency-response models and visualize the responses on a Bode plot, which shows
the amplitude change and the phase shift as a function of the sinusoid frequency.

For a discrete-time system sampled with a time interval T, the transfer function G(z) relates the Z-
transforms of the input U(z) and output Y(z):

Y(z) = G(z)U(z) + H(z)E(z)

The frequency-response is the value of the transfer function, G(z), evaluated on the unit circle (z =
expiwT) for a vector of frequencies, w. H(z) represents the noise transfer function, and E(z) is the Z-
transform of the additive disturbance e(t) with variance λ. The values of G are stored in the
ResponseData property of the idfrd object. The noise spectrum is stored in the SpectrumData
property.

Where, the noise spectrum is defined as:

Φv(ω) = λT H(eiωT) 2

A MIMO frequency-response model contains frequency-responses corresponding to each input-output
pair in the system. For example, for a two-input, two-output model:

Y1(z) = G11(z)U1(z) + G12(z)U2(z) + H1(z)E1(z)
Y2(z) = G21(z)U1(z) + G22(z)U2(z) + H2(z)E2(z)

Where, Gij is the transfer function between the ith output and the jth input. H1(z) and H2(z) represent
the noise transfer functions for the two outputs. E1(z) and E2(z) are the Z-transforms of the additive
disturbances, e1(t) and e2(t), at the two model outputs, respectively.

Similar expressions apply for continuous-time frequency response. The equations are represented in
Laplace domain. For more details, see the idfrd reference page.

See Also

Related Examples
• “Estimate Frequency-Response Models in the App” on page 9-4
• “Estimate Frequency-Response Models at the Command Line” on page 9-6

More About
• “Data Supported by Frequency-Response Models” on page 9-3
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Data Supported by Frequency-Response Models
You can estimate spectral analysis models from data with the following characteristics:

• Complex or real data.
• Time- or frequency-domain iddata or idfrd data object. To learn more about estimating time-

series models, see “Time Series Analysis”.
• Single- or multiple-output data.

See Also

More About
• “What is a Frequency-Response Model?” on page 9-2
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Estimate Frequency-Response Models in the App
You must have already imported your data into the app and performed any necessary preprocessing
operations. For more information, see “Data Preparation”.

To estimate frequency-response models in the System Identification app:

1 In the System Identification app, select Estimate > Spectral models to open the Spectral
Model dialog box.

2 In the Method list, select the spectral analysis method you want to use. For information about
each method, see “Selecting the Method for Computing Spectral Models” on page 9-7.

3 Specify the frequencies at which to compute the spectral model in one of the following ways:

• In the Frequencies field, enter either a vector of values, a MATLAB expression that evaluates
to a vector, or a variable name of a vector in the MATLAB workspace. For example,
logspace(-1,2,500).

• Use the combination of Frequency Spacing and Frequencies to construct the frequency
vector of values:

• In the Frequency Spacing list, select Linear or Logarithmic frequency spacing.

Note For etfe, only the Linear option is available.
• In the Frequencies field, enter the number of frequency points.

For time-domain data, the frequency ranges from 0 to the Nyquist frequency. For frequency-
domain data, the frequency ranges from the smallest to the largest frequency in the data set.

4 In the Frequency Resolution field, enter the frequency resolution, as described in “Controlling
Frequency Resolution of Spectral Models” on page 9-8. To use the default value, enter
default or, equivalently, the empty matrix [].

5 In the Model Name field, enter the name of the correlation analysis model. The model name
should be unique in the Model Board.

6 Click Estimate to add this model to the Model Board in the System Identification app.
7 In the Spectral Model dialog box, click Close.
8 To view the frequency-response plot, select the Frequency resp check box in the System

Identification app. For more information about working with this plot, see “Frequency Response
Plots” on page 17-54.

9 To view the estimated disturbance spectrum, select the Noise spectrum check box in the
System Identification app. For more information about working with this plot, see “Noise
Spectrum Plots” on page 17-61.

10 Validate the model after estimating it. For more information, see “Model Validation”.

To export the model to the MATLAB workspace, drag it to the To Workspace rectangle in the System
Identification app. You can retrieve the responses from the resulting idfrd model object using the
bode or nyquist command.
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See Also

Related Examples
• “Estimate Frequency-Response Models at the Command Line” on page 9-6

More About
• “What is a Frequency-Response Model?” on page 9-2
• “Data Supported by Frequency-Response Models” on page 9-3
• “Selecting the Method for Computing Spectral Models” on page 9-7
• “Controlling Frequency Resolution of Spectral Models” on page 9-8
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Estimate Frequency-Response Models at the Command Line
You can use the etfe, spa, and spafdr commands to estimate spectral models. The following table
provides a brief description of each command and usage examples.

The resulting models are stored as idfrd model objects. For detailed information about the
commands and their arguments, see the corresponding reference page.

Commands for Frequency Response

Command Description Usage
etfe Estimates an empirical

transfer function using
Fourier analysis.

To estimate a model m, use the following syntax:

m=etfe(data)

spa Estimates a frequency
response with a fixed
frequency resolution using
spectral analysis.

To estimate a model m, use the following syntax:

m=spa(data)

spafdr Estimates a frequency
response with a variable
frequency resolution using
spectral analysis.

To estimate a model m, use the following syntax:

m=spafdr(data,R,w)

where R is the resolution vector and w is the frequency vector.

Validate the model after estimating it. For more information, see “Model Validation”.

See Also

Related Examples
• “Estimate Frequency-Response Models in the App” on page 9-4

More About
• “What is a Frequency-Response Model?” on page 9-2
• “Data Supported by Frequency-Response Models” on page 9-3
• “Selecting the Method for Computing Spectral Models” on page 9-7
• “Controlling Frequency Resolution of Spectral Models” on page 9-8
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Selecting the Method for Computing Spectral Models
This section describes how to select the method for computing spectral models in the estimation
procedures “Estimate Frequency-Response Models in the App” on page 9-4 and “Estimate Frequency-
Response Models at the Command Line” on page 9-6.

You can choose from the following three spectral-analysis methods:

• etfe (Empirical Transfer Function Estimate)

For input-output data — This method computes the ratio of the Fourier transform of the output to
the Fourier transform of the input.

For time-series data — This method computes a periodogram as the normalized absolute squares
of the Fourier transform of the time series.

ETFE works well for highly resonant systems or narrowband systems. The drawback of this
method is that it requires linearly spaced frequency values, does not estimate the disturbance
spectrum, and does not provide confidence intervals. ETFE also works well for periodic inputs and
computes exact estimates at multiples of the fundamental frequency of the input and their ratio.

• spa (SPectral Analysis)

This method is the Blackman-Tukey spectral analysis method, where windowed versions of the
covariance functions are Fourier transformed.

• spafdr (SPectral Analysis with Frequency Dependent Resolution)

This method is a variant of the Blackman-Tukey spectral analysis method with frequency-
dependent resolution. First, the algorithm computes Fourier transforms of the inputs and outputs.
Next, the products of the transformed inputs and outputs with the conjugate input transform are
smoothed over local frequency regions. The widths of the local frequency regions can vary as a
function of frequency. The ratio of these averages computes the frequency-response estimate.

See Also

Related Examples
• “Estimate Frequency-Response Models in the App” on page 9-4
• “Estimate Frequency-Response Models at the Command Line” on page 9-6
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Controlling Frequency Resolution of Spectral Models
This section supports the estimation procedures “Estimate Frequency-Response Models in the App”
on page 9-4 and “Estimate Frequency-Response Models at the Command Line” on page 9-6.

What Is Frequency Resolution?
Frequency resolution is the size of the smallest frequency for which details in the frequency response
and the spectrum can be resolved by the estimate. A resolution of 0.1 rad/s means that the frequency
response variations at frequency intervals at or below 0.1 rad/s are not resolved.

Note Finer resolution results in greater uncertainty in the model estimate.

Specifying the frequency resolution for etfe and spa is different than for spafdr.

Frequency Resolution for etfe and spa
For etfe and spa, the frequency resolution is approximately equal to the following value:

2π
M

radians
sampling interval

M is a scalar integer that sets the size of the lag window. The value of M controls the trade-off
between bias and variance in the spectral estimate.

The default value of M for spa is good for systems without sharp resonances. For etfe, the default
value of M gives the maximum resolution.

A large value of M gives good resolution, but results in more uncertain estimates. If a true frequency
function has sharp peak, you should specify higher M values.

Frequency Resolution for spafdr
In case of etfe and spa, the frequency response is defined over a uniform frequency range, 0-Fs/2
radians per second, where Fs is the sampling frequency—equal to twice the Nyquist frequency. In
contrast, spafdr lets you increase the resolution in a specific frequency range, such as near a
resonance frequency. Conversely, you can make the frequency grid coarser in the region where the
noise dominates—at higher frequencies, for example. Such customizing of the frequency grid assists
in the estimation process by achieving high fidelity in the frequency range of interest.

For spafdr, the frequency resolution around the frequency k is the value R(k). You can enter R(k) in
any one of the following ways:

• Scalar value of the constant frequency resolution value in radians per second.

Note The scalar R is inversely related to the M value used for etfe and spa.
• Vector of frequency values the same size as the frequency vector.
• Expression using MATLAB workspace variables and evaluates to a resolution vector that is the

same size as the frequency vector.
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The default value of the resolution for spafdr is twice the difference between neighboring
frequencies in the frequency vector.

etfe Frequency Resolution for Periodic Input
If the input data is marked as periodic and contains an integer number of periods (data.Period is
an integer), etfe computes the frequency response at frequencies
2πk
T

k
Period    where k = 1, 2, ..., Period.

For periodic data, the frequency resolution is ignored.

See Also
etfe | spa | spafdr

Related Examples
• “Estimate Frequency-Response Models in the App” on page 9-4
• “Estimate Frequency-Response Models at the Command Line” on page 9-6
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Spectrum Normalization
The spectrum of a signal is the square of the Fourier transform of the signal. The spectral estimate
using the commands spa, spafdr, and etfe is normalized by the sample time T:

Φy(ω) = T ∑
k = −M

M
Ry(kT)e−iwTWM(k)

where WM(k) is the lag window, and M is the width of the lag window. The output covariance Ry(kT) is
given by the following discrete representation:

R y(kT) = 1
N ∑l = 1

N
y(lT − kT)y(lT)

Because there is no scaling in a discrete Fourier transform of a vector, the purpose of T is to relate
the discrete transform of a vector to the physically meaningful transform of the measured signal. This
normalization sets the units of Φy(ω) as power per radians per unit time, and makes the frequency
units radians per unit time.

The scaling factor of T is necessary to preserve the energy density of the spectrum after interpolation
or decimation.

By Parseval's theorem, the average energy of the signal must equal the average energy in the
estimated spectrum, as follows:

Ey2(t) = 1
2π∫−π/T

π/T
Φy(ω)dω

S1 ≡ Ey2(t)

S2 ≡ 1
2π∫−π/T

π/T
Φy(ω)dω

To compare the left side of the equation (S1) to the right side (S2), enter the following commands. In
this code, phiy contains Φy(ω) between ω = 0 and ω = π T with the frequency step given as follows:

π
T ⋅ length(phiy)

load iddata1

Create a time-series iddata object.

y = z1(:,1,[]);

Define sample interval from the data.

T = y.Ts;

Estimate the frequency response.

sp = spa(y);

Remove spurious dimensions

phiy = squeeze(sp.spec);
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Compute average energy of the signal.

S1 = sum(y.y.^2)/size(y,1)

S1 = 19.4646

Compute average energy from the estimated energy spectrum, where S2 is scaled by T.

S2 = sum(phiy)/length(phiy)/T

S2 = 19.2076

Thus, the average energy of the signal approximately equals the average energy in the estimated
spectrum.

See Also
etfe | spa | spafdr
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Identifying Impulse-Response Models

• “What Is Time-Domain Correlation Analysis?” on page 10-2
• “Data Supported by Correlation Analysis” on page 10-3
• “Estimate Impulse-Response Models Using System Identification App” on page 10-4
• “Estimate Impulse-Response Models at the Command Line” on page 10-6
• “Compute Response Values” on page 10-8
• “Identify Delay Using Transient-Response Plots” on page 10-9
• “Correlation Analysis Algorithm” on page 10-11
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What Is Time-Domain Correlation Analysis?
Time-domain correlation analysis refers to non-parametric estimation of the impulse response of
dynamic systems as a finite impulse response (FIR) model from the data. The estimated model is
stored as transfer function model object (idtf). For information about transfer function models, see
“What are Transfer Function Models?” on page 8-2.

Correlation analysis assumes a linear system and does not require a specific model structure.

Impulse response is the output signal that results when the input is an impulse and has the following
definition for a discrete model:

u(t) = 0     t > 0
u(t) = 1     t = 0

The response to an input u(t) is equal to the convolution of the impulse response, as follows:

y(t) =∫0 t
h t − z ⋅ u(z)dz

See Also

Related Examples
• “Estimate Impulse-Response Models Using System Identification App” on page 10-4
• “Estimate Impulse-Response Models at the Command Line” on page 10-6

More About
• “Data Supported by Correlation Analysis” on page 10-3
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Data Supported by Correlation Analysis
You can estimate impulse-response models from data with the following characteristics:

• Real or complex data.
• Single- or multiple-output data.
• Time- or frequency-domain data with nonzero sample time.

Time-domain data must be regularly sampled. You cannot use time-series data for correlation
analysis.

See Also

More About
• “What Is Time-Domain Correlation Analysis?” on page 10-2
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Estimate Impulse-Response Models Using System
Identification App

Before you can perform this task, you must have:

• Imported data into the System Identification app. See “Import Time-Domain Data into the App” on
page 2-13. For supported data formats, see “Data Supported by Correlation Analysis” on page 10-
3.

• Performed any required data preprocessing operations. To improve the accuracy of your model,
you should detrend your data. See “Ways to Prepare Data for System Identification” on page 2-5.

To estimate in the System Identification app using time-domain correlation analysis:

1 In the System Identification app, select Estimate > Correlation models to open the Correlation
Model dialog box.

2 In the Time span (s) field, specify a scalar value as the time interval over which the impulse or
step response is calculated. For a scalar time span T, the resulting response is plotted from -T/4
to T.

Tip You can also enter a 2-D vector in the format [min_value max_value].
3 In the Order of whitening filter field, specify the filter order.

The prewhitening filter is determined by modeling the input as an autoregressive process of
order N. The algorithm applies a filter of the form A(q)u(t)=u_F(t). That is, the input u(t) is
subjected to an FIR filter A to produce the filtered signal u_F(t). Prewhitening the input by
applying a whitening filter before estimation might improve the quality of the estimated impulse
response g.

The order of the prewhitening filter, N, is the order of the A filter. N equals the number of lags.
The default value of N is 10, which you can also specify as [].

4 In the Model Name field, enter the name of the correlation analysis model. The name of the
model should be unique in the Model Board.

5 Click Estimate to add this model to the Model Board in the System Identification app.
6 In the Correlation Model dialog box, click Close.

Next Steps
• Export the model to the MATLAB workspace for further analysis by dragging it to the To

Workspace rectangle in the System Identification app.
• View the transient response plot by selecting the Transient resp check box in the System
Identification app. For more information about working with this plot and selecting to view
impulse- versus step-response, see “Impulse and Step Response Plots” on page 17-48.

See Also

Related Examples
• “Identify Delay Using Transient-Response Plots” on page 10-9
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• “Estimate Impulse-Response Models at the Command Line” on page 10-6

More About
• “What Is Time-Domain Correlation Analysis?” on page 10-2
• “Data Supported by Correlation Analysis” on page 10-3
• “Correlation Analysis Algorithm” on page 10-11
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Estimate Impulse-Response Models at the Command Line
Before you can perform this task, you must have:

• Input/output or frequency-response data. See “Representing Time- and Frequency-Domain Data
Using iddata Objects” on page 2-34. For supported data formats, see “Data Supported by
Correlation Analysis” on page 10-3.

• Performed any required data preprocessing operations. If you use time-domain data, you can
detrend it before estimation. See “Ways to Prepare Data for System Identification” on page 2-5.

Use impulseest to compute impulse response models. impulseest estimates a high-order,
noncausal FIR model using correlation analysis. The resulting models are stored as idtf model
objects and contain impulse-response coefficients in the model numerator.

To estimate the model m and plot the impulse or step response, use the following syntax:

m=impulseest(data,N);
impulse(m,Time);
step(m,Time);

where data is a single- or multiple-output iddata or idfrd object. N is a scalar value specifying the
order of the FIR system corresponding to the time range 0:Ts:(N-1)*Ts, where Ts is the data sample
time.

You can also specify estimation options, such as regularizing kernel, pre-whitening filter order and
data offsets, using impulseestOptions and pass them as an input to impulseest. For example:

opt = impulseestOptions('RegularizationKernel','TC'));
m = impulseest(data,N,opt);

To view the confidence region for the estimated response, use impulseplot and stepplot to create
the plot. Then use showConfidence.

For example:

h = stepplot(m,Time);
showConfidence(h,3) % 3 std confidence region

Note cra is an alternative method for computing impulse response from time-domain data only.

Next Steps
• Perform model analysis. See “Validating Models After Estimation” on page 17-2.

See Also

Related Examples
• “Identify Delay Using Transient-Response Plots” on page 10-9
• “Compute Response Values” on page 10-8
• “Estimate Impulse-Response Models Using System Identification App” on page 10-4
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More About
• “What Is Time-Domain Correlation Analysis?” on page 10-2
• “Data Supported by Correlation Analysis” on page 10-3
• “Correlation Analysis Algorithm” on page 10-11
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Compute Response Values
You can use impulse and step commands with output arguments to get the numerical impulse- and
step-response vectors as a function of time, respectively.

To get the numerical response values:

1 Compute the FIR model by using impulseest, as described in “Estimate Impulse-Response
Models at the Command Line” on page 10-6.

2 Apply the following syntax on the resulting model:

% To compute impulse-response data
[y,t,~,ysd] = impulse(model)
% To compute step-response data
[y,t,~,ysd] = step(model)

where y is the response data, t is the time vector, and ysd is the standard deviations of the
response.

See Also

Related Examples
• “Estimate Impulse-Response Models at the Command Line” on page 10-6
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Identify Delay Using Transient-Response Plots
You can use transient-response plots to estimate the input delay, or dead time, of linear systems.
Input delay represents the time it takes for the output to respond to the input.

In the System Identification app: To view the transient response plot, select the Transient resp
check box in the System Identification app. For example, the following step response plot shows a
time delay of about 0.25 s before the system responds to the input.

Step Response Plot

At the command line: You can use impulseplot to plot the impulse response. The time delay is equal
to the first positive peak in the transient response magnitude that is greater than the confidence
region for positive time values.

For example, the following commands create an impulse-response plot with a 1-standard-deviation
confidence region:

load dry2
ze = dry2(1:500); 
opt = impulseestOptions('RegularizationKernel','TC');
sys = impulseest(ze,40,opt);
h = impulseplot(sys);
showConfidence(h,1);
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The resulting figure shows that the first positive peak of the response magnitude, which is greater
than the confidence region for positive time values, occurs at 0.24 s.

Instead of using showConfidence, you can plot the confidence interval interactively, by right-
clicking on the plot and selecting Characteristics > Confidence Region.

See Also

Related Examples
• “Estimate Impulse-Response Models Using System Identification App” on page 10-4
• “Estimate Impulse-Response Models at the Command Line” on page 10-6
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Correlation Analysis Algorithm
Correlation analysis refers to methods that estimate the impulse response of a linear model, without
specific assumptions about model orders.

The impulse response, g, is the system output when the input is an impulse signal. The output
response to a general input, u(t), is the convolution with the impulse response. In continuous time:

y(t) =∫−∞
t

g τ u t − τ dτ

In discrete-time:

y t = ∑
k = 1

∞
g k u t − k

The values of g(k) are the discrete-time impulse response coefficients.

You can estimate the values from observed input/output data in several different ways. impulseest
estimates the first n coefficients using the least-squares method to obtain a finite impulse response
(FIR) model of order n.

impulseest provides several important options for the estimation:

• Regularization — Regularize the least-squares estimate. With regularization, the algorithm forms
an estimate of the prior decay and mutual correlation among g(k), and then merges this prior
estimate with the current information about g from the observed data. This approach results in an
estimate that has less variance but also some bias. You can choose one of several kernels to
encode the prior estimate.

This option is essential because the model order n can often be quite large. In cases where there
is no regularization, n can be automatically decreased to secure a reasonable variance.

Specify the regularizing kernel using the RegularizationKernel Name-Value pair argument of
impulseestOptions.

• Prewhitening — Prewhiten the input by applying an input-whitening filter of order PW to the data.
Use prewhitening when you are performing unregularized estimation. Using a prewhitening filter
minimizes the effect of the neglected tail (k > n) of the impulse response. To achieve
prewhitening, the algorithm:

1 Defines a filter A of order PW that whitens the input signal u:

1/A = A(u)e, where A is a polynomial and e is white noise.
2 Filters the inputs and outputs with A:

uf = Au, yf = Ay
3 Uses the filtered signals uf and yf for estimation.

Specify prewhitening using the PW name-value pair argument of impulseestOptions.
• Autoregressive Parameters — Complement the basic underlying FIR model by NA autoregressive

parameters, making it an ARX model.
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y t = ∑
k = 1

n
g k u t − k − ∑

k = 1

NA
aky t − k

This option gives both better results for small n values and allows unbiased estimates when data
are generated in closed loop. impulseest uses NA = 5 for t>0 and NA = 0 (no autoregressive
component) for t<0.

• Noncausal effects — Include response to negative lags. Use this option if the estimation data
includes output feedback:

u(t) = ∑
k = 0

∞
h(k)y t − k + r t

where h(k) is the impulse response of the regulator and r is a setpoint or disturbance term. The
algorithm handles the existence and character of such feedback h, and estimates h in the same
way as g by simply trading places between y and u in the estimation call. Using impulseest with
an indication of negative delays, mi  =  impulseest(data, nk, nb),  nk < 0 returns a model mi with
an impulse response

h(− nk), h(− nk− 1), ..., h(0), g(1), g(2), ..., g(nb + nk)

that has an alignment that corresponds to lags nk, nk + 1, .., 0, 1, 2, ..., nb + nk . The algorithm
achieves this alignment because the input delay (InputDelay) of model mi is nk.

For a multi-input multi-output system, the impulse response g(k) is an ny-by-nu matrix, where ny is
the number of outputs and nu is the number of inputs. The i–j element of the matrix g(k) describes the
behavior of the ith output after an impulse in the jth input.

See Also

Related Examples
• “Estimate Impulse-Response Models Using System Identification App” on page 10-4
• “Estimate Impulse-Response Models at the Command Line” on page 10-6
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Nonlinear Black-Box Model Identification

• “About Identified Nonlinear Models” on page 11-2
• “Nonlinear Model Structures” on page 11-6
• “Available Nonlinear Models” on page 11-9
• “Preparing Data for Nonlinear Identification” on page 11-11
• “What are Nonlinear ARX Models?” on page 11-12
• “Identifying Nonlinear ARX Models” on page 11-15
• “Available Mapping Functions for Nonlinear ARX Models” on page 11-20
• “Estimate Nonlinear ARX Models in the App” on page 11-22
• “Estimate Nonlinear ARX Models at the Command Line” on page 11-25
• “Estimate Nonlinear ARX Models Initialized Using Linear ARX Models” on page 11-33
• “Validate Nonlinear ARX Models” on page 11-36
• “Using Nonlinear ARX Models” on page 11-40
• “How the Software Computes Nonlinear ARX Model Output” on page 11-41
• “Linear Approximation of Nonlinear Black-Box Models” on page 11-48
• “Nonlinear Modeling of a Magneto-Rheological Fluid Damper” on page 11-51
• “A Tutorial on Identification of Nonlinear ARX and Hammerstein-Wiener Models” on page 11-77
• “Motorized Camera - Multi-Input Multi-Output Nonlinear ARX and Hammerstein-Wiener Models”

on page 11-99
• “Building Nonlinear ARX Models with Nonlinear and Custom Regressors” on page 11-115
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About Identified Nonlinear Models

What Are Nonlinear Models?
Dynamic models in System Identification Toolbox software are mathematical relationships between
the inputs u(t) and outputs y(t) of a system. The model is dynamic because the output value at the
current time depends on the input-output values at previous time instants. Therefore, dynamic
models have memory of the past. You can use the input-output relationships to compute the current
output from previous inputs and outputs. Dynamic models have states, where a state vector contains
the information of the past.

The general form of a model in discrete time is:

y(t) = f(u(t - 1), y(t - 1), u(t - 2), y(t - 2), . . .)

Such a model is nonlinear if the function f is a nonlinear function. f may represent arbitrary
nonlinearities, such as switches and saturations.

The toolbox uses objects to represent various linear and nonlinear model structures. The nonlinear
model objects are collectively known as identified nonlinear models. These models represent
nonlinear systems with coefficients that are identified using measured input-output data. See
“Nonlinear Model Structures” on page 11-6 for more information.

When to Fit Nonlinear Models
In practice, all systems are nonlinear and the output is a nonlinear function of the input variables.
However, a linear model is often sufficient to accurately describe the system dynamics. In most cases,
you should first try to fit linear models.

However, for some scenarios, you might need the additional flexibility of nonlinear models.

Linear Model Is Not Good Enough

You might need nonlinear models when a linear model provides a poor fit to the measured output
signals and cannot be improved by changing the model structure or order. Nonlinear models have
more flexibility in capturing complex phenomena than the linear models of similar orders.

Physical System Is Weakly Nonlinear

From physical insight or data analysis, you might know that a system is weakly nonlinear. In such
cases, you can estimate a linear model and then use this model as an initial model for nonlinear
estimation. Nonlinear estimation can improve the fit by using nonlinear components of the model
structure to capture the dynamics not explained by the linear model. For more information, see
“Initialize Nonlinear ARX Estimation Using Linear Model” on page 11-18 and “Initialize
Hammerstein-Wiener Estimation Using Linear Model” on page 12-7.

Physical System Is Inherently Nonlinear

You might have physical insight that your system is nonlinear. Certain phenomena are inherently
nonlinear in nature, including dry friction in mechanical systems, actuator power saturation, and
sensor nonlinearities in electromechanical systems. You can try modeling such systems using the
Hammerstein-Wiener model structure, which lets you interconnect linear models with static
nonlinearities. For more information, see “Identifying Hammerstein-Wiener Models” on page 12-5.
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Nonlinear models might be necessary to represent systems that operate over a range of operating
points. In some cases, you might fit several linear models, where each model is accurate at specific
operating conditions. You can also try using the nonlinear ARX model structure with tree partitions to
model such systems. For more information, see “Identifying Nonlinear ARX Models” on page 11-15.

If you know the nonlinear equations describing a system, you can represent this system as a
nonlinear grey-box model and estimate the coefficients from experimental data. In this case, the
coefficients are the parameters of the model. For more information, see “Grey-Box Model
Estimation”.

Before fitting a nonlinear model, try transforming your input and output variables such that the
relationship between the transformed variables becomes linear. For example, you might be dealing
with a system that has current and voltage as inputs to an immersion heater, and the temperature of
the heated liquid as an output. In this case, the output depends on the inputs via the power of the
heater, which is equal to the product of current and voltage. Instead of fitting a nonlinear model to
two-input and one-output data, you can create a new input variable by taking the product of current
and voltage. You can then fit a linear model to the single-input/single-output data.

Linear and Nonlinear Dynamics Are Captured Separately

You might have multiple data sets that capture the linear and nonlinear dynamics separately. For
example, one data set with low amplitude input (excites the linear dynamics only) and another data
set with high amplitude input (excites the nonlinear dynamics). In such cases, first estimate a linear
model using the first data set. Next, use the model as an initial model to estimate a nonlinear model
using the second data set. For more information, see “Initialize Nonlinear ARX Estimation Using
Linear Model” on page 11-18 and “Initialize Hammerstein-Wiener Estimation Using Linear Model”
on page 12-7.

Nonlinear Model Estimation
Black Box Estimation

In a black-box or “cold start” estimation, you only have to specify the order to configure the structure
of the model.

sys = estimator(data,orders) 

where estimator is the name of an estimation command to use for the desired model type.

For example, you use nlarx to estimate nonlinear ARX models, and nlhw for Hammerstein-Wiener
models.

The first argument, data, is time-domain data represented as an iddata object. The second
argument, orders, represents one or more numbers whose definition depends upon the model type.

• For nonlinear ARX models, orders refers to the model orders and delays for defining the
regressor configuration. Alternatively, you can explicitly specify linear, polynomial, and customer
regressors.

• For Hammerstein-Wiener models, orders refers to the model order and delays of the linear
subsystem transfer function.

When working in the System Identification app, you specify the orders or regressors in the
appropriate edit fields of corresponding model estimation dialog boxes.
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Refining Existing Models

You can refine the parameters of a previously estimated nonlinear model using the following
command:

sys = estimator(data,sys0) 

This command updates the parameters of an existing model sys0 to fit the data and returns the
results in output model sys. For nonlinear systems, estimator can be nlarx, nlhw, or nlgreyest.

Initializing Estimations with Known Information About Linear Component

Nonlinear ARX (idnlarx) and Hammerstein-Wiener (idnlhw) models contain a linear component in
their structure. If you have knowledge of the linear dynamics, such as through identification of a
linear model using low-amplitude data, you can incorporate it during the estimation of nonlinear
models. In particular, you can replace the orders input argument with a previously estimated linear
model using the following command:

sys = estimator(data,LinModel)

This command uses the linear model LinModel to determine the order of the nonlinear model sys as
well as initialize the coefficients of its linear component.

Estimation Options

There are many options associated with an estimation algorithm that configures the estimation
objective function, initial conditions, and numerical search algorithm, among other things of the
model. For every estimation command, estimator, there is a corresponding option command named
estimatorOptions. For example, use nlarxOptions to generate the option set for nlarx. The
options command returns an option set that you then pass as an input argument to the corresponding
estimation command.

For example, to estimate a nonlinear ARX model with simulation as the focus and lsqnonlin as
the search method, use nlarxOptions.

load iddata1 z1
Options = nlarxOptions('Focus','simulation','SearchMethod','lsqnonlin');
sys= nlarx(z1,[2 2 1],Options);

Information about the options used to create an estimated model is stored in
sys.Report.OptionsUsed. For more information, see “Estimation Report” on page 1-21.

See Also

Related Examples
• “Identifying Nonlinear ARX Models” on page 11-15
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Represent Nonlinear Dynamics Using MATLAB File for Grey-Box Estimation” on page 13-80

More About
• “Nonlinear Model Structures” on page 11-6
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• “Available Nonlinear Models” on page 11-9
• “About Identified Linear Models” on page 1-10
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Nonlinear Model Structures

About System Identification Toolbox Model Objects
Objects are instances of model classes. Each class is a blueprint that defines the following
information about your model:

• How the object stores data
• Which operations you can perform on the object

This toolbox includes nine classes for representing models. For example, idss represents linear
state-space models and idnlarx represents nonlinear ARX models. For a complete list of available
model objects, see “Available Linear Models” on page 1-19 and “Available Nonlinear Models” on page
11-9.

Model properties define how a model object stores information. Model objects store information
about a model, such as the mathematical form of a model, names of input and output channels, units,
names and values of estimated parameters, parameter uncertainties, and estimation report. For
example, an idss model has an InputName property for storing one or more input channel names.

The allowed operations on an object are called methods. In System Identification Toolbox software,
some methods have the same name but apply to multiple model objects. For example, step creates a
step response plot for all dynamic system objects. However, other methods are unique to a specific
model object. For example, canon is unique to state-space idss models and linearize to nonlinear
black-box models.

Every class has a special method, called the constructor, for creating objects of that class. Using a
constructor creates an instance of the corresponding class or instantiates the object. The constructor
name is the same as the class name. For example, idss and idnlarx are both the name of the class
and the name of the constructor for instantiating the linear state-space models and nonlinear ARX
models, respectively.

When to Construct a Model Structure Independently of Estimation
You use model constructors to create a model object at the command line by specifying all required
model properties explicitly.

You must construct the model object independently of estimation when you want to:

• Simulate or analyze the effect of model parameters on its response, independent of estimation.
• Specify an initial guess for specific model parameter values before estimation. You can specify

bounds on parameter values, or set up the auxiliary model information in advance, or both.
Auxiliary model information includes specifying input/output names, units, notes, user data, and
so on.

In most cases, you can use the estimation commands to both construct and estimate the model—
without having to construct the model object independently. For example, the estimation command
tfest creates a transfer function model using data and the number of poles and zeros of the model.
Similarly, nlarx creates a nonlinear ARX model using data and model orders and delays that define
the regressor configuration. For information about how to both construct and estimate models with a
single command, see “Model Estimation Commands” on page 1-31.
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In case of grey-box models, you must always construct the model object first and then estimate the
parameters of the ordinary differential or difference equation.

Commands for Constructing Nonlinear Model Structures
The following table summarizes the model constructors available in the System Identification Toolbox
product for representing various types of nonlinear models.

After model estimation, you can recognize the corresponding model objects in the MATLAB
Workspace browser by their class names. The name of the constructor matches the name of the
object it creates.

For information about how to both construct and estimate models with a single command, see “Model
Estimation Commands” on page 1-31.

Summary of Model Constructors
Model Constructor Resulting Model Class
idnlgrey Nonlinear ordinary differential or difference equation (grey-

box models). You write a function or MEX-file to represent
the governing equations.

idnlarx Nonlinear ARX models, which define the predicted output as
a nonlinear function of past inputs and outputs.

idnlhw Nonlinear Hammerstein-Wiener models, which include a
linear dynamic system with nonlinear static transformations
of inputs and outputs.

For more information about when to use these commands, see “When to Construct a Model Structure
Independently of Estimation” on page 11-6.

Model Properties
A model object stores information in the properties of the corresponding model class.

The nonlinear models idnlarx, idnlhw, and idnlgrey are based on the idnlmodel superclass and
inherit all idnlmodel properties.

In general, all model objects have properties that belong to the following categories:

• Names of input and output channels, such as InputName and OutputName
• Sample time of the model, such as Ts
• Time units
• Model order and mathematical structure (for example, ODE or nonlinearities)
• Properties that store estimation results (Report)
• User comments, such as Notes and Userdata

For information about getting help on object properties, see the model reference pages.

The following table summarizes the commands for viewing and changing model property values.
Property names are not case sensitive. You do not need to type the entire property name if the first
few letters uniquely identify the property.
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Task Command Example
View all model
properties and their
values

Use get. Load sample data, compute a nonlinear ARX model,
and list the model properties.

load iddata1
sys = nlarx(z1,[4 4 1]);
get(sys)

Access a specific
model property

Use dot notation. View the output function in the previous model.

sys.OutputFcn

For properties, such as Report,
that are configured like
structures, use dot notation of
the form
model.PropertyName.FieldN
ame.
FieldName is the name of any
field of the property.

View the options used in the nonlinear ARX model
estimation.

sys.Report.OptionsUsed

Change model
property values

Use dot notation. Change the nonlinearity mapping function that the
output function uses.

sys.OutputFcn = 'sigmoidnet';

Access model
parameter values
and uncertainty
information

Use getpvec and getcov (for
idnlgrey models only).

Model parameters and associated uncertainty data.

getpvec(sys)

Set model parameter
values and
uncertainty
information

Use setpar and setcov (for
idnlgrey models only).

Set the parameter vector.

sys = setpar(sys,'Value',parlist)

Get number of
parameters

Use nparams. Get the number of parameters.

nparams(sys)

See Also

Related Examples
• “Identifying Nonlinear ARX Models” on page 11-15
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Represent Nonlinear Dynamics Using MATLAB File for Grey-Box Estimation” on page 13-80

More About
• “About Identified Nonlinear Models” on page 11-2
• “Available Nonlinear Models” on page 11-9
• “About Identified Linear Models” on page 1-10
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Available Nonlinear Models

Overview
The System Identification Toolbox software provides three types of nonlinear model structures:

• “Nonlinear ARX Models” on page 11-9
• “Hammerstein-Wiener Models” on page 11-9
• “Nonlinear Grey-Box Models” on page 11-10

The toolbox refers to Nonlinear ARX and Hammerstein-Wiener collectively as "nonlinear black box"
models. You can configure these models in a variety of ways to represent various behavior using
nonlinear functions such as wavelet networks, tree partitions, piece-wise linear functions,
polynomials, saturation and dead zones.

The nonlinear grey-box models lets you to estimate coefficients of nonlinear differential equations.

Nonlinear ARX Models
Nonlinear ARX models extend the linear ARX models on page 6-2 to the nonlinear case and have this
structure:

y(t) = f(y(t - 1), ..., y(t - na), u(t - nk), ..., u(t -nk -nb + 1))

where the function f depends on a finite number of previous inputs u and outputs y. na is the number
of past output terms and nb is the number of past input terms used to predict the current output. nk
is the delay from the input to the output, specified as the number of samples.

Use this model to represent nonlinear extensions of linear models. This structure allows you to model
complex nonlinear behavior using output functions that combine linear and nonlinear components,
such as wavelet and sigmoid networks. Typically, you use nonlinear ARX models as black-box
structures. The output function of the nonlinear ARX model is a flexible mapping function with
parameters that need not have physical significance.

System Identification Toolbox software uses idnlarx objects to represent nonlinear ARX models. For
more information about estimation, see “Nonlinear ARX Models”.

Hammerstein-Wiener Models
Hammerstein-Wiener models describe dynamic systems using one or two static nonlinear blocks in
series with a linear block. The linear block is a discrete transfer function and represents the dynamic
component of the model.

You can use the Hammerstein-Wiener structure to capture physical nonlinear effects in sensors and
actuators that affect the input and output of a linear system, such as dead zones and saturation.
Alternatively, use Hammerstein-Wiener structures as black box structures that do not represent
physical insight into system processes.

System Identification Toolbox software uses idnlhw objects to represent Hammerstein-Wiener
models. For more information about estimation, see “Hammerstein-Wiener Models”.
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Nonlinear Grey-Box Models
Nonlinear state-space models have this representation:

ẋ t = F x t , u t
y t = H x t , u t

where F and H can have any parameterization. A nonlinear ordinary differential equation of high
order can be represented as a set of first order equations. You use the idnlgrey object to specify the
structures of such models based on physical insight about your system. The parameters of such
models typically have physical interpretations. Use this model to represent nonlinear ODEs with
unknown parameters.

For more information about estimating nonlinear state-space models, see “Grey-Box Model
Estimation”.

See Also

Related Examples
• “Identifying Nonlinear ARX Models” on page 11-15
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Represent Nonlinear Dynamics Using MATLAB File for Grey-Box Estimation” on page 13-80

More About
• “About Identified Nonlinear Models” on page 11-2
• “Nonlinear Model Structures” on page 11-6
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Preparing Data for Nonlinear Identification
Estimating nonlinear ARX and Hammerstein-Wiener models requires uniformly sampled time-domain
data. Your data can have one or more input and output channels.

For time-series data, you can only fit nonlinear ARX models and nonlinear state-space models on page
13-25.

Tip Whenever possible, use different data sets for model estimation and validation.

Before estimating models, import your data into the MATLAB workspace and do one of the following:

• In the System Identification app. Import data into the app, as described in “Represent Data”.
• At the command line. Represent your data as an iddata object, as described in the

corresponding reference page.

You can analyze data quality and preprocess data by interpolating missing values, filtering to
emphasize a specific frequency range, or resampling using a different sample time (see “Ways to
Prepare Data for System Identification” on page 2-5).

Data detrending can be useful in certain cases, such as before modeling the relationship between the
change in input and the change in output about an operating point. However, most applications do
not require you to remove offsets and linear trends from the data before nonlinear modeling.

See Also

Related Examples
• “Identifying Nonlinear ARX Models” on page 11-15
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Represent Nonlinear Dynamics Using MATLAB File for Grey-Box Estimation” on page 13-80

More About
• “About Identified Nonlinear Models” on page 11-2
• “Available Nonlinear Models” on page 11-9
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What are Nonlinear ARX Models?
Nonlinear ARX models extend the linear ARX models on page 6-2 to the nonlinear case. The structure
of these models enables you to model complex nonlinear behavior using flexible nonlinear functions,
such as wavelet and sigmoid networks. For information about when to fit nonlinear models, see
“About Identified Nonlinear Models” on page 11-2.

Nonlinear ARX Model Extends the Linear ARX Structure
A linear SISO ARX model on page 6-2 has the following structure:

y(t) + a1y(t − 1) + a2y(t − 2) + ... + anay(t − na) = b1u(t) + b2u(t − 1) + ... + bnbu(t − nb + 1) + e t

Where, u,y, and e are the input, output, and noise. This structure implies that the current output y(t)
is predicted as a weighted sum of past output values and current and past input values. na is the
number of past output terms, and nb is the number of past input terms used to predict the current
output. The input delay nk is set to zero to simplify the notation. Rewriting the equation as a product
gives:

yp(t) = −a1, − a2, ..., − ana, b1, b2, .., bnb
∗ y(t − 1), y(t − 2), ..., y(t − na), u(t), u(t − 1), ..., u(t − nb− 1) T

where y(t − 1), y(t − 2), ..., y(t − na), u(t), u(t − 1), ..., u(t − nb− 1) are delayed input and output
variables, called regressors. The coefficients vector [–a1, ... ,bnb] represents the weighting applied to
these regressors. The linear ARX model thus predicts the current output yp as a weighted sum of its
regressors.

The structure of a nonlinear ARX model allows the following additional flexibility:

• Instead of the weighted sum of the regressors that represents a linear mapping, the nonlinear
ARX model has a more flexible nonlinear mapping function, F.

yp(t) = F(y(t − 1), y(t − 2), y(t − 3), ..., u(t), u(t − 1), u(t − 2), ..)

Inputs to F are model regressors. When you specify the nonlinear ARX model structure, you can
choose one of several available nonlinear functions. For example, F can represent a weighted sum
of wavelets that operate on the distance of the regressors from their means. For more information,
see “Available Mapping Functions for Nonlinear ARX Models” on page 11-20.

• Nonlinear ARX regressors can be both delayed input-output variables and more complex,
nonlinear expressions of delayed input and output variables. Examples of such nonlinear
regressors are y(t-1)2, u(t-1)*y(t-2), abs(u(t-1)), and max(u(t-1)*y(t-3),-10).

Structure of Nonlinear ARX Models
A nonlinear ARX model consists of model regressors and an output function. The output function
includes linear and nonlinear functions that act on the model regressors to give the model output and
a fixed offset for that output. This block diagram represents the structure of a nonlinear ARX model in
a simulation scenario.

11 Nonlinear Black-Box Model Identification

11-12



The software computes the nonlinear ARX model output y in two stages:

1 It computes regressor values from the current and past input values and the past output data.

In the simplest case, regressors are delayed inputs and outputs, such as u(t–1) and y(t–3). These
kind of regressors are called linear regressors. You specify linear regressors using the
linearRegressor object. You can also specify linear regressors by using linear ARX model
orders as an input argument. For more information, see “Nonlinear ARX Model Orders and
Delay” on page 11-14. However, this second approach constrains your regressor set to linear
regressors with consecutive delays. To create polynomial regressors, use the
polynomialRegressor object. You can also specify custom regressors, which are nonlinear
functions of delayed inputs and outputs. For example, u(t–1)y(t–3) is a custom regressor that
multiplies instances of input and output together. Specify custom regressors using the
customRegressor object.

You can assign any of the regressors as inputs to the linear function block of the output function,
the nonlinear function block, or both.

2 It maps the regressors to the model output using an output function block. The output function
block can include linear and nonlinear blocks in parallel. For example, consider the following
equation:

F(x) = LT(x− r) + g Q(x− r) + d

Here, x is a vector of the regressors, and r is the mean of x. F(x) = LT(x− r) + y0 is the output of
the linear function block. g Q(x− r) + y0 represents the output of the nonlinear function block. Q
is a projection matrix that makes the calculations well-conditioned. d is a scalar offset that is
added to the combined outputs of the linear and nonlinear blocks. The exact form of F(x) depends
on your choice of output function. You can select from the available mapping objects on page 11-
20, such as tree-partition networks, wavelet networks, and multilayer neural networks. You can
also exclude either the linear or the nonlinear function block from the output function.

When estimating a nonlinear ARX model, the software computes the model parameter values,
such as L, r, d, Q, and other parameters specifying g.

The resulting nonlinear ARX models are idnlarx objects that store all model data, including model
regressors and parameters of the output function. For more information about these objects, see
“Nonlinear Model Structures” on page 11-6.
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Typically, you use nonlinear ARX models as black-box structures. The nonlinear function of the
nonlinear ARX model is a flexible nonlinearity estimator with parameters that need not have physical
significance. You can estimate nonlinear ARX in the System Identification app or at the command
line using the nlarx command. You can use uniformly sampled time-domain input-output data or
time-series data (no inputs) for estimating nonlinear ARX models. Your data can have one or more
input and output channels. You cannot use frequency-domain data for estimation.

Nonlinear ARX Model Orders and Delay
You can use the orders and delays of a nonlinear ARX model to define the linear regressors of the
model. The orders and delay are defined as follows:

• na — Number of past output terms used to predict the current output.
• nb — Number of past input terms used to predict the current output.
• nk — Delay from input to the output in terms of the number of samples.

The meaning of na, nb, and nk is similar to that for linear ARX model parameters. Orders are
specified as scalars for SISO data, and as ny-by-nu matrices for MIMO data, where ny and nu are the
number of outputs and inputs. If you are not sure what values to use for the orders and delays, you
can estimate them as described in “Preliminary Step – Estimating Model Orders and Input Delays” on
page 6-8. Such an estimate is based on linear ARX models and only provides initial guidance. The
best orders for a linear ARX model might not be the best orders for a nonlinear ARX model.

System Identification Toolbox software computes linear regressors using the model orders and
delays. For example, suppose that you specify na = 2, nb = 3, and nk = 5 for a SISO model with
input u and output y. The toolbox computes linear regressors y(t-2), y(t-1),u(t-5), u(t-6), and u(t-7).

Rather than use ARX model order to specify regressor delays, you can also specify regressors directly
to capture more complex behavior. When you specify linear regressors directly, you can include
nonconsecutive delay terms. You can also specify polynomial regressors and custom regressors. For
more information, see “Estimate Nonlinear ARX Models in the App” on page 11-22 and “Estimate
Nonlinear ARX Models at the Command Line” on page 11-25.

See Also
idnlarx | nlarx

More About
• “About Identified Nonlinear Models” on page 11-2
• “Identifying Nonlinear ARX Models” on page 11-15
• “Available Mapping Functions for Nonlinear ARX Models” on page 11-20
• “Using Nonlinear ARX Models” on page 11-40
• “How the Software Computes Nonlinear ARX Model Output” on page 11-41
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Identifying Nonlinear ARX Models
Nonlinear ARX models extend the linear ARX model to the nonlinear case. For information about the
structure of nonlinear ARX models, see “What are Nonlinear ARX Models?” on page 11-12

You can estimate nonlinear ARX models in the System Identification app or at the command line
using the nlarx command. To estimate a nonlinear ARX model, you first prepare the estimation data.
You then configure the model structure and estimation algorithm, and then perform the estimation.
After estimation, you can validate the estimated model as described in “Validate Nonlinear ARX
Models” on page 11-36.

Prepare Data for Identification
You can use uniformly sampled time-domain input-output data or time-series data (no inputs) for
estimating nonlinear ARX models. Your data can have zero or more input channels and one or more
output channels. You cannot use frequency-domain data for estimation.

To prepare the data for model estimation, import your data into the MATLAB workspace, and do one
of the following:

• In the System Identification app — Import data into the app, as described in “Represent Data”.
• At the command line — Represent your data as an iddata object.

After importing the data, you can analyze data quality and preprocess data by interpolating missing
values, filtering to emphasize a specific frequency range, or resampling using a different sample time.
For more information, see “Ways to Prepare Data for System Identification” on page 2-5. For most
applications, you do not need to remove offsets and linear trends from the data before nonlinear
modeling. However, data detrending can be useful in some cases, such as before modeling the
relationship between the change in input and output about an operating point.

After preparing your estimation data, you can configure your model structure, loss function, and
estimation algorithm, and then estimate the model using the estimation data.

Configure Nonlinear ARX Model Structure
A nonlinear ARX model consists of a set of regressors that can be any combination of linear,
polynomial, and custom regressors, and an output function that typically contains a nonlinear and a
linear component, as well as a static offset. The block diagram represents the structure of a nonlinear
ARX model on page 11-12 in a simulation scenario.
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To configure the structure of a nonlinear ARX model:

1 Configure the model regressors.

Choose the linear, polynomial, and customer regressors based on your knowledge of the physical
system you are trying to model.

a Specify linear regressors in one of the following ways:

• Specify model orders and delay to create the set of linear regressors. For more
information, see “Nonlinear ARX Model Orders and Delay” on page 11-14.

• Directly specify the linear regressors by constructing and using linearRegressor
objects.

• Initialize the model using a linear ARX model. You can perform this operation at the
command line only. The initialization configures the nonlinear ARX model to use the
linear regressors of the linear model. For more information, see “Initialize Nonlinear ARX
Estimation Using Linear Model” on page 11-18.

b Specify polynomial regressors and custom regressors. Polynomial regressors are polynomials
that are composed of delayed input and output variables. Custom regressors are arbitrary
functions of past inputs and outputs, such as products, powers, and other MATLAB
expressions of input and output variables. Specify polynomial and custom regressors in
addition to, or instead of, linear regressors for greater flexibility in modeling your data. For
more information, see polynomialRegressor and customRegressor.

c Assign regressors as inputs to the linear and nonlinear components of the output function
block. Any regressor can be assigned to either or both of these components. Limiting the
number of regressors that are input to the nonlinear component can help reduce model
complexity and keep the estimation well conditioned.

The choice of regressors to use for each component can require multiple trials. You can
examine a nonlinear ARX plot on page 11-37 to help you gain insight into which regressors
have the strongest effect on the model output. Understanding the relative importance of the
regressors on the output can then help you decide how to assign the regressors.

2 Configure the output function block.

Specify and configure the output function F(x).

F(x) = LT(x− r) + g Q(x− r) + d
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Here, x is a vector of the regressors, and r is the mean of the regressors x. F(x) = LT(x− r) + y0
is the output of the linear function block. g Q(x− r) + y0 represents the output of the nonlinear
function block. Q is a projection matrix that makes the calculations well conditioned. d is a scalar
offset that is added to the combined outputs of the linear and nonlinear blocks. The exact form of
F(x) depends on your choice of output function. You can select from available nonlinearity
estimators on page 11-20, such as tree-partition networks, wavelet networks, and multilayer
neural networks. You can also exclude either the linear or the nonlinear function block from the
output function.

You can also perform one of the following tasks:

a Exclude the nonlinear function from the output function such that F(x) =
F(x) = LT(x− r) + y0.

b Exclude the linear function from the output function such that F(x) = g Q(x− r) + y0.

Note You cannot exclude the linear function from tree partitions and neural networks.

For information about how to configure the model structure at the command line and in the app, see
“Estimate Nonlinear ARX Models at the Command Line” on page 11-25 and “Estimate Nonlinear
ARX Models in the App” on page 11-22.

Specify Estimation Options for Nonlinear ARX Models
To configure the model estimation, specify the loss function to be minimized, and choose the
estimation algorithm and other estimation options to perform the minimization.

Configure Loss Function

The loss function or cost function is a function of the error between the model output and the
measured output. For more information about loss functions, see “Loss Function and Model Quality
Metrics” on page 1-46.

At the command line, use the nlarx option set, nlarxOptions to configure your loss function. You
can specify the following options:

• Focus — Specifies whether the simulation or prediction error is minimized during parameter
estimation. By default, the software minimizes one-step prediction errors, which correspond to a
Focus value of 'prediction'. If you want a model that is optimized for reproducing simulation
behavior, specify Focus as 'simulation'. Minimization of simulation error requires
differentiable nonlinear functions and takes more time than one-step-ahead prediction error
minimization. Thus, you cannot use treepartition and neuralnet nonlinearities when
minimizing the simulation error because these nonlinearity estimators are not differentiable.

• OutputWeight — Specifies a weighting of the error in multi-output estimations.
• Regularization — Modifies the loss function to add a penalty on the variance of the estimated

parameters. For more information, see “Regularized Estimates of Model Parameters” on page 1-
34.

Specify Estimation Algorithm

To estimate a nonlinear ARX model, the software uses iterative search algorithms to minimize the
error between the simulated or predicted model output and the measured output. At the command
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line, use nlarxOptions to specify the search algorithm and other estimation options. Some of the
options you can specify are:

• SearchMethod — Search method for minimization of prediction or simulation errors, such as
Gauss-Newton and Levenberg-Marquardt line search, and Trust-Region-Reflective Newton
approach.

• SearchOptions — Option set for the search algorithm, with fields that depend on the value of
SearchMethod, such as:

• MaxIterations — Maximum number of iterations.
• Tolerance — Condition for terminating iterative search when the expected improvement of

the parameter values is less than a specified value.

To see a complete list of available estimation options, see nlarxOptions. For details about how to
specify these estimation options in the app, see “Estimate Nonlinear ARX Models in the App” on page
11-22.

After preprocessing the estimation data and configuring the model structure and estimation options,
you can estimate the model in the System Identification app, or using nlarx at the command line.
The resulting model is an idnlarx object that stores all model data, including model regressors and
parameters of the nonlinearity estimator. For more information about these model objects, see
“Nonlinear Model Structures” on page 11-6. You can validate the estimated model as described in
“Validate Nonlinear ARX Models” on page 11-36.

Initialize Nonlinear ARX Estimation Using Linear Model
At the command line, you can use an ARX structure polynomial model (idpoly with only A and B as
active polynomials) for nonlinear ARX estimation. To learn more about when to use linear models, see
“When to Fit Nonlinear Models” on page 11-2.

Typically, you create a linear ARX model using the arx command. You can provide the linear model
when constructing or estimating a nonlinear ARX model. For example, use the following syntax to
estimate a nonlinear ARX model using estimation data and a linear ARX model LinARXModel.

m = nlarx(data,LinARXModel)

Here m is an idnlarx object, and data is a time-domain iddata object. The software uses the linear
model for initializing the nonlinear ARX estimation by:

• Assigning the linear ARX model orders and delays as initial values of the nonlinear ARX model
orders (na and nb properties of the idnlarx object) and delays (nk property). The software uses
these orders and delays to compute linear regressors in the nonlinear ARX model structure on
page 11-12.

• Using the A and B polynomials of the linear model to compute the linear function of the
nonlinearity estimators (LinearCoef parameter of the nonlinearity estimator object), except if
the nonlinearity estimator is a neural network.

During estimation, the estimation algorithm uses these values to adjust the nonlinear model to the
data.

Note When you use the same data for estimation, a nonlinear ARX model initialized using a linear
ARX model produces a better fit to measured output than the linear ARX model itself.
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By default, the nonlinearity estimator is the wavelet network (wavenet object). You can also specify
different input and output nonlinearity estimators. For example, you can specify a sigmoid network
nonlinearity estimator.

m = nlarx(data,LinARXModel,'sigmoid')

For an example, see “Estimate Nonlinear ARX Models Initialized Using Linear ARX Models” on page
11-33.

See Also
Functions
idnlarx | nlarx

Apps
System Identification

More About
• “What are Nonlinear ARX Models?” on page 11-12
• “Estimate Nonlinear ARX Models in the App” on page 11-22
• “Estimate Nonlinear ARX Models at the Command Line” on page 11-25
• “Validate Nonlinear ARX Models” on page 11-36
• “Using Nonlinear ARX Models” on page 11-40
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Available Mapping Functions for Nonlinear ARX Models
System Identification Toolbox software provides several mapping functions F(x) for nonlinear ARX
models. When used in a model, these mapping functions collectively make up the output function of
the nonlinear ARX model architecture. For more information about F(x), see “Structure of Nonlinear
ARX Models” on page 11-12.

Each mapping function corresponds to an object class in this toolbox. When you estimate nonlinear
ARX models in the app, System Identification Toolbox creates and configures objects based on these
classes. You can also create and configure mapping functions at the command line.

Most mapping functions represent the nonlinear function as a summed series of nonlinear units, such
as wavelet networks or sigmoid functions, and also contain a linear component. You can configure the
number of nonlinear units n for estimation. For a detailed description of each mapping function, see
the corresponding reference page.

Nonlinearity Mapping Object Structure Comments
Wavelet network
(default)

wavenet
g(x) = ∑

k = 1

n
αkκ βk x− γk

where κ(s) is the wavelet function.

By default, the
estimation algorithm
determines the number
of units n automatically.

One layer
sigmoid network

sigmoidnet
g(x) = ∑

k = 1

n
αkκ βk x− γk

where κ(s) = es + 1 −1 is the sigmoid function.
βk is a row vector such that βk(x− γk) is a
scalar.

Default number of units
n is 10.

Tree partition treepartition Piecewise linear function over partitions of the
regressor space defined by a binary tree.

The estimation
algorithm determines
the number of units
automatically.
Try using tree
partitions for modeling
data collected over a
range of operating
conditions.

F is linear in x linear This estimator produces a model that is similar
to the linear ARX model, but offers the
additional flexibility of specifying custom
regressors.

Use to specify custom
regressors as the
mapping function
rather than a nonlinear
mapping object .

Multilayered
neural network

neuralnet Uses as a network object created using the
Deep Learning Toolbox™ software.

 

Custom network
(user-defined)

customnet Similar to sigmoid network but you specify κ(s). (For advanced use)
Uses the unit function
that you specify.
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See Also

More About
• “What are Nonlinear ARX Models?” on page 11-12
• “Identifying Nonlinear ARX Models” on page 11-15
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Estimate Nonlinear ARX Models in the App
You can estimate nonlinear ARX models in the System Identification app after you perform the
following tasks:

• Import data into the System Identification app (see “Preparing Data for Nonlinear Identification”
on page 11-11).

• (Optional) Choose a nonlinearity estimator in “Available Mapping Functions for Nonlinear ARX
Models” on page 11-20.

To estimate a nonlinear ARX model using the imported estimation data and chosen nonlinearity
estimators:

1 In the System Identification app, select Estimate > Nonlinear ARX Models to open the
Estimate Nonlinear ARX Models dialog box.

2 (Optional) Edit Model name by deleting the default model name and entering a new name. The
name of the model should be unique to all nonlinear ARX models in the System Identification
app.

3 (Optional) If you want to refine the parameters of a previously estimated model or configure the
model structure to match that of an existing model:

a Click Initialize. A Initial Model Specification dialog box opens.
b In the Initial Model drop-down list, select a nonlinear ARX model.

The model must be in the Model Board of the System Identification app and the input/output
dimensions of this initial model must match that of the estimation data, selected as Working
Data in the app.

c Click OK.

The model structure as well as the parameter values are updated to match that of the
selected model.

Clicking Estimate causes the estimation to use the parameters of the initial model as the
starting point.

Note When you select an initial model, you can optionally update the estimation algorithm
settings to match those used for the initial model by selecting the Inherit the model’s
algorithm properties option.

4 Keep the default settings in the Nonlinear Models dialog box that specify the model structure and
the algorithm, or modify these settings:

Note For more information about available options, click Help in the Nonlinear Models dialog
box to open the app help.
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What to Configure Options in Nonlinear
Models GUI

Comment

Model order In the Regressors tab, edit
the No. of Terms
corresponding to each input
and output channel.

Model order na is the output
number of terms and nb is
the input number of terms.

Input delay In the Regressors tab, edit
the Delay corresponding to
an input channel.

If you do not know the input
delay value, click Infer
Input Delay. This action
opens the Infer Input Delay
dialog box to suggest
possible delay values.

Regressors In the Regressors tab, click
Edit Regressors.

This action opens the Model
Regressors dialog box. Use
this dialog box to create
custom regressors or to
include specific regressors in
the nonlinear block.

Nonlinearity estimator In the Model Properties
tab.

To use all standard and
custom regressors in the
linear block only, you can
exclude the nonlinear block
by setting Nonlinearity to
None.

Estimation algorithm In the Estimate tab, click
Algorithm Options.

 

5 To obtain regularized estimates of model parameters, in the Estimate tab, click Estimation
Options. Specify the regularization constants in the Regularization_Tradeoff_Constant and
Regularization_Weighting fields. To learn more, see “Regularized Estimates of Model
Parameters” on page 1-34.

6 Click Estimate to add this model to the System Identification app.

The Estimate tab displays the estimation progress and results.
7 Validate the model response by selecting the desired plot in the Model Views area of the System

Identification app. For more information about validating models, see “Validate Nonlinear ARX
Models” on page 11-36.

If you get a poor fit, try changing the model structure or algorithm configuration in step 5.

You can export the model to the MATLAB workspace by dragging it to To Workspace in the System
Identification app.

See Also
Apps
System Identification
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More About
• “What are Nonlinear ARX Models?” on page 11-12
• “Available Mapping Functions for Nonlinear ARX Models” on page 11-20
• “Identifying Nonlinear ARX Models” on page 11-15
• “Validate Nonlinear ARX Models” on page 11-36
• “Using Nonlinear ARX Models” on page 11-40
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Estimate Nonlinear ARX Models at the Command Line
You can estimate nonlinear ARX models after you perform the following tasks:

• Prepare your data, as described in “Preparing Data for Nonlinear Identification” on page 11-11.
• (Optional) Estimate model orders and delays the same way you would for linear ARX models. See

“Preliminary Step – Estimating Model Orders and Input Delays” on page 6-8.
• (Optional) Choose a mapping function for the output function in “Available Mapping Functions for

Nonlinear ARX Models” on page 11-20.
• (Optional) Estimate or construct a linear ARX model for initialization of nonlinear ARX model. See

“Initialize Nonlinear ARX Estimation Using Linear Model” on page 11-18.

Estimate Model Using nlarx
Use nlarx to both construct and estimate a nonlinear ARX model. After each estimation, validate the
model on page 11-36 by comparing it to other models and simulating or predicting the model
response.

Basic Estimation

Start with the simplest estimation using m = nlarx(data,[na nb nk]). For example:

load iddata1;
% na = nb = 2 and nk = 1 
m = nlarx(z1,[2 2 1])

m = 
Nonlinear ARX model with 1 output and 1 input
  Inputs: u1
  Outputs: y1

Regressors:
  Linear regressors in variables y1, u1
  List of all regressors

Output function: Wavelet Network with 1 unit

Sample time: 0.1 seconds

Status:                                          
Estimated using NLARX on time domain data "z1".  
Fit to estimation data: 68.83% (prediction focus)
FPE: 1.975, MSE: 1.885

View the regressors.

getreg(m)

ans = 4×1 cell
    {'y1(t-1)'}
    {'y1(t-2)'}
    {'u1(t-1)'}
    {'u1(t-2)'}
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The second input argument [na nb nk] specifies the model orders and delays. By default, the
output function is the wavelet network wavenet, which accepts regressors as inputs to its linear and
nonlinear functions. m is an idnlarx object.

For MIMO systems, nb, nf, and nk are ny-by-nu matrices. See the nlarx reference page for more
information about MIMO estimation.

Create an nlarxOptions option set and configure the Focus property to minimize simulation error.

opt = nlarxOptions('Focus','simulation');
M = nlarx(z1,[2 2 1],'sigmoid',opt);

Configure Model Regressors
Linear Regressors

Linear regressors represent linear functions that are based on delayed input and output variables and
which provide the inputs into the model output function. When you use orders to specify a model, the
number of input regressors is equal to na and the number of output regressors is equal to nb. The
orders syntax limits you to consecutive lags. You can also create linear regressors using
linearRegressor. When you use linearRegressor, you can specify arbitrary lags.

Polynomial Regressors

Explore including polynomial regressors using polynomialRegressor in addition to the linear
regressors in the nonlinear ARX model structure. Polynomial regressors are polynomial functions of
delayed inputs and outputs. (see “Nonlinear ARX Model Orders and Delay” on page 11-14).

For example, generate polynomial regressors up to order 2.

P = polynomialRegressor({'y1','u1'},{[1],[2]},2);

Append the polynomial regressors to the linear regressors in m.Regressors.

m.Regressors = [m.Regressors;P];
getreg(m)

ans = 8×1 cell
    {'y1(t-1)'  }
    {'y1(t-2)'  }
    {'u1(t-1)'  }
    {'u1(t-2)'  }
    {'y1(t-3)'  }
    {'y1(t-5)'  }
    {'y1(t-1)^2'}
    {'u1(t-2)^2'}

m now includes polynomial regressors.

View the size of the m.Regressors array.

size(m.Regressors)

ans = 1×2
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     3     1

The array now contains three regressor objects.

Custom Regressors

Use customRegressor to construct regressors as arbitrary functions of model input and output
variables.

.For example, create two custom regressors that implement 'sin(y1(t-1)' and
'y1(t-2).*u1(t-3)'.

C1 = customRegressor({'y1'},{1},@(x)sin(x));
C2 = customRegressor({'y1','u1'},{2,3},@(x,y)x.*y);
m.Regressors = [m.Regressors;C1;C2];
getreg(m) % displays all regressors

ans = 10×1 cell
    {'y1(t-1)'         }
    {'y1(t-2)'         }
    {'u1(t-1)'         }
    {'u1(t-2)'         }
    {'y1(t-3)'         }
    {'y1(t-5)'         }
    {'y1(t-1)^2'       }
    {'u1(t-2)^2'       }
    {'sin(y1(t-1))'    }
    {'y1(t-2).*u1(t-3)'}

View the properties of custom regressors. For example, get the function handle of the first custom
regressor in the array. This regressor is the fourth regressor set in the Regressors array.

C1_fcn = m.Regressors(4).VariablesToRegressorFcn

C1_fcn = function_handle with value:
    @(x)sin(x)

View the regressor description.

display(m.Regressors(4))

Custom regressor: sin(y1(t-1))
    VariablesToRegressorFcn: @(x)sin(x)
                  Variables: {'y1'}
                       Lags: {[1]}
                 Vectorized: 1
               TimeVariable: 't'

  Regressors described by this set

Combine Regressors

Once you have created linear, polynomial, and custom regressor objects, you can combine them in
any way you want to suit your estimation needs.
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Specify Regressor Inputs to Linear and Nonlinear Components
Model regressors can enter as inputs to either or both linear and nonlinear function components of
the mapping functions making up the output function. To reduce model complexity and keep the
estimation well-conditioned, consider assigning a reduced set of regressors to the nonlinear
component. You can also assign a subset of regressors to the linear component. The regressor usage
table that manages the assignments provides complete flexibility. You can assign any combination of
regressors to each component. For example, specify a nonlinear ARX model to be linear in past
outputs and nonlinear in past inputs.

m = nlarx(z1,[2 2 1]); 
disp(m.RegressorUsage)

               y1:LinearFcn    y1:NonlinearFcn
               ____________    _______________

    y1(t-1)       true              true      
    y1(t-2)       true              true      
    u1(t-1)       true              true      
    u1(t-2)       true              true      

m.RegressorUsage{3:4,1} = false;
m.RegressorUsage{1:2,2} = false;
disp(m.RegressorUsage)

               y1:LinearFcn    y1:NonlinearFcn
               ____________    _______________

    y1(t-1)       true              false     
    y1(t-2)       true              false     
    u1(t-1)       false             true      
    u1(t-2)       false             true      

Configure Output Function
The following table summarizes available mapping objects for the model output function.

Mapping Description Value (Default Mapping Object Configuration) Mapping Object
Wavelet network
(default)

'wavenet' or 'wave' wavenet

One layer sigmoid network 'sigmoidnet' or 'sigm' sigmoidnet
Tree partition 'treepartition' or 'tree' treepartition
F is linear in x 'linear' or [ ] or '' linear

Additional available mapping objects include multilayered neural networks and custom networks that
you create.

Specify a multilayered neural network using:

m = nlarx(data,[na nb nk],NNet)

where NNet is the neural network object you create using the Deep Learning Toolbox software. See
the neuralnet reference page.
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Specify a custom network by defining a function called gaussunit.m, as described in the
customnet reference page. Define the custom network object CNetw and estimate the model:

CNetw = customnet(@gaussunit);
m = nlarx(data,[na nb nk],CNetw)

Exclude Linear Function in Output Function

If your model output function includes wavenet, sigmoidnet, or customnet mapping objects, you
can exclude the linear function using the LinearFcn.Use property of the mapping object. The
mapping object becomes F(x)=g Q(x− r) + y0, where g(.) is the nonlinear function and y0 is the
offset.

Note You cannot exclude the linear function from tree partition and neural network mapping objects.

Exclude Nonlinear Function in Output Function

Configure the nonlinear ARX structure to include only the linear function in the mapping object by
setting the mapping object to linear. In this case, F(x) = LT(x− r) + y0 is a weighted sum of model
regressors plus an offset. Such models provide a bridge between purely linear ARX models and fully
flexible nonlinear models.

A popular nonlinear ARX configuration in many applications uses polynomial regressors to model
system nonlinearities. In such cases, the system is considered to be a linear combination of products
of (delayed) input and output variables. Use the polynomialRegressor command to easily generate
combinations of regressor products and powers.
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For example, suppose that you know the output y(t) of a system to be a linear combination of (y(t −
1))2, (u(t − 1))2 and y(t − 1)u(t − 1)). To model such a system, use:

P = polynomialRegressor({'y1','u1'},{1,1},2)

P = 
Order 2 regressors in variables y1, u1
               Order: 2
           Variables: {'y1'  'u1'}
                Lags: {[1]  [1]}
         UseAbsolute: [0 0]
    AllowVariableMix: 0
         AllowLagMix: 0
        TimeVariable: 't'

  Regressors described by this set

P.AllowVariableMix = true;
M = nlarx(z1,P,'linear');
getreg(M)

ans = 3×1 cell
    {'y1(t-1)^2'      }
    {'u1(t-1)^2'      }
    {'y1(t-1)*u1(t-1)'}

For more complex combinations of polynomial delays and mixed-variable regressors, you can also use
customRegressor.

Iteratively Refine Model
If your model structure includes mapping objects that support iterative search (see “Specify
Estimation Options for Nonlinear ARX Models” on page 11-17), you can use nlarx to refine model
parameters:

m1 = nlarx(z1,[2 2 1],'sigmoidnet');
m2 = nlarx(z1,m1); % can repeatedly run this command

You can also use pem to refine the original model:

m2 = pem(z1,m1);

Check the search termination criterion m.Report.Termination.WhyStop . If WhyStop indicates
that the estimation reached the maximum number of iterations, try repeating the estimation and
possibly specifying a larger value for the nlarxOptions.SearchOptions.MaxIterations
estimation option:

opt = nlarxOptions;
opt.SearchOptions.MaxIterations = 30;
m2 = nlarx(z1,m1,opt); % runs 30 more iterations
                               % starting from m1

When the m.Report.Termination.WhyStop value is Near (local) minimum, (norm( g) <
tol or No improvement along the search direction with line search , validate your
model to see if this model adequately fits the data. If not, the solution might be stuck in a local
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minimum of the cost-function surface. Try adjusting the SearchOptions.Tolerance value or the
SearchMethod option in the nlarxOptions option set, and repeat the estimation.

You can also try perturbing the parameters of the last model using init (called randomization) and
refining the model using nlarx:

M1 = nlarx(z1, [2 2 1], 'sigmoidnet'); % original model
M1p = init(M1);    % randomly perturbs parameters about nominal values
M2 = nlarx(z1, M1p);  % estimates parameters of perturbed model

You can display the progress of the iterative search in the MATLAB Command Window using the
nlarxOptions.Display estimation option:

opt = nlarxOptions('Display','on');
M2= nlarx(z1,M1p,opt);

Troubleshoot Estimation
If you do not get a satisfactory model after many trials with various model structures and algorithm
settings, it is possible that the data is poor. For example, your data might be missing important input
or output variables and does not sufficiently cover all the operating points of the system.

Nonlinear black-box system identification usually requires more data than linear model identification
to gain enough information about the system.

Use nlarx to Estimate Nonlinear ARX Models
This example shows how to use nlarx to estimate a nonlinear ARX model for measured input/output
data.

Prepare the data for estimation.

load twotankdata
z = iddata(y, u, 0.2);
ze = z(1:1000); zv = z(1001:3000);

Estimate several models using different model orders, delays, and nonlinearity settings.

m1 = nlarx(ze,[2 2 1]);
m2 = nlarx(ze,[2 2 3]);
m3 = nlarx(ze,[2 2 3],wavenet(8));

An alternative way to perform the estimation is to configure the model structure first, and then to
estimate this model.

m4 = idnlarx([2 2 3],sigmoidnet(14));
m4.RegressorUsage.("y1:NonlinearFcn")(3:4) = false;
m4 = nlarx(ze,m4);

Compare the resulting models by plotting the model outputs with the measured output.

compare(zv, m1,m2,m3,m4)
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See Also
Functions
idnlarx | nlarx

More About
• “Available Mapping Functions for Nonlinear ARX Models” on page 11-20
• “Identifying Nonlinear ARX Models” on page 11-15
• “Validate Nonlinear ARX Models” on page 11-36
• “Using Nonlinear ARX Models” on page 11-40
• “Estimate Nonlinear ARX Models Initialized Using Linear ARX Models” on page 11-33
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Estimate Nonlinear ARX Models Initialized Using Linear ARX
Models

This example shows how to estimate nonlinear ARX models by using linear ARX models.

Load the estimation data.

load throttledata.mat

This command loads the data object ThrottleData into the workspace. The object contains input
and output samples collected from an engine throttle system, sampled at a rate of 100 Hz.

A DC motor controls the opening angle of the butterfly valve in the throttle system. A step signal (in
volts) drives the DC motor. The output is the angular position (in degrees) of the valve.

Plot the data to view and analyze the data characteristics.

plot(ThrottleData)

In the normal operating range of 15-90 degrees, the input and output variables have a linear
relationship. You use a linear model of low order to model this relationship.

In the throttle system, a hard stop limits the valve position to 90 degrees, and a spring brings the
valve to 15 degrees when the DC motor is turned off. These physical components introduce
nonlinearities that a linear model cannot capture.
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Estimate an ARX model to model the linear behavior of this single-input single-output system in the
normal operating range.

Detrend the data because linear models cannot capture offsets.

Tr = getTrend(ThrottleData); 
Tr.OutputOffset = 15;
DetrendedData = detrend(ThrottleData,Tr);

Estimate a linear ARX model with na=2, nb=1, nk=1.

opt = arxOptions('Focus','simulation');
LinearModel = arx(DetrendedData,[2 1 1],opt);

Compare the simulated model response with the estimation data.

compare(DetrendedData, LinearModel)

The linear model captures the rising and settling behavior in the linear operating range but does not
account for output saturation at 90 degrees.

Estimate a nonlinear ARX model to model the output saturation.

optNL = nlarxOptions('Focus','simulation');
NonlinearModel = nlarx(ThrottleData,LinearModel,'sigmoidnet',optNL);

The software uses the orders and delay of the linear model for the orders of the nonlinear model. In
addition, the software computes the linear function of sigmoidnet nonlinearity estimator.
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Compare the nonlinear model with the estimation data.

compare(ThrottleData, NonlinearModel)

The model captures the nonlinear effects (output saturation) and improves the overall fit to data.

See Also

More About
• “Identifying Nonlinear ARX Models” on page 11-15
• “Estimate Nonlinear ARX Models in the App” on page 11-22
• “Estimate Nonlinear ARX Models at the Command Line” on page 11-25
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Validate Nonlinear ARX Models
After estimating a nonlinear ARX model on page 11-15 for your system, you can validate whether it
reproduces the system behavior within acceptable bounds. You can validate your model in different
ways. It is recommended that you use separate data sets for estimating and validating your model. If
the validation indicates low confidence in the estimation, then see “Troubleshooting Model
Estimation” on page 17-92 for next steps. For general information about validating models, see
“Model Validation”.

Compare Model Output to Measured Output
Plot simulated or predicted model output and measured output data for comparison, and compute
best fit values. At the command line, use compare command. You can also use sim and predict to
simulate and predict model response. For information about plotting simulated and predicted output
in the app, see “Simulation and Prediction in the App” on page 17-15.

Check Iterative Search Termination Conditions
The estimation report that is generated after model estimation lists the reason the software
terminated the estimation. For example, suppose that the report indicates that the estimation
reached the maximum number of iterations. You can try repeating the estimation by specifying a
larger value for the maximum number of iterations. For information about how to configure the
maximum number of iterations and other estimation options, see “Specify Estimation Options for
Nonlinear ARX Models” on page 11-17.

To view the estimation report in the app, after model estimation is complete, view the Estimation
Report area of the Estimate tab. At the command line, use M.Report.Termination to display the
estimation termination conditions, where M is the estimated Nonlinear ARX model. For example,
check the M.Report.Termination.WhyStop field that describes why the estimation was stopped.

For more information about the estimation report, see “Estimation Report” on page 1-21.

Check the Final Prediction Error and Loss Function Values
You can compare the performance of several estimated models by comparing the final prediction
error and loss function values that are shown in the estimation report.

To view these values for an estimated model M at the command line, use the M.Report.Fit.FPE
(final prediction error) and M.Report.Fit.LossFcn (value of loss function at estimation
termination) properties. Smaller values typically indicate better performance. However,
M.Report.Fit.FPE values can be unreliable when the model contains many parameters relative to
the estimation data size. Use these indicators with other validation techniques to draw reliable
conclusions.

Perform Residual Analysis
Residuals are differences between the model output and the measured output. Thus, residuals
represent the portion of the output not explained by the model. You can analyze the residuals using
techniques such as the whiteness test and the independence test. For more information about these
tests, see “What Is Residual Analysis?” on page 17-40.
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At the command line, use resid to compute, plot, and analyze the residuals. To plot residuals in the
app, see “How to Plot Residuals in the App” on page 17-43.

Examine Nonlinear ARX Plots
A nonlinear ARX plot displays the evaluated model nonlinearity for a chosen model output as a
function of one or two model regressors. For a model M, the model nonlinearity (M.Nonlinearity) is
a nonlinearity estimator function, such as wavenet, sigmoidnet, or treepartition, that uses
model regressors as its inputs.

To understand what is plotted, suppose that {r1,r2,…,rN} are the N regressors used by a nonlinear
ARX model M with nonlinearity nl corresponding to a model output. You can use getreg(M) to view
these regressors. The expression Nonlin = evaluate(nl,[v1,v2,...,vN]) returns the model
output for given values of these regressors, that is, r1 = v1, r2 = v2, ..., rN = vN. For plotting the
nonlinearities, you select one or two of the N regressors, for example, rsub = {r1,r4}. The
software varies the values of these regressors in a specified range, while fixing the value of the
remaining regressors, and generates the plot of Nonlin vs. rsub. By default, the software sets the
values of the remaining fixed regressors to their estimated means, but you can change these values.
The regressor means are stored in the Nonlinearity.Parameters.RegressorMean property of
the model.

Examining a nonlinear ARX plot can help you gain insight into which regressors have the strongest
effect on the model output. Understanding the relative importance of the regressors on the output
can help you decide which regressors to include in the nonlinear function for that output. If the shape
of the plot looks like a plane for all the chosen regressor values, then the model is probably linear in
those regressors. In this case, you can remove the corresponding regressors from nonlinear block,
and repeat the estimation.

Furthermore, you can create several nonlinear models for the same data using different nonlinearity
estimators, such a wavenet network and treepartition, and then compare the nonlinear surfaces
of these models. Agreement between plots for various models increases the confidence that these
nonlinear models capture the true dynamics of the system.
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Creating a Nonlinear ARX Plot

To create a nonlinear ARX plot in the System Identification app, select the Nonlinear ARX check
box in the Model Views area. To include or exclude a model on the plot, click the corresponding
model icon in the app. For general information about creating and working with plots in the app, see
“Working with Plots” on page 21-8.

At the command line, after you have estimated a nonlinear ARX model M, use plot to view the shape
of the nonlinearity.

plot(M)

You can use additional plot arguments to specify the following information:

• Include multiple nonlinear ARX models on the plot.
• Configure the regressor values for computing the nonlinearity values.

Configuring a Nonlinear ARX Plot

To configure the nonlinear ARX plot:

1 Select the output channel in the Select nonlinearity at output drop-down list. The nonlinearity
values that correspond to the selected output channel are displayed.

2 Select Regressor 1 from the list of available regressors. In the Range field, enter the range of
values to include on the plot for this regressor. The regressor values are plotted on the Reg1 axis
of the plot.

If the regressor selection options are not visible, click  to expand the Nonlinear ARX Model
Plot window.

3 Specify Regressor 2 as one of the following options:

• To display three axes on the plot, select Regressor 2. In the Range field, enter the range of
values to include on the plot for this regressor. The regressor values are plotted on the Reg2
axis of the plot.

• To display only two axes, select <none> in the Regressor 2 list.
4 Fix the values of the regressors that are not displayed by clicking Fix Values. In the Fix

Regressor Values dialog box, double-click the Value cell to edit the constant value of the
corresponding regressor. The default values are determined during model estimation. Click OK.

If you generate the nonlinear ARX plot in the app, you can perform the following additional tasks:
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Action Procedure
Change the grid spacing of the regressors along
each axis.

In the plot window, select Options > Set
number of samples, and enter the number of
samples to use for each regressor. Click Apply
and then Close.

For example, if the number of samples is 20, each
regressor variable contains 20 points in its
specified range. For a 3-D plots, this results in
evaluating the nonlinearity at 20 x 20 = 400
points.

Change axis limits. Select Options > Set axis limits to open the
Axis Limits dialog box, and edit the limits. Click
Apply.

Hide or show the plot legend. Select Style > Legend. Select this option again
to show the legend.

Rotate in three dimensions.

Note Available only when you have selected two
regressors as independent variables.

Select Style > Rotate 3D and drag the axes on
the plot to a new orientation. To disable three-
dimensional rotation, select Style > Rotate 3D
again.

See Also
compare | predict | resid | sim

More About
• “Identifying Nonlinear ARX Models” on page 11-15
• “Estimate Nonlinear ARX Models in the App” on page 11-22
• “Estimate Nonlinear ARX Models at the Command Line” on page 11-25
• “Using Nonlinear ARX Models” on page 11-40
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Using Nonlinear ARX Models
After identifying a nonlinear ARX model, you can use the model for the following tasks:

• Simulation and prediction — At the command line, use sim and predict to simulate and
predict the model output. To compare models to measured output and to each other, use compare.
For information about plotting simulated and predicted output in the app, see “Simulation and
Prediction in the App” on page 17-15. You can also specify the initial conditions for simulation
and prediction. The toolbox provides several options to facilitate how you specify initial states. For
example, you can use findstates and data2state to compute state values based on the
requirement to maximize fit to measured output or based on operating conditions. See the
idnlarx reference page for a definition of the nonlinear ARX model states. To learn more about
how sim and predict compute the model output, see “How the Software Computes Nonlinear
ARX Model Output” on page 11-41.

You can also forecast the response of a dynamic system by using the forecast command. The
command predicts future outputs of the system using past output measurements. For more
information, see “Forecasting Response of Nonlinear ARX Models” on page 14-40.

• Linearization — Compute linear approximation of nonlinear ARX models using linearize or
linapp.

The linearize command provides a first-order Taylor series approximation of the system about
an operating point. linapp computes a linear approximation of a nonlinear model for a given
input data. For more information, see the “Linear Approximation of Nonlinear Black-Box Models”
on page 11-48. You can compute the operating point for linearization using findop.

After computing a linear approximation of a nonlinear model, you can perform linear analysis and
control design on your model using Control System Toolbox commands. For more information, see
“Using Identified Models for Control Design Applications” on page 19-2 and “Create and Plot
Identified Models Using Control System Toolbox Software” on page 19-5.

• Simulation and code generation using Simulink — You can import estimated nonlinear ARX
models into the Simulink software using the Nonlinear ARX block (IDNLARX Model) from the
System Identification Toolbox block library. Import the idnlarx object from the workspace into
Simulink using this block to simulate the model output.

The IDNLARX Model block supports code generation with Simulink Coder™ software, using both
generic and embedded targets. Code generation does not work when the model contains
customnet or neuralnet nonlinearity estimator, or custom regressors. For more information,
see “Simulate Identified Model in Simulink” on page 20-5.

See Also

More About
• “What are Nonlinear ARX Models?” on page 11-12
• “Identifying Nonlinear ARX Models” on page 11-15
• “Linear Approximation of Nonlinear Black-Box Models” on page 11-48
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How the Software Computes Nonlinear ARX Model Output
This topic describes how the software evaluates the output of nonlinearity estimators and uses this
output to compute the response of a nonlinear ARX model.

Evaluating Nonlinearities
Evaluating the predicted output of a nonlinearity for a specific regressor value x requires that you
first extract the nonlinearity F and regressors from the model:

F = m.Nonlinearity;
x = getreg(m,'all',data) % computes regressors

Evaluate F(x):

y = evaluate(F,x)

where x is a row vector of regressor values.

You can also evaluate predicted output values at multiple time instants by evaluating F for several
regressor vectors simultaneously:

y = evaluate(F,[x1;x2;x3])

Simulation and Prediction of Sigmoid Network
This example shows how the software computes the simulated and predicted output of a nonlinear
ARX model as a result of evaluating the output of its nonlinearity estimator for given regressor
values.

Estimating and Exploring a Nonlinear ARX Model

Estimate nonlinear ARX model with sigmoid network nonlinearity.

load twotankdata
estData = iddata(y,u,0.2,'Tstart',0);
M = nlarx(estData,[1 1 0],'sig');

Inspect the model properties and estimation result.

present(M)

Nonlinear ARX model with 1 output and 1 input       
  Inputs: u1                                        
  Outputs: y1                                       
                                                    
Regressors:                                         
  Linear regressors in variables y1, u1             
                                                    
Output function: Sigmoid Network with 10 units      
                                                    
Sample time: 0.2 seconds                            
                                                    
Status:                                             
Estimated using NLARX on time domain data "estData".
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Fit to estimation data: 96.31% (prediction focus)   
FPE: 4.804e-05, MSE: 4.666e-05                      

This command provides information about input and output variables, regressors, and nonlinearity
estimator.

Inspect the nonlinearity estimator.

NL = M.Nonlinearity; % equivalent to M.nl 
class(NL)   % nonlinearity class

ans = 
'sigmoidnet'

display(NL) % equivalent to NL

NL = 
Sigmoid Network
Inputs: y1(t-1), u1(t)
Output: y1

 Nonlinear Function: Sigmoid network with 10 units.
 Linear Function: initialized to [-0.161 -0.105]
 Output Offset: initialized to 0.271

           Input: [1x1 idpack.Channel]
          Output: [1x1 idpack.Channel]
       LinearFcn: [1x1 nlident.internal.UseProjectedLinearFcn]
    NonlinearFcn: [1x1 nlident.internal.RidgenetFcn]
          Offset: [1x1 nlident.internal.ChooseableOffset]

Inspect the sigmoid network parameter values.

NL.Parameters;

Prediction of Output

The model output is:

y1(t)= f(y1(t-1),u1(t))

where f is the sigmoid network function. The model regressors y1(t-1) and u1(t) are inputs to the
nonlinearity estimator. Time t is a discrete variable representing kT , where k = 0, 1, ... , and
T is the sampling interval. In this example, T=0.2 second.

The output prediction equation is:

yp(t)=f(y1_meas(t-1),u1_meas(t))

where yp(t) is the predicted value of the response at time t. y1_meas(t-1) and u1_meas(t) are the
measured output and input values at times t-1 and t, respectively.

Computing the predicted response includes:

• Computing regressor values from input-output data.
• Evaluating the nonlinearity for given regressor values.
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To compute the predicted value of the response using initial conditions and current input:

Estimate model from data and get nonlinearity parameters.

load twotankdata
estData = iddata(y,u,0.2,'Tstart',0);
M = nlarx(estData,[1 1 0],'sig');
NL = M.Nonlinearity;

Specify zero initial states.

x0 = 0;

The model has one state because there is only one delayed term y1(t-1). The number of states is
equal to sum(getDelayInfo(M)).

Compute the predicted output at time t=0.

RegValue = [0,estData.u(1)]; % input to nonlinear function f
yp_0 = evaluate(NL,RegValue);

RegValue is the vector of regressors at t=0 . The predicted output is
yp(t=0)=f(y1_meas(t=-1),u1_meas(t=0)). In terms of MATLAB variables, this output is
f(0,estData.u(1)), where

• y1_meas(t=0) is the measured output value at t=0, which is to estData.y(1).
• u1_meas(t =1) is the second input data sample estData.u(2).

Perform one-step-ahead prediction at all time values for which data is available.

RegMat = getreg(M,[],estData,x0);
yp = evaluate(NL,RegMat.Variables);

This code obtains a matrix of regressors RegMat for all the time samples using getreg. RegMat has
as many rows as there are time samples, and as many columns as there are regressors in the model -
two, in this example.

These steps are equivalent to the predicted response computed in a single step using predict:

yp_direct = predict(M,estData,1,'InitialState',x0);
% compare
t = estData.SamplingInstants;
plot(t,yp, t,yp_direct.OutputData,'.')
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Simulation of Output

The model output is:

y1(t)=f(y1(t-1),u1(t))

where f is the sigmoid network function. The model regressors y1(t-1) and u1(t) are inputs to the
nonlinearity estimator. Time t is a discrete variable representing kT , where k= 0, 1,.., and T is the
sampling interval. In this example, T=0.2 second.

The simulated output is:

ys(t) = f(ys(t-1),u1_meas(t))

where ys(t) is the simulated value of the response at time t. The simulation equation is the same as
the prediction equation, except that the past output value ys(t-1) results from the simulation at the
previous time step, rather than the measured output value.

Computing the simulated response includes:

• Computing regressor values from input-output data using simulated output values.
• Evaluating the nonlinearity for given regressor values.

To compute the simulated value of the response using initial conditions and current input:

Estimate model from data and get nonlinearity parameters.
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load twotankdata
estData = iddata(y,u,0.2,'Tstart',0);
M = nlarx(estData,[1 1 0],'sig');
NL = M.Nonlinearity;

Specify zero initial states.

x0 = 0;

The model has one state because there is only one delayed term y1(t-1). The number of states is equal
to sum(getDelayInfo(M)).

Compute the simulated output at time t =0, ys(t=0).

RegValue = [0,estData.u(1)];
ys_0 = evaluate(NL,RegValue);

RegValue is the vector of regressors at t=0. ys(t=0)=f(y1(t=-1),u1_meas(t=0)). In terms of MATLAB
variables, this output is f(0,estData.u(1)), where

• y1(t=-1) is the initial state x0 (=0).
• u1_meas(t=0) is the value of the input at t =0, which is the first input data sample

estData.u(1).

Compute the simulated output at time t=1, ys(t=1).

RegValue = [ys_0,estData.u(2)];
ys_1 = evaluate(NL,RegValue);

The simulated output ys(t=1)=f(ys(t=0),u1_meas(t=1)). In terms of MATLAB variables, this output is
f(ys_0,estData.u(2)), where

• ys(t=0) is the simulated value of the output at t=0.
• u1_meas(t=1) is the second input data sample estData.u(2).

Compute the simulated output at time t=2.

RegValue = [ys_1,estData.u(3)];
ys_2 = evaluate(NL,RegValue);

Unlike for output prediction, you cannot use getreg to compute regressor values for all time values.
You must compute regressors values at each time sample separately because the output samples
required for forming the regressor vector are available iteratively, one sample at a time.

These steps are equivalent to the simulated response computed in a single step using
sim(idnlarx):

ys = sim(M,estData,x0);

Nonlinearity Evaluation

This examples performs a low-level computation of the nonlinearity response for the sigmoidnet
network function:

F(x) = (x− r)PL + a1f x− r Qb1 + c1 + …
+anf x− r Qbn + cn + d
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where f is the sigmoid function, given by the following equation:

f (z) = 1
e−z + 1

In F(x), the input to the sigmoid function is x-r. x is the regressor value and r is regressor mean,
computed from the estimation data. an , nn, and cn are the network parameters stored in the model
property M.nl.par, where M is an idnlarx object.

Compute the output value at time t=1, when the regressor values are
x=[estData.y(1),estData.u(2)]:

Estimate model from sample data.

load twotankdata
estData = iddata(y,u,0.2,'Tstart',0);
M = nlarx(estData,[1 1 0],'sig');
NL = M.Nonlinearity;

Assign values to the parameters in the expression for F(x).

x = [estData.y(1),estData.u(2)]; % regressor values at t=1
r = NL.Parameters.RegressorMean;
P = NL.Parameters.LinearSubspace;
L = NL.Parameters.LinearCoef;
d = NL.Parameters.OutputOffset;
Q = NL.Parameters.NonLinearSubspace;
aVec = NL.Parameters.OutputCoef;   % [a_1; a_2; ...]
cVec = NL.Parameters.Translation;  % [c_1; c_2; ...]
bMat = NL.Parameters.Dilation;     % [b_1; b_2; ...]

Compute the linear portion of the response (plus offset).

yLinear = (x-r)*P*L+d;

Compute the nonlinear portion of the response.

f = @(z)1/(exp(-z)+1); % anonymous function for sigmoid unit
yNonlinear = 0;
for k = 1:length(aVec)
    fInput = (x-r)*Q* bMat(:,k)+cVec(k);
    yNonlinear = yNonlinear+aVec(k)*f(fInput);
end

Compute total response y = F(x) = yLinear + yNonlinear.

y = yLinear + yNonlinear;

y is equal to evaluate(NL,x).

See Also
evaluate

More About
• “What are Nonlinear ARX Models?” on page 11-12
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• “Identifying Nonlinear ARX Models” on page 11-15
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Linear Approximation of Nonlinear Black-Box Models
Why Compute a Linear Approximation of a Nonlinear Model?
Control design and linear analysis techniques using Control System Toolbox software require linear
models. You can use your estimated nonlinear model in these applications after you linear the model.
After you linearize your model, you can use the model for control design and linear analysis.

Choosing Your Linear Approximation Approach
System Identification Toolbox software provides two approaches for computing a linear
approximation of nonlinear ARX on page 11-15 and Hammerstein-Wiener on page 12-5 models.

To compute a linear approximation of a nonlinear model for a given input signal, use the linapp
command. The resulting model is only valid for the same input that you use to compute the linear
approximation. For more information, see “Linear Approximation of Nonlinear Black-Box Models for a
Given Input” on page 11-48.

If you want a tangent approximation of the nonlinear dynamics that is accurate near the system
operating point, use the linearize command. The resulting model is a first-order Taylor series
approximation for the system about the operating point, which is defined by a constant input and
model state values. For more information, see “Tangent Linearization of Nonlinear Black-Box Models”
on page 11-49.

Linear Approximation of Nonlinear Black-Box Models for a Given Input
linapp computes the best linear approximation, in a mean-square-error sense, of a nonlinear ARX or
Hammerstein-Wiener model for a given input or a randomly generated input. The resulting linear
model might only be valid for the same input signal as you the one you used to generate the linear
approximation.

linapp estimates the best linear model that is structurally similar to the original nonlinear model
and provides the best fit between a given input and the corresponding simulated response of the
nonlinear model.

To compute a linear approximation of a nonlinear black-box model for a given input, you must have
these variables:

• Nonlinear ARX model (idnlarx object) or Hammerstein-Wiener model (idnlhw object)
• Input signal for which you want to obtain a linear approximation, specified as a real matrix or an

iddata object

linapp uses the specified input signal to compute a linear approximation:

• For nonlinear ARX models, linapp estimates a linear ARX model using the same model orders na,
nb, and nk as the original model.

• For Hammerstein-Wiener models, linapp estimates a linear Output-Error (OE) model using the
same model orders nb, nf, and nk.

To compute a linear approximation of a nonlinear black-box model for a randomly generated input,
you must specify the minimum and maximum input values for generating white-noise input with a
magnitude in this rectangular range, umin and umax.
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For more information, see the linapp reference page.

Tangent Linearization of Nonlinear Black-Box Models
linearize computes a first-order Taylor series approximation for nonlinear system dynamics about
an operating point, which is defined by a constant input and model state values. The resulting linear
model is accurate in the local neighborhood of this operating point.

To compute a tangent linear approximation of a nonlinear black-box model, you must have these
variables:

• Nonlinear ARX model (idnlarx object) or Hammerstein-Wiener model (idnlhw object)
• Operating point

To specify the operating point of your system, you must specify the constant input and the states. For
more information about state definitions for each type of parametric model, see these reference
pages:

• idnlarx — Nonlinear ARX model
• idnlhw — Nonlinear Hammerstein-Wiener model

If you do not know the operating point values for your system, see “Computing Operating Points for
Nonlinear Black-Box Models” on page 11-49.

For more information, see the idnlarx/linearize or idnlhw/linearize reference page.

Computing Operating Points for Nonlinear Black-Box Models
An operating point is defined by a constant input and model state values.

If you do not know the operating conditions of your system for linearization, you can use findop to
compute the operating point from specifications.

Computing Operating Point from Steady-State Specifications

Use findop to compute an operating point from steady-state specifications:

• Values of input and output signals.
If either the steady-state input or output value is unknown, you can specify it as NaN to estimate
this value. This is especially useful when modeling MIMO systems, where only a subset of the
input and output steady-state values are known.

• More complex steady-state specifications.

Construct an object that stores specifications for computing the operating point, including input
and output bounds, known values, and initial guesses. For more information, see idnlarx/
operspec or idnlhw/operspec.

For more information, see the idnlarx/findop or idnlhw/findop reference page.

Computing Operating Points at a Simulation Snapshot

Compute an operating point at a specific time during model simulation (snapshot) by specifying the
snapshot time and the input value. To use this method for computing the equilibrium operating point,
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choose an input that leads to a steady-state output value. Use that input and the time value at which
the output reaches steady state (snapshot time) to compute the operating point.

It is optional to specify the initial conditions for simulation when using this method because initial
conditions often do not affect the steady-state values. By default, the initial conditions are zero.

However, for nonlinear ARX models, the steady-state output value might depend on initial conditions.
For these models, you should investigate the effect of initial conditions on model response and use
the values that produce the desired output. You can use data2state to map the input-output signal
values from before the simulation starts to the model's initial states. Because the initial states are a
function of the past history of the model's input and output values, data2state generates the initial
states by transforming the data.

See Also
idnlarx/linearize | idnlhw/linearize

More About
• “Using Nonlinear ARX Models” on page 11-40
• “Using Hammerstein-Wiener Models” on page 12-9
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Nonlinear Modeling of a Magneto-Rheological Fluid Damper
This example shows nonlinear black-box modeling of the dynamic behavior of a magneto-rheological
fluid damper. It shows how to create Nonlinear ARX and Hammerstein-Wiener models of the damper
using measurements of its velocity and the damping force.

The data used in this example was provided by Dr. Akira Sano (Keio University, Japan) and Dr.
Jiandong Wang (Peking University, China) who performed the experiments in a laboratory of Keio
University. See the following reference for a more detailed description of the experimental system
and some related studies.

J.Wang, A. Sano, T. Chen, and B. Huang. Identification of Hammerstein systems without explicit
parameterization of nonlinearity. International Journal of Control, In press, 2008. DOI:
10.1080/00207170802382376.

Experimental Setup

Magneto-Rheological (MR) fluid dampers are semi-active control devices used for reducing vibrations
of various dynamic structures. MR fluids, whose viscosities depend on the input voltage/current of the
device, provide controllable damping forces.

To study the behavior of such devices, a MR damper was fixed at one end to the ground and
connected at the other end to a shaker table generating vibrations. The voltage of the damper was set
to 1.25 v. The damping force f(t) was sampled every 0.005 s. The displacement was sampled every
0.001 s, which was then used to estimate the velocity v(t) at the sampling period of 0.005 s.

Input-Output Data

A data set containing the input and output measurements was stored in a MAT file called
mrdamper.mat. The input v(t) is the velocity [cm/s] of the damper, and the output f(t) is the damping
force [N]. The MAT file contains 3499 samples of data corresponding to a sampling rate of 0.005 s.
This data will be used for all the estimation and validation tasks carried out in this example.

% Let us begin by loading and inspecting the data.
load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'mrdamper.mat'));
who

Your variables are:

F   Ts  V   

Package loaded variables F (output force), V (input velocity) and Ts (sample time) into an IDDATA
object.

z = iddata(F, V, Ts, 'Name', 'MR damper', ...
    'InputName', 'v', 'OutputName', 'f',...
    'InputUnit', 'cm/s', 'OutputUnit', 'N');

Data Preparation for Estimation and Validation

Split this data set z into two subsets, first 2000 samples to be used for estimation (ze), and the rest to
be used for validation of results (zv).
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ze = z(1:2000);    % estimation data
zv = z(2001:end);  % validation data

Let us plot the two data sets together to visually verify their time ranges:

plot(ze, zv)
legend('ze','zv')

Model Order Selection

The first step in estimating black box models is to choose model orders. The definition of orders
depends upon the type of model.

• For linear and nonlinear ARX models, the orders are represented by three numbers: na, nb and nk
which define the number of past outputs, past inputs and input delays used for predicting the
value of output at a given time. The set of time-delayed I/O variables defined by the orders are
called "regressors".

• For Hammerstein-Wiener models, which represent linear models with static I/O nonlinearities, the
orders define the number of poles and zeros and input delay of the linear component. They are
defined by numbers nb (number of zeros +1), nf (number of poles), and nk (input delay in number
of lags).

Typically model orders are chosen by trial and error. However, the orders of the linear ARX model
may be computed automatically using functions such as arxstruc and selstruc. The orders thus
obtained give a hint about the possible orders to use for the nonlinear models as well. So let us first
try to determine the best order for a linear ARX model.
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V = arxstruc(ze,zv,struc(1:5, 1:5,1:5)); % try values in the range 1:5 for na, nb, nk
Order = selstruc(V,'aic') % selection of orders by Akaike's Information Criterion

Order =

     2     4     1

The AIC criterion has selected Order = [na nb nk] = [2 4 1], meaning that in the selected ARX model
structure, damper force f(t) is predicted by the 6 regressors f(t-1), f(t-2), v(t-1), v(t-2), v(t-3) and
v(t-4).

For more information on model order selection, see the example titled "Model Structure Selection:
Determining Model Order and Input Delay" (iddemo4.m).

Preliminary Analysis: Creating Linear Models

It is advisable to try linear models first because they are simpler to create. If linear models do not
provide satisfactory results, the results provide a basis for exploration of nonlinear models.

Let us estimate linear ARX and Output-Error (OE) models of orders suggested by output of
SELSTRUC above.

LinMod1 = arx(ze, [2 4 1]); % ARX model Ay = Bu + e
LinMod2 = oe(ze, [4 2 1]);  % OE model  y = B/F u + e

Similarly, we may create a linear state-space model whose order (= number of states) will be
determined automatically:

LinMod3 = ssest(ze); % creates a state-space model of order 3

Let us now compare the responses of these models to the measured output data in ze:

compare(ze, LinMod1, LinMod2, LinMod3) % comparison to estimation data
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A better test for model quality is to validate it against an independent data set. Hence we compare
the model responses against data set zv.

compare(zv, LinMod1, LinMod2, LinMod3) % comparison to validation data
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As observed, the best of these linear models has a fit of 51% on the validation data set.

Creating Nonlinear ARX Models

The linear model identification revealed that an ARX model provided less than 50% fit to the
validation data. To achieve better results we now explore the use of Nonlinear ARX (IDNLARX)
models. The need for nonlinear models for this data is also suggested by the advice utility which
may be used to inspect data for potential advantage of using a nonlinear model over a linear model.

advice(ze, 'nonlinearity')

There is an indication of nonlinearity in the data.
A nonlinear ARX model of order [4 4 1] and treepartition nonlinearity estimator 
performs better prediction of output than the corresponding ARX model of the 
same order. Consider using nonlinear models, such as IDNLARX, or IDNLHW. You 
may also use the "isnlarx" command to test for nonlinearity with more options.

The Nonlinear ARX models can be considered as nonlinear counterparts of ARX models that provide
greater modeling flexibility by two means:

1 The regressors may be combined using a nonlinear function rather than a weighted sum
employed by ARX models. Nonlinear functions such as sigmoid network, binary tree and wavelet
network may be used. In the identification context, these functions are called "nonlinear mapping
functions".

2 The regressors can themselves be arbitrary (possibly nonlinear) functions of I/O variables in
addition to time-delayed variable values employed by ARX models.
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Creating Regressors for Nonlinear ARX Models

When linear with contiguous lags, the regressors are most easily created using order matrix [na nb
nk], as described above. In the most general case of regressors with arbitrary lags, or when the
regressors are based on the absolute values of the variables, using the linearRegressor object
provides more flexibility. In case the regressors are polynomials of time-delayed variables, they can
be created using the polynomialRegressor object. For regressors employing arbitrary, user-
specified formulas, customRegressor objects may be used.

We will explore using various model orders and using various nonlinear mapping functions. Use of
polynomial or custom regressors is not explored. For ways of specifying custom regressors in
IDNLARX models, see the example titled "Building Nonlinear ARX Models with Nonlinear and Custom
Regressors".

Estimating a Default Nonlinear ARX Model

To begin, let us estimate an IDNLARX model of order [2 4 1] and a sigmoid network as the type of
nonlinearity. We shall use MaxIterations = 50, and Levenberg-Marquardt search method as
estimation options for all estimations below.

Options = nlarxOptions('SearchMethod', 'lm');
Options.SearchOptions.MaxIterations = 50;
Narx1 = nlarx(ze, [2 4 1], 'sigmoidnet',Options)

Narx1 = 

<strong>Nonlinear ARX model with 1 output and 1 input</strong>
  Inputs: v
  Outputs: f

Regressors:
  Linear regressors in variables f, v

Output function: Sigmoid Network with 10 units

Sample time: 0.005 seconds

Status:                                               
Estimated using NLARX on time domain data "MR damper".
Fit to estimation data: 95.8% (prediction focus)      
FPE: 6.648, MSE: 6.08

nlarx is the command used for estimating Nonlinear ARX models. Narx1 is a Nonlinear ARX model
with regressors R := [f(t-1), f(t-2), v(t-1) ... v(t-4)]. The nonlinearity is a sigmoidnet that uses a
combination of sigmoid unit functions and a linear weighted sum of regressors to compute the output.
The mapping function is stored in the OutputFcn property of the model.

disp(Narx1.OutputFcn)

<strong>Sigmoid Network</strong>
Inputs: f(t-1), f(t-2), v(t-1), v(t-2), v(t-3), v(t-4)
Output: f

 Nonlinear Function: Sigmoid network with 10 units.
 Linear Function: initialized to [48.3 -3.38 -3.34 -2.7 -1.38 2.15]
 Output Offset: initialized to -18.9
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           Input: [1×1 idpack.Channel]
          Output: [1×1 idpack.Channel]
       LinearFcn: [1×1 nlident.internal.UseProjectedLinearFcn]
    NonlinearFcn: [1×1 nlident.internal.RidgenetFcn]
          Offset: [1×1 nlident.internal.ChooseableOffset]

Examine the model quality by comparing the simulated output against the estimated and validated
data sets ze and zv:

compare(ze, Narx1); % comparison to estimation data

compare(zv, Narx1); % comparison to validation data

 Nonlinear Modeling of a Magneto-Rheological Fluid Damper

11-57



Trying Various Model Orders

We see a better fit as compared to the linear models of same orders. Next, we can try other orders in
the vicinity of those suggested by SELSTRUC.

Narx2{1} = nlarx(ze, [3 4 1], 'sigmoidnet',Options); % use na = 3, nb = 4, nk = 1.
Narx2{1}.Name = 'Narx2_1';
Narx2{2} = nlarx(ze, [2 5 1], 'sigmoidnet',Options); Narx2{2}.Name = 'Narx2_2';
Narx2{3} = nlarx(ze, [3 5 1], 'sigmoidnet',Options); Narx2{3}.Name = 'Narx2_3';
Narx2{4} = nlarx(ze, [1 4 1], 'sigmoidnet',Options); Narx2{4}.Name = 'Narx2_4';
Narx2{5} = nlarx(ze, [2 3 1], 'sigmoidnet',Options); Narx2{5}.Name = 'Narx2_5';
Narx2{6} = nlarx(ze, [1 3 1], 'sigmoidnet',Options); Narx2{6}.Name = 'Narx2_6';

Evaluate the performance of these models on estimation and validation data sets:

compare(ze, Narx1, Narx2{:}); % comparison to estimation data

11 Nonlinear Black-Box Model Identification

11-58



compare(zv, Narx1, Narx2{:}); % comparison to validation data

 Nonlinear Modeling of a Magneto-Rheological Fluid Damper

11-59



The model Narx2{6} seems to be providing good fits to both estimation and validation data sets while
its orders are smaller than those of Narx1. Based on this observation, let us use [1 3 1] as orders for
subsequent trials, and retain Nlarx2{6} for fit comparisons. This choice of orders corresponds to
using [f(t-1), v(t-1), v(t-2), v(t-3)] as the set of regressors.

Specifying Number of Units for Sigmoid Network Function

Next, let us explore the structure of the Sigmoid Network function. The most relevant property of this
estimator is the number of sigmoid units it uses. To be able to specify the number of units, we specify
the nonlinearity in the NLARX command (third input argument) using an object created by using its
constructor: sigmoidnet. In object form, we can query and configure various properties of the
estimator.

Sig = sigmoidnet(12); % create a SIGMOIDNET object that uses 12 units
Narx3 = nlarx(ze, [1 3 1], Sig, Options);

We compare this model against Narx1 and Narx2{6}, on estimation and validation data sets:

compare(ze, Narx3, Narx1, Narx2{6}); % comparison to estimation data
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compare(zv, Narx3, Narx1, Narx2{6}); % comparison to validation data
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The new model Narx3 provides no better fit than Narx2{6}. Hence we retain the number of units to
10 in subsequent trials.

Choosing Regressor Subset for Nonlinear Mapping Function

Typically, all the regressors defined by chosen orders ([1 3 1] here) are used by the nonlinear function
(sigmoidnet). If the number of regressors is large, this may increase the model complexity. It is
possible to select a subset of regressors to be used by the components of sigmoidnet without
modifying the model orders. This is facilitated by the property called 'RegressorUsage'. Its value is a
table that specifies which regressor are used by which components. For example, we may explore
using only those regressors that are contributed by the input variables to be used by the nonlinear
component of the sigmoid function. This can be done as follows:

Sig = sigmoidnet(10);
NarxInit = idnlarx(ze.OutputName, ze.InputName, [1 3 1], Sig);
NarxInit.RegressorUsage.("f:NonlinearFcn")(1) = false;
disp(NarxInit.RegressorUsage)
Narx4 = nlarx(ze, NarxInit, Options);

              f:LinearFcn    f:NonlinearFcn
              ___________    ______________

    f(t-1)       true            false     
    v(t-1)       true            true      
    v(t-2)       true            true      
    v(t-3)       true            true      
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This causes the regressors v(t-1), v(t-2), and v(t-3) to be used by the sigmoid unit functions. The
output variable based regressor f(t-1) is not used. Note that the sigmoidnet estimator also contains a
linear term represented by a weighted sum of all regressors. The linear term uses the full set of
regressors.

Create another model that uses regressors {y1(t-1), u1(t-2), u1(t-3)} for its nonlinear component.

Use = false(4,1);
Use([1 3 4]) = true;
NarxInit.RegressorUsage{:,2} = Use;
Narx5 = nlarx(ze, NarxInit, Options);

The model Narx5 seems to perform very well for both estimation and validation data sets.

compare(ze, Narx5); % comparison to estimation data

compare(zv, Narx5); % comparison to validation data
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Trying Various Nonlinear Mapping Functions

So far we have explored various model orders, number of units to be used in the Sigmoid Network
estimator and specification of a subset of regressors to be used by the nonlinear component of the
sigmoid network. Next, we try using other types of nonlinear functions. For using functions with
default properties, we may specify its name as a character vector to the estimation command, for
example 'wavenet'. However, if we want to tweak the properties of these functions (such as the
number of units, or the initial values of its parameters), the object form must be used - create the
object encapsulating the nonlinear mapping function and then set its properties.

Use a Wavelet Network function with default properties. Like sigmoidnet, a wavenet maps the
regressors to the output by using a sum of linear and nonlinear components; the nonlinear
component uses a sum of wavelets.

NarxInit = idnlarx(ze.OutputName, ze.InputName, [1 3 1], 'wavenet');
% Use only regressors 1 and 3 for the nonlinear component of wavenet
NarxInit.RegressorUsage.("f:NonlinearFcn")([2 4]) = false;
Narx6 = nlarx(ze, NarxInit, Options);

Use a Tree Partition nonlinear function with 20 units:

TreeNet = treepartition;
TreeNet.NonlinearFcn.NumberOfUnits = 20;
NarxInit.OutputFcn = TreeNet;
Narx7 = nlarx(ze, NarxInit, Options);

Compare the results against Narx3 and Narx5
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compare(ze, Narx3, Narx5, Narx6, Narx7) % comparison to estimation data

compare(zv, Narx3, Narx5, Narx6, Narx7) % comparison to validation data
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The models Narx6 and Narx7 seem to perform worse than Narx5, although we have not explored all
the options associated with their estimation (such as choice of nonlinear regressors, number of units
and other model orders).

Analyzing Estimated IDNLARX Models

Once a model has been identified and validated using the compare command, we may tentatively
select the one that provides the best results without adding too much extra complexity. The selected
model may then be analyzed further using command such as PLOT and resid.

To get some insight into the nature of the nonlinearities of the model, inspect cross-sections of the
nonlinear function F() in the estimated model f(t) = F(f(t-1), f(t-2), v(t-1),...,v(t-4)). For example, in
model Narx5, the function F() is a sigmoid network. To explore the shape of the output of F() as a
function of the regressors, use the PLOT command on the model:

plot(Narx5)
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The plot window offers tools for selecting the cross-section regressors and their ranges. For more
information, see "help idnlarx/plot".

The residual test can be used to further inspect the model. This test reveals if the prediction errors
are white and uncorrelated to the input data.

set(gcf,'DefaultAxesTitleFontSizeMultiplier',1,...
   'DefaultAxesTitleFontWeight','normal',...
   'Position',[100 100 780 520]);
resid(zv, Narx3, Narx5)
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A failure of residual test may point to dynamics not captured by the model. For the model, Narx3, the
residuals appear to be mostly within the 99% confidence bounds.

Creating Hammerstein-Wiener Models

The previously estimated nonlinear models are all of Nonlinear ARX (IDNLARX) type. Let us now try
Hammerstein-Wiener (IDNLHW) models. These models represent a series connection of static
nonlinear elements with a linear model. We may think of them as extensions of a linear output-error
(OE) models wherein we subject the input and output signals of the linear model to static
nonlinearities such as saturation or dead-zones.

Estimating an IDNLHW Model of Same Order as the Linear OE Model

The linear OE model LinMod2 was estimated using orders nb = 4, nf = 2 and nk = 1. Let us use the
same orders for estimation of an IDNLHW model. We will use sigmoid network as nonlinearity for
both input and output nonlinearities. The estimation is facilitated by the nlhw command. It is
analogous to the oe command used for linear OE model estimation. However, in addition to model
orders, we must also specify the names of, or objects for, the I/O nonlinearities.

Opt = nlhwOptions('SearchMethod','lm');
Nhw1 = nlhw(ze, [4 2 1], 'sigmoidnet', 'sigmoidnet', Opt)

Nhw1 =
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Hammerstein-Wiener model with 1 output and 1 input
 Linear transfer function corresponding to the orders nb = 4, nf = 2, nk = 1
 Input nonlinearity: Sigmoid Network with 10 units
 Output nonlinearity: Sigmoid Network with 10 units
Sample time: 0.005 seconds

Status:                                              
Estimated using NLHW on time domain data "MR damper".
Fit to estimation data: 83.72%                       
FPE: 97.72, MSE: 91.2

Compare the response of this model against estimation and validation data sets:

clf
compare(ze, Nhw1); % comparison to estimation data

compare(zv, Nhw1); % comparison to validation data
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We observe about 70% fit to validation data using model Nhw1.

Analyzing Estimated IDNLHW Model

As for Nonlinear ARX models, the Hammerstein-Wiener models may be inspected for their nature of
the I/O nonlinearities and the behavior of the linear component using the PLOT command. For more
information, type "help idnlhw/plot" in MATLAB Command Window.

plot(Nhw1)
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By default the input nonlinearity is plotted, showing that it may be simply a saturation function.

By clicking on the Y_NL icon, the output nonlinearity looks like a piecewise linear function.
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Click on the Linear Block icon and choose Pole-Zero Map in the pull-down menu, it is then observed
that a zero and a pole are quite close to each other, indicating that they may be removed, thereby
reducing the model orders.
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We will use this information to configure the structure of the model as shown next.

Trying Various Nonlinear Functions and Model Orders

Use saturation for input nonlinearity and sigmoid network for output nonlinearity, keeping the order
of the linear component unchanged:

Nhw2 = nlhw(ze, [4 2 1], 'saturation', 'sigmoidnet', Opt);

Use piecewise-linear nonlinearity for output and sigmoid network for input:

Nhw3 = nlhw(ze, [4 2 1],'sigmoidnet', 'pwlinear', Opt);

Use a lower order linear model:
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Nhw4 = nlhw(ze, [3 1 1],'sigmoidnet', 'pwlinear', Opt);

We may also choose to "remove" nonlinearity at the input, output or both. For example, in order to
use only an input nonlinearity (such models are called Hammerstein models), we may specify [] as
output nonlinearity:

Nhw5 = nlhw(ze, [3 1 1],'sigmoidnet', [], Opt);

Compare all models

compare(ze, Nhw1, Nhw2, Nhw3, Nhw4, Nhw5) % comparison to estimation data

compare(zv, Nhw1, Nhw2, Nhw3, Nhw4, Nhw5) % comparison to validation data
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Nhw1 remains the best among all models, as shown by the comparison to validation data, but the
other models, except Nhw5, have similar performance.

Conclusions

We explored various nonlinear models for describing the relationship between the voltage input and
the damping force output. It was seen that among the Nonlinear ARX models, Narx2{6}, and Narx5
performed the best, while the model Nhw1 was the best among the Hammerstein-Wiener models. We
also found that the Nonlinear ARX models provided the best option (best fits) for describing the
dynamics of the MR damper.

Narx5.Name = 'Narx5';
Nhw1.Name = 'Nhw1';
compare(zv, LinMod2, Narx2{6}, Narx5, Nhw1)
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We found that there are multiple options available with each model type to fine-tune the quality of
results. For Nonlinear ARX models, we can not only specify the model orders and the type of
nonlinear functions, but also configure how the regressors are used and tweak the properties of the
chosen functions. For Hammerstein-Wiener models, we can choose the type of input and output
nonlinear functions, as well as the order of the linear component. For both model types, we have
many choices of nonlinear functions available at our disposal to try and use. In lack of a particular
preference for model structure or knowledge of the underlying dynamics, it is recommended to try
the various choices and analyze their effect on the quality of the resulting models.
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A Tutorial on Identification of Nonlinear ARX and Hammerstein-
Wiener Models

This example shows identification of single-input-single-output (SISO) nonlinear black box models
using measured input-output data. The example uses measured data from a two-tank system to
explore various model structures and identification choices.

The Input-Output Data Set

In this example, the data variables stored in the twotankdata.mat file will be used. It contains 3000
input-output data samples of a two-tank system generated using a sample time of 0.2 seconds. The
input u(t) is the voltage [V] applied to a pump, which generates an inflow to the upper tank. A rather
small hole at the bottom of this upper tank yields an outflow that goes into the lower tank, and the
output y(t) of the two tank system is then the liquid level [m] of the lower tank. We create an IDDATA
object z to encapsulate the loaded data:

This data set is also used in the nonlinear grey box example "Two Tank System: C MEX-File Modeling
of Time-Continuous SISO System" where physical equations describing the system are assumed. This
example is about black box models, thus no knowledge of the actual physical laws is assumed.

load twotankdata
z = iddata(y, u, 0.2, 'Name', 'Two tank system');

Splitting the Data and Plotting

Split this data set into 3 subsets of equal size, each containing 1000 samples.

We shall estimate models with z1, and evaluate them on z2 and z3. z1 is similar to z2, but not z3.
Therefore in some sense, z2 would help us evaluate the interpolation ability of the models, while z3
would help us evaluate their extrapolation ability.

z1 = z(1:1000);
z2 = z(1001:2000);

 A Tutorial on Identification of Nonlinear ARX and Hammerstein-Wiener Models

11-77



z3 = z(2001:3000);
plot(z1,z2,z3)
legend('Estimation','Validation 1', 'Validation 2')

Regressor Selection

The first step in estimating nonlinear black box models is to pick the regressor set. The regressors
are simple formulas based on time-delayed input/output variables, the simplest case being the
variables lagged by a small set of consecutive values. For example, if "u" is the name of an input
variable, and "y" the name of an output variable, then an example regressor set can be { y(t-1), y(t-2),
u(t), u(t-1), u(t-2) }, where "t" denotes the time variable. Another example involving polynomial terms
could be {abs(y(t-2)), y(t-2)*u(t-1), u(t-4)^2}. More complex, arbitrary formulas in the delayed
variables are also possible.

In the System Identification Toolbox™, the regressors sets don't have to be created explicitly; a large
collection can be generated implicitly by just specifying their form (such as polynomial order), the
contributing variables and their lags. Specification objects linearRegressor,
polynomialRegressor and customRegressor are used for this purpose. For example R =
linearRegressor({'y','u'},{[1 2 4], [2 10]}) implies the regressor set {y(t-1), y(t-2), y(t-4), u(t-2),
u(t-10)}. Similarly, R = polynomialRegressor({'y'},{[1 2]},3) implies 3rd order polynomial regressors
in variable 'y' with lags 1 and 2, that is, the set {y(t-1)^3, y(t-2)^3}. More configuration choices are
available such as using only the absolute values, and/or allowing mix of lags in the regressor
formulas.
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Linear Regressor Specification Using an Order Matrix

When the model uses only linear regressors that are based on contiguous lags, it is often easier to
specify them using an order matrix, rather than using a linearRegressor object. The order matrix
[na nb nk], defines the numbers of past outputs, past inputs and the input delay used in the regressor
formulas. This is the same idea that is used when estimating the linear ARX models (see ARX,
IDPOLY). For example, NN = [2 3 4] implies that the output variable uses lags (1,2) and the input
variable uses the lags (4,5,6) leading to the regressor set {y(t-1), y(t-2), u(t-4), u(t-5), u(t-6)}.

Usually model orders are chosen by trial and error. Sometimes it is useful to try linear ARX models
first in order to get hints about the best orders. So let us first try to determine the optimal orders for
a linear ARX model, using the functions arxstruc and selstruc.

V = arxstruc(z1,z2,struc(1:5, 1:5,1:5));
% select best order by Akaike's information criterion (AIC)
nn = selstruc(V,'aic')

nn =

     5     1     3

The AIC criterion has selected nn = [na nb nk] = [5 1 3], meaning that, in the selected ARX model
structure, y(t) is predicted by the 6 regressors y(t-1),y(t-1),...,y(t-5) and u(t-3). We will try to use these
values when estimating nonlinear models.

Nonlinear ARX (IDNLARX) Models

In an IDNLARX model, the model output is a nonlinear function of regressors, like y(t) =
Fcn(y(t-1),y(t-1),...,y(t-5), u(t-3)).

IDNLARX models are typically estimated with the syntax:

M = NLARX(Data, Orders, Fcn).

It is similar to the linear ARX command, with the additional argument "Fcn" specifying the type of
nonlinear function. A Nonlinear ARX model produces its output by using a 2-stage transformation: 1.
Map the training data (input-output signals) to a set of regressors. Numerically, the regressor set is a
double matrix R, with one column of data for each regressor. 2. Map the regressors to a single output,
y = Fcn®, where Fcn() is a scalar nonlinear function.

To estimate an IDNLARX model, after the choice of model orders, we need to pick the type of
nonlinear mapping function Fcn() to use. Let us first try a Wavelet Network (wavenet) function.

mw1 = nlarx(z1,[5 1 3], wavenet);

The Wavelet Network uses a combination of wavelet units to map the regressors to the output of the
model. The model mw1 is an @idnalrx object. It stores the nonlinear mapping function (wavenet here)
in its OutputFcn property. The number of these units to use can be specified in advance, or we can
leave it to the estimation algorithm to determine an optimal value automatically. The property
NonlinearFcn.NumberOfUnits stores the chosen number of units in the model.

NLFcn = mw1.OutputFcn;
NLFcn.NonlinearFcn.NumberOfUnits

ans =
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     3

Examine the result by comparing the response of the model mw1 to the measured output in the
dataset z1.

compare(z1,mw1);

Using Model Properties

The first model was not quite satisfactory, so let us try to modify some properties of the model.
Instead of letting the estimation algorithm automatically choose the number of units in the WAVENET
function, this number can be explicitly specified.

mw2 = nlarx(z1,[5 1 3], wavenet(8));

Default InputName and OutputName have been used.

mw2.InputName
mw2.OutputName

ans =

  1×1 cell array

    {'u1'}
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ans =

  1×1 cell array

    {'y1'}

The regressors of the IDNLARX model can be viewed using the GETREG command. The regressors
are made from mw2.InputName, mw2.OutputName and time delays.

getreg(mw2)

ans =

  6×1 cell array

    {'y1(t-1)'}
    {'y1(t-2)'}
    {'y1(t-3)'}
    {'y1(t-4)'}
    {'y1(t-5)'}
    {'u1(t-3)'}

Note that the order matrix is equivalent to the linear regressor set created using the specification
object, as in:

R = linearRegressor([z1.OutputName; z1.InputName],{1:5, 3});
mw2_a = nlarx(z1, R, wavenet(8));
getreg(mw2_a)

ans =

  6×1 cell array

    {'y1(t-1)'}
    {'y1(t-2)'}
    {'y1(t-3)'}
    {'y1(t-4)'}
    {'y1(t-5)'}
    {'u1(t-3)'}

mw2_a is essentially the same model as mw2. The use of a specification object allows more flexibility;
use it when you do not want to use continguous lags, or have a minimum lag in output variables that
is greater than one.

Assigning Regressors to Mapping Functions

The output of an IDNLARX model is a static function of its regressors. Usually this mapping function
has a linear block, a nonlinear block, plus a bias term (output offset). The model output is the sum of
the outputs of these blocks and the bias. In order to reduce model complexity, only a subset of
regressors can be chosen to enter the nonlinear block and the linear block. The assignment of the
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regressors to the linear and nonlinear components of the mapping function is performed using the
RegressorUsage property of the model.

RegUseTable = mw2.RegressorUsage

RegUseTable =

  6×2 table

               y1:LinearFcn    y1:NonlinearFcn
               ____________    _______________

    y1(t-1)       true              true      
    y1(t-2)       true              true      
    y1(t-3)       true              true      
    y1(t-4)       true              true      
    y1(t-5)       true              true      
    u1(t-3)       true              true      

RegUseTable is a table that shows which regressors are used as inputs to the linear and the nonlinear
components of the Wavelet Network. Each row corresponds to one regressor. Suppose we want to use
only those regressors that are functions of input variable 'u1' in the nonlinear component. This
configuration can be achieved as follows.

RegNames = RegUseTable.Properties.RowNames;
I = contains(RegNames,'u1');
RegUseTable.("y1:NonlinearFcn")(~I) = false;

As an example, consider a model that uses polynomial regressors of order 2 in addition to the linear
ones used by mw2. First, generate a polynomial regressor specification set.

P = polynomialRegressor({'y1','u1'},{1:2, 0:3},2)

P = 

<strong>Order 2 regressors in variables y1, u1</strong>
               Order: 2
           Variables: {'y1'  'u1'}
                Lags: {[1 2]  [0 1 2 3]}
         UseAbsolute: [0 0]
    AllowVariableMix: 0
         AllowLagMix: 0
        TimeVariable: 't'

Now add the specification P to the model's Regressors property.

mw3 = mw2; % start with the mw2 structure for new estimation
mw3.Regressors = [mw3.Regressors; P]; % add the polynomial set to the model structure
RegNames = mw3.RegressorUsage.Properties.RowNames;
Ind = contains(RegNames,'u1');
mw3.RegressorUsage.("y1:NonlinearFcn")(~Ind) = false;

Finally, update the parameters of the model to fit the data by minimizing 1-step ahead prediction
errors.
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mw3 = nlarx(z1, mw3)

mw3 = 

<strong>Nonlinear ARX model with 1 output and 1 input</strong>
  Inputs: u1
  Outputs: y1

Regressors:
  1. Linear regressors in variables y1, u1
  2. Order 2 regressors in variables y1, u1

Output function: Wavelet Network with 5 units

Sample time: 0.2 seconds

Status:                                                     
Estimated using NLARX on time domain data "Two tank system".
Fit to estimation data: 96.72% (prediction focus)           
FPE: 3.583e-05, MSE: 3.438e-05

Evaluating Estimated Models

Different models, both linear and nonlinear, can be compared together in the same COMPARE
command.

mlin = arx(z1,[5 1 3]);  % linear ARX model
%
compare(z1,mlin,mw2,mw3)
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Model validation can be carried out by running the COMPARE command on the validation datasets.
First, validate the models by checking how well their simulated responses match the measured
output signal in z2.

compare(z2,mlin,mw2,mw3)
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Similarly, validate the estimated models against the dataset z3.

compare(z3,mlin,mw2,mw3)
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An analysis of the model residues may also be performed to validate the model quality. We expect the
residues to be white (uncorrelated with itself except at lag 0) and uncorrelated with the input signal.
The resideus are the 1-step ahead prediction errors. The residues can be visualized with bounds on
insignificant values by using the RESID command. For example on the valiation dataset z2, the
residues for the three identified models are shown below.

resid(z2,mlin,mw2,mw3)
legend show
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The residues are all uncorrelated with the input signal of z2 (z2.InputData). However, they exhibit
some auto-correlation for the models mlin and mw3. The model mw2 performs better on both (auto-
and cross-correlation) tests.

Function PLOT may be used to view the nonlinearity responses of various IDNLARX models. The plot
essentially shows the characteristics of the nonlinear mapping function Fcn().

plot(mw2,mw3) % plot nonlinearity response as a function of selected regressors
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Nonlinear ARX Model with SIGMOIDNET Function

In place of WAVENET, other nonlinear functions can be used in the model. Try the SIGMOIDNET
function, which maps the regressors to the output using a sum of sigmoid units (plus a linear and an
offset term). Configure the sigmoidnet to use 8 units of sigmoid (dilated and translated by different
amounts).

ms1 = nlarx(z1,[5 1 3], sigmoidnet(8));
compare(z1,ms1)
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Now evaluate the new model on the data set z2.

compare(z2,ms1);
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and on the data set z3.

compare(z3,ms1);
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Other Nonlinear Mapping Functions in IDNLARX Model

CUSTOMNET is similar to SIGMOIDNET, but instead of the sigmoid unit function, users can define
their own unit function in MATLAB files. This example uses the gaussunit function.

type gaussunit.m

function [f, g, a] = gaussunit(x)
%GAUSSUNIT customnet unit function example
%
%[f, g, a] = GAUSSUNIT(x)
%
% x: unit function variable
% f: unit function value
% g: df/dx
% a: unit active range (g(x) is significantly non zero in the interval [-a a])
%
% The unit function must be "vectorized": for a vector or matrix x, the output
% arguments f and g must have the same size as x, computed element-by-element.

% Copyright 2005-2006 The MathWorks, Inc.

% Author(s): Qinghua Zhang

f =  exp(-x.*x);  

if nargout>1
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  g = - 2*x .* f;
  a = 0.2;
end

% FILE END

For the customnet based model, use only the third, fifth and the sixth regressors as input to the
nonlinear component of the customnet function.

mc1_ini = idnlarx('y1','u1', [5 1 3], customnet(@gaussunit));
Use = false(6,1);
Use([3 5 6]) = true;
mc1_ini.RegressorUsage{:,2} = Use;
mc1 = nlarx(z1,mc1_ini);

Tree partition function is another mapping function that can be used in the Nonlinear ARX model.
Estimate a model using treepartition function:

mt1 = nlarx(z1,[5 1 3], treepartition);

Compare responses of models mc1 and mt1 to data z1.

compare(z1, mc1, mt1)
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Using the Network Object from Deep Learning Toolbox

If you have the Deep Learning Toolbox™ available, you can also use a neural network to define the
mapping function Fcn() of your IDNLARX model. This network must be a feed-forward network (no
recurrent component).

Here, we will create a single-output network with an unknown number of inputs (denote by input size
of zero in the network object). The number of inputs is set to the number of regressors during the
estimation process automatically.

if exist('feedforwardnet','file')==2 % run only if Deep Learning Toolbox is available
    ff = feedforwardnet([5 20]);  % use a feed-forward network to map regressors to output
    ff.layers{2}.transferFcn = 'radbas';
    ff.trainParam.epochs = 50;
    % Create a neuralnet mapping function that wraps the feed-forward network
    OutputFcn = neuralnet(ff);
    mn1 = nlarx(z1,[5 1 3], OutputFcn); % estimate network parameters
    compare(z1, mn1) % compare fit to estimation data
end

Hammerstein-Wiener (IDNLHW) Models

A Hammerstein-Wiener model is composed of up to 3 blocks: a linear transfer function block is
preceded by a nonlinear static block and/or followed by another nonlinear static block. It is called a
Wiener model if the first nonlinear static block is absent, and a Hammerstein model if the second
nonlinear static block is absent.
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IDNLHW models are typically estimated with the syntax:

M = NLHW(Data, Orders, InputNonlinearity, OutputNonlinearity).

where Orders = [nb bf nk] specifies the orders and delay of the linear transfer function.
InputNonlinearity and OutputNonlinearity specify the nonlinear functions for the two nonlinear
blocks, at the input and output end of the linear block. M is an @idnlhw model. The linear Output-
Error (OE) model corresponds to the case of trivial (unit gain) nonlinearities, that is, if the input and
the output nonlinear functions of an IDNLHW model are both unit gains, the model structure is
equivalent to a linear OE model.

Hammerstein-Wiener Model with the Piecewise Linear Nonlinear Function

The PWLINEAR (piecewise linear) nonlinear function is useful in general IDNLHW models.

Notice that, in Orders = [nb nf nk], nf specifies the number of poles of the linear transfer function,
somewhat related to the "na" order of the IDNLARX model. "nb" is related to the number if zeros.

mhw1 = nlhw(z1, [1 5 3], pwlinear, pwlinear);

The result can be evaluated with COMPARE as before.

compare(z1,mhw1)

Model properties can be visualized by the PLOT command.

Click on the block-diagram to choose the view of the input nonlinearity (UNL), the linear block or the
output nonlinearity (YNL).
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For the linear block, it is possible to choose the type of plots within Step response, Bode plot, Impulse
response and Pole-zero map.

plot(mhw1)

The break points of the two piecewise linear functions can be examined. This is a two row matrix, the
first row corresponds to the input and the second row to the output of the PWLINEAR function.

mhw1.InputNonlinearity.BreakPoints

ans =

  Columns 1 through 7
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    2.6179    3.3895    4.1611    4.9327    5.6297    6.3573    7.0850
   -2.2681   -1.6345    0.1033    2.2066    3.7696    4.9984    5.8644

  Columns 8 through 10

    7.8127    8.2741    9.2257
    6.4075    6.5725    9.1867

Hammerstein-Wiener Model with Saturation and Dead Zone Nonlinearities

The SATURATION and DEADZONE functions are physics inspired nonlinear functions. They can be
used to describe actuator/sensor saturation scenario and dry friction effects.

mhw2 = nlhw(z1, [1 5 3], deadzone, saturation);
compare(z1,mhw2)

The absence of a nonlinearity is indicated by the UNITGAIN object, or by the empty "[]" value. A unit
gain is a just a feed-through of an input signal to the output without any modification.

mhw3 = nlhw(z1, [1 5 3], 'deadzone', unitgain); % no output nonlinearity
mhw4 = nlhw(z1, [1 5 3], [],'saturation'); % no input nonlinearity

The limit values of DEADZONE and SATURATION can be examined after estimation.

mhw2.InputNonlinearity.ZeroInterval
mhw2.OutputNonlinearity.LinearInterval
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ans =

   -0.9974    4.7573

ans =

    0.2603    0.5846

The initial guess of ZeroInterval for DEADZONE or LinearInterval for SATURATION can be specified
while estimating the model.

mhw5 = nlhw(z1, [1 5 3], deadzone([0.1 0.2]), saturation([-1 1]));

Hammerstein-Wiener Model - Specifying Properties

The estimation algorithm options can be specified using the NLHWOPTIONS command.

opt = nlhwOptions();
opt.SearchMethod = 'gna';
opt.SearchOptions.MaxIterations = 7;
mhw6 = nlhw(z1, [1 5 3], deadzone, saturation, opt);

An already-estimated model can be refined by more estimation iterations.

Evaluated on the estimation data z1, mhw7 should have a better fit than mhw6.

opt.SearchOptions.MaxIterations = 30;
mhw7 = nlhw(z1, mhw6, opt);
compare(z1, mhw6, mhw7)
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Hammerstein-Wiener Model - Use Other Nonlinear Functions

The nonlinear functions PWLINEAR, SATURATION and DEADZONE have been mainly designed for
use in IDNLHW models. They can only estimate single variable nonlinearities. The other more
general nonlinear functions, SIGMOIDNET, CUSTOMNET and WAVENET, can also be used in
IDNLHW models. However, the non-differentiable functions TREEPARTITION and NEURALNET
cannot be used because the estimation of IDNLHW models require differentiable nonlinear functions.
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Motorized Camera - Multi-Input Multi-Output Nonlinear ARX
and Hammerstein-Wiener Models

This example shows how to estimate multi-input multi-output (MIMO) nonlinear black box models
from data. Two types of nonlinear black box models are offered in the System Identification Toolbox™
- Nonlinear ARX and Hammerstein-Wiener models.

The Measured Data Set

The data saved in the file motorizedcamera.mat will be used in this example. It contains 188 data
samples, collected from a motorized camera with a sample time of 0.02 seconds. The input vector u(t)
is composed of 6 variables: the 3 translation velocity components in the orthogonal X-Y-Z coordinate
system fixed to the camera [m/s], and the 3 rotation velocity components around the X-Y-Z axes
[rad/s]. The output vector y(t) contains 2 variables: the position (in pixels) of a point which is the
image taken by the camera of a fixed point in the 3D space. We create an IDDATA object z to hold the
loaded data:

load motorizedcamera
z = iddata(y, u, 0.02, 'Name', 'Motorized Camera', 'TimeUnit', 's');

Nonlinear ARX (IDNLARX) Model - Picking Regressors

Let us first try nonlinear ARX models. Two important elements need to be chosen: the model
regressors and the nonlinear mapping functions.

The regressors are simple formulas based on time-delayed I/O variables, the simplest case being the
variables lagged by a small set of consecutive values. For example, if "u" in the name of the input
variable, and "y" the name of the output variables, then an example regressor set can be { y(t-1),
y(t-2), u(t), u(t-1), u(t-2) }, where "t" denotes the time variable. Another example involving polynomial
terms could be {y(t-2)^4, y(t-2)*u(t-1), u(t-4)^2}. More complex, arbitrary formulas in the delayed
variables are also possible.

The easiest way of specifying linear regressors is by using an "orders matrix". This matrix takes the
form NN = [na nb nk] and it specifies by how many lags each output (na) and each input variable (nb,
nk) are delayed. This is the same idea that is used when estimating the linear ARX models (see ARX,
IDPOLY). For example, NN = [2 3 4] implies the regressor set {y(t-2), u(t-4), u(t-5), u(t-6)}. In the
general case of models with NY outputs and NU inputs, NN is a matrix with NY rows and NY+2*NU
rows.
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Nonlinear ARX (IDNLARX) Model - Preliminary Estimation Using Wavenet

To start, let us choose the orders NN = [na nb nk] = [ones(2,2), ones(2,6), ones(2,6)]. It means that
each output variable is predicted by all the output and input variables, each being delayed by 1
sample. The model equation can be written as y_i(t) = F_i(y1(t-1), y2(t-1), u1(t-1), u2(t-1), u3(t-1)), i =
1, 2. Let us choose a Wavelet Network (wavenet) as the nonlinear mapping function for both outputs.
The function NLARX estimates the parameters of the Nonlinear ARX model.

NN = [ones(2,2), ones(2,6), ones(2,6)]; % the orders
mw1 = nlarx(z, NN, wavenet);

Examine the result by comparing the output simulated with the estimated model and the output in
the measured data z:

compare(z,mw1)

Nonlinear ARX Model - Trying Higher Orders

Let us check if we can do better with higher orders. Note that when identifying models using basis
function expansions to express the nonlinearity, the number of model parameters can exceed the
number of data samples. In such cases, some estimation metrics such as Noise Variance and Final
Prediction Error (FPE) cannot be determined reliably. For the current example, we turn off the
warning informing us about this limitation.

ws = warning('off','Ident:estimation:NparGTNsamp');
%
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mw2 = nlarx(z, [ones(2,2), 2*ones(2,6), ones(2,6)], wavenet)
compare(z,mw2)

mw2 = 

<strong>Nonlinear ARX model with 2 outputs and 6 inputs</strong>
  Inputs: u1, u2, u3, u4, u5, u6
  Outputs: y1, y2

Regressors:
  Linear regressors in variables y1, y2, u1, u2, u3, u4, u5, u6

Output functions:
  Output 1: Wavelet Network with 27 units
  Output 2: Wavelet Network with 25 units

Sample time: 0.02 seconds

Status:                                                      
Estimated using NLARX on time domain data "Motorized Camera".
Fit to estimation data: [99.22;99.15]% (prediction focus)    
FPE: 0.1262, MSE: 0.4453

The second model mw2 is pretty good. So let us keep this choice of model orders in the following
examples.

nanbnk = [ones(2,2), 2*ones(2,6), ones(2,6)]; % final orders
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To view the regressor set implied by this choice of orders, use the GETREG command:

getreg(mw2)

ans =

  14×1 cell array

    {'y1(t-1)'}
    {'y2(t-1)'}
    {'u1(t-1)'}
    {'u1(t-2)'}
    {'u2(t-1)'}
    {'u2(t-2)'}
    {'u3(t-1)'}
    {'u3(t-2)'}
    {'u4(t-1)'}
    {'u4(t-2)'}
    {'u5(t-1)'}
    {'u5(t-2)'}
    {'u6(t-1)'}
    {'u6(t-2)'}

The numbers of units ("wavelets") of the two WAVENET function have been automatically chosen by
the estimation algorithm. These numbers are displayed below.

mw2.OutputFcn(1).NonlinearFcn.NumberOfUnits

ans =

    27

Nonlinear ARX Model - Adjusting Number of Units of Nonlinear Functions

The number of units in the WAVENET function can be explicitly specified instead of being
automatically chosen by the estimation algorithm. Suppose we want to use 10 units for the first
nonlinear mapping function, and 5 for the second one (note that the model for each output uses its
own mapping function; the array of all mapping functions is stored in the model's "OutputFcn"
property).

Fcn1 = wavenet(10); % output function for the first output
Fcn2 = wavenet(5);  % output function for the second output
mw3 = nlarx(z, nanbnk, [Fcn1; Fcn2])

mw3 = 

<strong>Nonlinear ARX model with 2 outputs and 6 inputs</strong>
  Inputs: u1, u2, u3, u4, u5, u6
  Outputs: y1, y2

Regressors:
  Linear regressors in variables y1, y2, u1, u2, u3, u4, u5, u6
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Output functions:
  Output 1: Wavelet Network with 10 units
  Output 2: Wavelet Network with 5 units

Sample time: 0.02 seconds

Status:                                                      
Estimated using NLARX on time domain data "Motorized Camera".
Fit to estimation data: [99.01;98.89]% (prediction focus)    
FPE: 0.2273, MSE: 0.7443

Nonlinear ARX Model - Trying Other Nonlinear Mapping Functions

In place of the WAVENET function, other nonlinear functions can also be used. Let us try the
TREEPARTITION for both outputs.

mt1 = nlarx(z, nanbnk, 'treepartition');

In the above call, we have used the string 'treepartition' in place of an object to specify the mapping
function. This syntax facilitates a quick way of constructing the model with the limitation that all the
mapping functions must be of the same type, and they must be used with their default property
values. In the following example, the treepartition object constructor is called to directly create a
Tree-partition nonlinear function object.

mt2 = nlarx(z, nanbnk, treepartition)

mt2 = 

<strong>Nonlinear ARX model with 2 outputs and 6 inputs</strong>
  Inputs: u1, u2, u3, u4, u5, u6
  Outputs: y1, y2

Regressors:
  Linear regressors in variables y1, y2, u1, u2, u3, u4, u5, u6

Output functions:
  Output 1: Tree Partition with 7 units
  Output 2: Tree Partition with 7 units

Sample time: 0.02 seconds

Status:                                                      
Estimated using NLARX on time domain data "Motorized Camera".
Fit to estimation data: [98.56;98.34]% (prediction focus)    
MSE: 1.615

Similarly, we can use a Sigmoid Network (SIGMOIDNET) as the mapping function. Estimation options
such as maximum iterations (MaxIterations) and iteration display can be specified using the
nlarxOptions command.

opt = nlarxOptions('Display','on');
opt.SearchOptions.MaxIterations = 5;
ms1 = nlarx(z, nanbnk, 'sigmoidnet', opt);
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This calling syntax for NLARX is very similar to the ones used before - specifying the data, the orders
and the nonlinear mapping functions as their primary input arguments. However, to modify the
estimation options from their default values, we constructed an option set, opt, using the
nlarxOptions command and passed it to the NLARX command as an additional input argument.

Nonlinear ARX Model with Mixed Nonlinear Functions

It is possible to use different nonlinear functions on different output channels in the same model.
Suppose we want to use a tree partition function to describe the first output and use a wavelet
network for the second output. The model estimation is shown below. The third input argument (the
nonlinear mapping function) is now an array of two different functions.
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Fcn1 = treepartition;
Fcn2 = wavenet;
mtw = nlarx(z, nanbnk, [Fcn1; Fcn2]);

Sometimes the function that maps the regressors to the model output need not be nonlinear; it could
simply be a weighted sum of the regressor vectors, plus an optional offset. This is similar to the linear
ARX models (except for the offset term). The absence of nonlinearity in an output channel can be
indicated by choosing a LINEAR function. The following example means that, in model_output(t) =
F(y(t-1), u(t-1), u(t-2)), the function F is composed of a linear component for the first output, and a
nonlinear component (SIGMOIDNET) for the second output.

Fcn1 = linear;
Fcn2 = sigmoidnet(2);
opt.Display = 'off'; % do not show estimation progress anymore
mls = nlarx(z, nanbnk, [Fcn1; Fcn2], opt)

mls = 

<strong>Nonlinear ARX model with 2 outputs and 6 inputs</strong>
  Inputs: u1, u2, u3, u4, u5, u6
  Outputs: y1, y2

Regressors:
  Linear regressors in variables y1, y2, u1, u2, u3, u4, u5, u6

Output functions:
  Output 1: Linear Function
  Output 2: Sigmoid Network with 2 units

Sample time: 0.02 seconds

Status:                                                      
Estimated using NLARX on time domain data "Motorized Camera".
Fit to estimation data: [98.72;98.79]% (prediction focus)    
FPE: 0.5594, MSE: 1.05

There is no nonlinearity in the model for the first output. It is not, however, purely linear because of
the presence of an offset term.

disp(mls.OutputFcn(1))

<strong>Linear Function</strong>
Inputs: y1(t-1), y2(t-1), u1(t-1), u1(t-2), u2(t-1), u2(t-2), u3(t-1), u3(t-2), u4(t-1), u4(t-2), u5(t-1), u5(t-2), u6(t-1), u6(t-2)
Output: y1

 Nonlinear Function: None
 Linear Function: initialized to [48.3 -32.2 -0.229 -0.0705 -0.113 -0.0516 -0.182 0.297 0.199 -0.133 -0.337 0.583 -0.448 0.167]
 Output Offset: initialized to 109

        Input: [1×1 idpack.Channel]
       Output: [1×1 idpack.Channel]
    LinearFcn: [1×1 nlident.internal.ProjectedLinearFcn]
       Offset: [1×1 nlident.internal.Offset]

We have the option of making it purely linear by choosing to not use the offset term. This choice can
be made by fixing the offset to a zero value before estimation.
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Fcn1.Offset.Value = 0;
Fcn1.Offset.Free = false;
mlsNoOffset = nlarx(z, nanbnk, [Fcn1; Fcn2], opt);

Inspection of Estimation Results

Various models can be compared in the same COMPARE command.

compare(z, mw2, ms1, mls)

Function PLOT may be used to view the nonlinearity responses of various models.

plot(mt1,mtw,ms1,mls)
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Note that the control panel on the right hand side of the plot allows for regressor selection and
configuration.

Other functions such as RESID, PREDICT and PE may be used on the estimated models in the same
way as in the case of linear models.

Hammerstein-Wiener (IDNLHW) Model - Preliminary Estimation

A Hammerstein-Wiener model is composed of up to 3 blocks: a linear transfer function block is
preceded by a nonlinear static block and/or followed by another nonlinear static block. It is called a
Wiener model if the first nonlinear static block is absent, and a Hammerstein model if the second
nonlinear static block is absent.

IDNLHW models are typically estimated using the syntax:

M = NLHW(Data, Orders, InputNonlinearity, OutputNonlinearity).

where Orders = [nb nf nk] specifies the orders and delay of the linear transfer function.
InputNonlinearity and OutputNonlinearity specify the nonlinear functions for the two nonlinear
blocks. The linear output error (OE) model corresponds to the case of trivial (UNITGAIN)
nonlinearities.
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Estimation of Hammerstein Model (No Output Nonlinearity)

Let us choose Orders = [nb bf nk] = [ones(2,6), ones(2,6), ones(2,6)]. It means that, in the linear
block, each output is the sum of 6 first order transfer functions driven by the 6 inputs. Try a
Hammerstein model (no output nonlinearity) with the input nonlinearity described by a piecewise
linear function. Notice that the entered single PWLINEAR object is automatically expanded to all the
6 input channels. UNITGAIN indicates absence of nonlinearity.

opt = nlhwOptions();
opt.SearchOptions.MaxIterations = 15;
NN = [ones(2,6), ones(2,6), ones(2,6)];
InputNL  = pwlinear;  % input nonlinearity
OutputNL = unitgain;  % output nonlinearity
mhw1 = nlhw(z, NN, InputNL, OutputNL, opt)

mhw1 =
Hammerstein-Wiener model with 2 outputs and 6 inputs
 Linear transfer function matrix corresponding to the orders:
   nb = [1 1 1 1 1 1; 1 1 1 1 1 1]
   nf = [1 1 1 1 1 1; 1 1 1 1 1 1]
   nk = [1 1 1 1 1 1; 1 1 1 1 1 1]
 Input nonlinearities:
   Input 1: Piecewise Linear
   Input 2: Piecewise Linear
   Input 3: Piecewise Linear
   Input 4: Piecewise Linear
   Input 5: Piecewise Linear
   Input 6: Piecewise Linear
 Output nonlinearities:
   Output 1: absent
   Output 2: absent
Sample time: 0.02 seconds

Status:                                                     
Estimated using NLHW on time domain data "Motorized Camera".
Fit to estimation data: [98.46;97.93]%                      
FPE: 7.928, MSE: 2.216

Examine the result with COMPARE.

compare(z, mhw1);
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Model properties can be visualized by the PLOT command.

Click on the block-diagram to choose the view of the input nonlinearity (UNL), the linear block or the
output nonlinearity (YNL).

When the linear block view is chosen, by default all the 12 channels are shown in very reduced sizes.
Choose one of the channels to have a better view. It is possible to choose the type of plots within Step
response, Bode plot, Impulse response and Pole-zero map.

plot(mhw1)
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The result shown by COMPARE was quite good, so let us keep the same model orders in the following
trials.

nbnfnk = [ones(2,6), ones(2,6), ones(2,6)];

Estimation of Wiener Model (No Input Nonlinearity)

Let us try a Wiener model. Notice that the absence of input nonlinearity can be indicated by "[]"
instead of the UNITGAIN object.

opt.SearchOptions.MaxIterations = 10;
mhw2 = nlhw(z, nbnfnk, [], 'pwlinear', opt)

mhw2 =
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Hammerstein-Wiener model with 2 outputs and 6 inputs
 Linear transfer function matrix corresponding to the orders:
   nb = [1 1 1 1 1 1; 1 1 1 1 1 1]
   nf = [1 1 1 1 1 1; 1 1 1 1 1 1]
   nk = [1 1 1 1 1 1; 1 1 1 1 1 1]
 Input nonlinearities:
   Input 1: absent
   Input 2: absent
   Input 3: absent
   Input 4: absent
   Input 5: absent
   Input 6: absent
 Output nonlinearities:
   Output 1: Piecewise Linear
   Output 2: Piecewise Linear
Sample time: 0.02 seconds

Status:                                                     
Estimated using NLHW on time domain data "Motorized Camera".
Fit to estimation data: [73.85;71.36]%                      
FPE: 1.314e+05, MSE: 503.8

Estimation of Hammerstein-Wiener Model (Both Input and Output Nonlinearities)

Indicate both input and output nonlinearities for a Hammerstein-Wiener model. As in the case of
Nonlinear ARX models, we can use a character vector (rather than object) to specify the nonlinear
mapping functions.

mhw3 = nlhw(z, nbnfnk,'saturation', 'pwlinear', opt)

mhw3 =
Hammerstein-Wiener model with 2 outputs and 6 inputs
 Linear transfer function matrix corresponding to the orders:
   nb = [1 1 1 1 1 1; 1 1 1 1 1 1]
   nf = [1 1 1 1 1 1; 1 1 1 1 1 1]
   nk = [1 1 1 1 1 1; 1 1 1 1 1 1]
 Input nonlinearities:
   Input 1: Saturation
   Input 2: Saturation
   Input 3: Saturation
   Input 4: Saturation
   Input 5: Saturation
   Input 6: Saturation
 Output nonlinearities:
   Output 1: Piecewise Linear
   Output 2: Piecewise Linear
Sample time: 0.02 seconds

Status:                                                     
Estimated using NLHW on time domain data "Motorized Camera".
Fit to estimation data: [86.88;84.55]%                      
FPE: 1.111e+04, MSE: 137.3

The limit values of the SATURATION function can be accessed as follows:

mhw3.InputNonlinearity(1).LinearInterval % view Linear Interval of SATURATION
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ans =

    0.0103    0.0562

Similarly, the break points of the PWLINEAR function can be accessed as follows:

mhw3.OutputNonlinearity(1).BreakPoints

ans =

  Columns 1 through 7

   17.1233   34.2491   51.3726   68.4968   85.6230  102.7478  119.8742
    2.6184   16.0645   45.5178   41.9621   62.3246   84.9038  112.2970

  Columns 8 through 10

  136.9991  154.1238  171.2472
  135.4543  156.1016  173.2701

Hammerstein-Wiener Model - Using Mixed Nonlinear Functions

Different nonlinear functions can be mixed in a same model. Suppose we want a model with: - No
nonlinearity on any output channels ("Hammerstein Model") - Piecewise linear nonlinearity on input
channel #1 with 3 units - Saturation nonlinearity on input channel #2 - Dead Zone nonlinearity on
input channel #3 - Sigmoid Network nonlinearity on input channel #4 - No nonlinearity (specified by
a unitgain object) on input channel #5 - Sigmoid Network nonlinearity on input channel #6 with 5
units

We can create an array of nonlinear mapping function objects of chosen types and pass it to the
estimation function NLHW as input nonlinearity.

inputNL = [pwlinear; saturation; deadzone; sigmoidnet; unitgain; sigmoidnet(5)];
inputNL(1).NumberOfUnits = 3;
opt.SearchOptions.MaxIterations = 25;
mhw4 = nlhw(z, nbnfnk, inputNL, [], opt); % "[]" for 4th input denotes no output nonlinearity

Hammerstein-Wiener Model - Specifying Initial Guess for SATURATION and DEADZONE

The initial guess for the linear interval of SATURATION and the zero interval of DEADZONE can be
directly indicated when these objects are created; you can also specify constraints on these values
such as whether they are fixed to their specified values (by setting Free attribute to false), or if their
estimations are subject to minimum/maximum bounds (using the Minimum and Maximum attributes).

Suppose we want to set the saturation's linear interval to [10 200] and the deadzone's zero interval to
[11 12] as initial guesses. Furthermore, we want the upper limit of the saturation to remain fixed. We
can achieve this configuration as follows.

% Create  nonlinear functions with initial guesses for properties.
OutputNL1 = saturation([10 200]);
OutputNL1.Free(2) = false; % the upper limit is a fixed value
OutputNL2 = deadzone([11 12]);

mhw5 = idnlhw(nbnfnk, [], [OutputNL1; OutputNL2], 'Ts',z.Ts);
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Notice the use of the IDNLHW model object constructor idnlhw, not the estimator nlhw. The
resulting model object mhw5 is not yet estimated from data. The limit values of the saturation and
deadzone functions can be accessed. They still have their initial values, because they are not yet
estimated from data.

mhw5.OutputNonlinearity(1).LinearInterval % show linear interval on saturation at first output channel after estimation
mhw5.OutputNonlinearity(2).ZeroInterval   % show zero interval on dead zone at second output channel after estimation

ans =

    10   200

ans =

    11    12

What are the values of these limits after estimation?

opt.SearchOptions.MaxIterations = 15;
mhw5 = nlhw(z, mhw5, opt)  % estimate the model from data
mhw5.OutputNonlinearity(1).LinearInterval % show linear interval on saturation at first output channel after estimation
mhw5.OutputNonlinearity(2).ZeroInterval    % show zero interval on dead zone at second output channel after estimation

mhw5 =
Hammerstein-Wiener model with 2 outputs and 6 inputs
 Linear transfer function matrix corresponding to the orders:
   nb = [1 1 1 1 1 1; 1 1 1 1 1 1]
   nf = [1 1 1 1 1 1; 1 1 1 1 1 1]
   nk = [1 1 1 1 1 1; 1 1 1 1 1 1]
 Input nonlinearities:
   Input 1: absent
   Input 2: absent
   Input 3: absent
   Input 4: absent
   Input 5: absent
   Input 6: absent
 Output nonlinearities:
   Output 1: Saturation
   Output 2: Dead Zone
Sample time: 0.02 seconds

Status:                                                     
Estimated using NLHW on time domain data "Motorized Camera".
Fit to estimation data: [27.12;6.857]%                      
FPE: 3.373e+06, MSE: 4666

ans =

    9.9974  200.0000

ans =

   11.0020   12.0011
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Post Estimation Analysis - Comparing Different Models

Models of different nature (IDNLARX and IDNLHW) can be compared in the same COMPARE
command.

compare(z,mw2,mhw1)

warning(ws) % reset the warning state
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Building Nonlinear ARX Models with Nonlinear and Custom
Regressors

This example shows how to use polynomial and custom regressors in Nonlinear ARX (IDNLARX)
models.

Introduction

In an IDNLARX model, each output is a function of regressors which are transformations of past
inputs and past outputs. Typical regressors are simply delayed input or output variables represented
by the linearRegressor specification object, or polynomials of the delayed variables represented by
the polynomialRegressor object. However, other than the ability to impose absoute value (e.g.,
abs(y(t-1))), you cannot create complex mathematical formulas using these types of regressors. For
example, if your output function requires a regressor of the form sin(u(t-3)).*exp(-abs(u(t))), you need
a way to type-in your custom formula in the expression for the regressor. This is faciliated by the
customRegressor objects. As the name suggests, you use the customRegressor object to incorporate
arbitrary, custom formulas as regressors for your Nonlinear ARX model.

Consider the example of an electric system with both the voltage V and the current I as inputs. If it is
known that the electric power is an important quantity of the system, then it makes sense to form the
custom regressor V*I. It may be more efficient to use appropriately defined custom regressors than
to use the linear and polynomial regressors only.

SISO Example: Modeling an Internal Combustion Engine

The file icEngine.mat contains one data set with 1500 input-output samples collected at the a
sampling rate of 0.04 seconds. The input u(t) is the voltage [V] controlling a By-Pass Idle Air Valve
(BPAV), and the output y(t) is the engine speed [RPM/100]. The data is loaded and split into a dataset
ze for model estimation and another dataset zv for model validation.

load icEngine
z = iddata(y,u,0.04);
ze = z(1:1000); 
zv = z(1001:1500);
plot(ze,zv)
legend('Estimation data','Validation data')
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Linear Regressors as ARX Orders

Order matrix [na nb nk], which is also used in the linear ARX model, help easily define the linear
regressors, which are simply the input/output variables delayed by certain number of samples. The
choice of model orders requires trial and error. For this example let us use [na nb nk] = [4 2 10],
corresponding to the linear regressors y(t-1), y(t-2), y(t-3), y(t-4), u(t-10), u(t-11). Choose a linear
output function, so that the model output is just a weighted sum of its six regressors, plus an offset.

sys0 = nlarx(ze, [4 2 10], linear);

The input name, output name and the list of regressors of this model are displayed below. Notice that
the default names 'u1', 'y1' are used.

sys0.InputName
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ans = 1×1 cell array
    {'u1'}

sys0.OutputName

ans = 1×1 cell array
    {'y1'}

disp(getreg(sys0))

    {'y1(t-1)' }
    {'y1(t-2)' }
    {'y1(t-3)' }
    {'y1(t-4)' }
    {'u1(t-10)'}
    {'u1(t-11)'}

These are linear regressors. They are stored in the model's Regressors property as a
linearRegressor object.

sys0.Regressors

ans = 
Linear regressors in variables y1, u1
       Variables: {'y1'  'u1'}
            Lags: {[1 2 3 4]  [10 11]}
     UseAbsolute: [0 0]
    TimeVariable: 't'

  Regressors described by this set

The "Regressors" property stores the information on the regressor implicitly using a regression
specification object. You can think of the order matrix [4 2 10] as a shortcut way of specifying linear
regressors, where are lags are contiguous and minimum lag in the output variable is fixed to 1.

Linear Regressors Using linearRegressor Specification Object

A more flexible way that allows picking of variables with arbitrary lags is to use the linearRegressor
object. In the above configuration, the variable y1 has lags [1 2 3 4], while the variable u1 has lags
[10 11]. Using a linearRegressor object, the same configuration can be achieved as follows:

LinReg = linearRegressor({'y1','u1'}, {1:4, [10, 11]});
sys1 = nlarx(ze, LinReg, linear)

sys1 = 
Nonlinear ARX model with 1 output and 1 input
  Inputs: u1
  Outputs: y1

Regressors:
  Linear regressors in variables y1, u1
  List of all regressors

Model output is linear in regressors.
Sample time: 0.04 seconds

Status:                                          
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Estimated using NLARX on time domain data "ze".  
Fit to estimation data: 94.35% (prediction focus)
FPE: 0.001877, MSE: 0.00183

Compare the estimation syntaxes of the models sys1 and sys0; when creating sys1 you replaced
the order matrix with a linear regressor specification object. The resulting models sys0 and sys1 are
identical.

[getpvec(sys0), getpvec(sys1)] % estimated parameter vectors of sys0 and sys1

ans = 7×2

    0.7528    0.7528
    0.0527    0.0527
   -0.0621   -0.0621
   -0.0425   -0.0425
   -0.0165   -0.0165
   -0.0289   -0.0289
    0.2723    0.2723

You will use the linearRegressor object to specify the regressors in place of the order matrix, in the
following scenarios:

• you want to use arbitrary (non-contiguous) lags in variables such as the set
{y1(t − 1), y1(t − 10), u(t − 3), u(t − 11)}

• you want the minimum lag in the output variable(s) to be different than 1, for example, the set
{y1(t − 4), y1(t − 5), . . . }

• you want to use absolute values of the variables such as in the set
y1 t − 1 , y1 t − 10 , u t , u t − 2  where only the absolute value of variable 'y1' is used. This

can be achieved by doing

LinRegWithAbs = linearRegressor({'y1','u1'},{[1 10], [0 2]},[true, false])

LinRegWithAbs = 
Linear regressors in variables y1, u1
       Variables: {'y1'  'u1'}
            Lags: {[1 10]  [0 2]}
     UseAbsolute: [1 0]
    TimeVariable: 't'

  Regressors described by this set

Polynomial Regressors

Often regressors that are polynomials of delayed I/O variables are required. These can be added to
the model using the polynomialRegressor object. Suppose you want to add u1(t − 10)2, y1(t − 1)2 as
regressors to the model. You first create a specification object with these settings and then add this
object to the model.

% Create order 2 regressors in variables 'u1' and 'y1', with lags 10 and 1
% respectively
PolyReg = polynomialRegressor({'u1','y1'},{10, 1},2);

% Use LinReg and PolyReg in the model
sys2 = nlarx(ze, [LinReg; PolyReg], linear)
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sys2 = 
Nonlinear ARX model with 1 output and 1 input
  Inputs: u1
  Outputs: y1

Regressors:
  1. Linear regressors in variables y1, u1
  2. Order 2 regressors in variables u1, y1
  List of all regressors

Model output is linear in regressors.
Sample time: 0.04 seconds

Status:                                          
Estimated using NLARX on time domain data "ze".  
Fit to estimation data: 94.47% (prediction focus)
FPE: 0.001804, MSE: 0.001752

Regressors Based on Custom Formulas

While the linear and polynomial regressors are most commonly used, sometimes you need to use a
different formula that is not described by a polynomial. An example is trignometric functions such as
sin(), cos(), …Another example is the saturation function x = max(LowerBound, min(x, UpperBound).
In these situations, you can use an array of customRegressor objects that encapsulate a specific
mathematical expression.

In the following example, a regressor is created as the cosine function of the variable named 'u1' and
delayed 10 samples, in other words: x = cos(u1(t − 10)). The logic value at the last input argument
indicates if the custom regressor is vectorized or not. Vectorized regressors are faster in
computations, but require cares in the function indicated at the first input argument.

x = customRegressor('u1', 10, @cos)

x = 
Custom regressor: cos(u1(t-10))
    VariablesToRegressorFcn: @cos
                  Variables: {'u1'}
                       Lags: {[10]}
                 Vectorized: 1
               TimeVariable: 't'

  Regressors described by this set

The specified formula (@cos here) is stored in the VariablesToRegressorFcn property of the
regressor object. By default, the evaluation of the function is assumed to be vectorized, that is if the
input is a matrix with N rows then the output of the function x.VariablesToRegressorFcn would
be a column vector of length N. Vectorization helps speed up the evaluation of the regressor during
the model estimation and simulation process. However, you have the option of disabling it if desired
by setting the value of the Vectorized property to FALSE.

You can create an array of regressors all sharing the same underlying formula but using different lag
values. For example, suppose the formula is x = u(t − a) * | y(t − b)|, where 'u' and 'y' are two variables
for which measured data is available, and the lags (a,b) can take multiple values over the range 1:10.
You can create an array of these regressors with a single call to the customRegressor constructor

C = customRegressor({'u','y'},{1:10, 1:10}, @(x,y)x.*abs(y))
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C = 
Custom regressor: @(x,y)x.*abs(y)
    VariablesToRegressorFcn: @(x,y)x.*abs(y)
                  Variables: {'u'  'y'}
                       Lags: {[1 2 3 4 5 6 7 8 9 10]  [1 2 3 4 5 6 7 8 9 10]}
                 Vectorized: 1
               TimeVariable: 't'

  Regressors described by this set

C represents a set of 100 regressors generated by using the formula u(t − a) . * abs(y(t − b)) for all
combinations of a and bvalues in the range 1:10.

Using All Three Types of Regressors in the Model for IC engine Dynamics

Suppose trial/error or physical insight suggests that we need to use the regressor set
R = {u1(t − 10)3, u1(t − 11)3, y1(t − 1), sin(y1(t − 4))}in the model. We have a mix of linear,
polynomial and trigonometric formulas. We proceed as follows:

LinReg    = linearRegressor('y1',1);
PolyReg   = polynomialRegressor('u1',[10 11],3);
CustomReg = customRegressor('y1',4,@(x)sin(x));
% for now no nonlinearity; output is a linear function of regressors
sys3 = nlarx(ze,[LinReg; PolyReg; CustomReg], [])

sys3 = 
Nonlinear ARX model with 1 output and 1 input
  Inputs: u1
  Outputs: y1

Regressors:
  1. Linear regressors in variables y1
  2. Order 3 regressors in variables u1
  3. Custom regressor: sin(y1(t-4))
  List of all regressors

Model output is linear in regressors.
Sample time: 0.04 seconds

Status:                                          
Estimated using NLARX on time domain data "ze".  
Fit to estimation data: 92.11% (prediction focus)
FPE: 0.003647, MSE: 0.00357

getreg(sys3)

ans = 4×1 cell
    {'y1(t-1)'     }
    {'u1(t-10)^3'  }
    {'u1(t-11)^3'  }
    {'sin(y1(t-4))'}

We can extend this workflow to include nonlinear mapping functions, such as Sigmoid Network in the
model and also designate only a subset of the regressor set to be used as inputs to its linear and
nonlinear components (note: a Sigmoid network is a sum of 3 components - a linear function, an offset
term, and a nonlinear function that is a sum of sigmoid units). In the following example, we use a
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template-model based workflow wherein we serapately prepare a template IDNLARX model and
estimation option set before using them in the NLARX command for parameter estimation.

sys4 = idnlarx(ze.OutputName, ze.InputName, [4 2 10], sigmoidnet);
% generate 'u1(t-10)^2', 'y1(t-1)^2', 'u1(t-10)*y1(t-1)'
P = polynomialRegressor({'y1','u1'},{1, 10},2, false, true);
% generate cos(u1(t-10))
C1 = customRegressor('u1',10,@cos);
% generate sin(y1(t-1).*u1(t-10)+u1(t-11))
C2 = customRegressor({'y1','u1','u1'},{1, 10, 11},@(x,y,z)sin(x.*y+z));

% add the polynomial and custom regressors to the model sys2
sys4.Regressors = [sys4.Regressors; P; C1; C2];

% view the regressors and how they are used in the model
disp(sys4.RegressorUsage)

                                       y1:LinearFcn    y1:NonlinearFcn
                                       ____________    _______________

    y1(t-1)                               true              true      
    y1(t-2)                               true              true      
    y1(t-3)                               true              true      
    y1(t-4)                               true              true      
    u1(t-10)                              true              true      
    u1(t-11)                              true              true      
    y1(t-1)^2                             true              true      
    u1(t-10)^2                            true              true      
    cos(u1(t-10))                         true              true      
    sin(y1(t-1).*u1(t-10)+u1(t-11))       true              true      

% designate only the linear regressors to be used in the nonlinear
% component of the sigmoid network
Usage = sys4.RegressorUsage;
Usage{7:end,2} = false;
sys4.RegressorUsage = Usage;
disp(sys4.RegressorUsage)

                                       y1:LinearFcn    y1:NonlinearFcn
                                       ____________    _______________

    y1(t-1)                               true              true      
    y1(t-2)                               true              true      
    y1(t-3)                               true              true      
    y1(t-4)                               true              true      
    u1(t-10)                              true              true      
    u1(t-11)                              true              true      
    y1(t-1)^2                             true              false     
    u1(t-10)^2                            true              false     
    cos(u1(t-10))                         true              false     
    sin(y1(t-1).*u1(t-10)+u1(t-11))       true              false     

% Prepapre estimation options: use Levenberg-Marquardt solver with 30 maximum iterations.
% Turn progress display on and set estimation focus to 'simulation'
opt = nlarxOptions;
opt.Focus = 'simulation';
opt.Display = 'on';
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opt.SearchMethod = 'lm';
opt.SearchOptions.MaxIterations = 30;

% estimate parameters of sys4 to fit data ze
sys4 = nlarx(ze, sys4, opt)

sys4 = 
Nonlinear ARX model with 1 output and 1 input
  Inputs: u1
  Outputs: y1

Regressors:
  1. Linear regressors in variables y1, u1
  2. Order 2 regressors in variables y1, u1
  3. Custom regressor: cos(u1(t-10))
  4. Custom regressor: sin(y1(t-1).*u1(t-10)+u1(t-11))
  List of all regressors

Output function: Sigmoid Network with 10 units

Sample time: 0.04 seconds

Status:                                          
Estimated using NLARX on time domain data "ze".  
Fit to estimation data: 87.81% (simulation focus)
FPE: 0.001491, MSE: 0.008517

We can now validate the models by comparing their responses to the output of the validata dataset
zv.

compare(zv, sys1, sys2, sys3, sys4)
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The compare plots indicates sys2 as the best model. Note that the regressors used in this example
were chosen arbitrarily, mainly to show the different way of creating regressors and estimating
models. Better results can be obtained by picking regressors more judiciously.

MIMO Example: Modeling a Motorized Camera

The file motorizedcamera.mat contains one data set with 188 data samples, collected from a
motorized camera at a sampling rate of 0.02 second. The input vector u(t) is composed of 6 variables:
the 3 translation velocity components in the orthogonal X-Y-Z coordinate system fixed to the camera
[m/s], and the 3 rotation velocity components around the X-Y-Z axis [rad/s]. The output vector y(t)
contains 2 variables: the position (in pixel) of a point which is the image taken by the camera of a
fixed point in the 3D space. We create an IDDATA object z to hold the loaded data:

load motorizedcamera
z = iddata(y, u, 0.02, 'Name', 'Motorized Camera', 'TimeUnit', 's');
plot(z)
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Using different types of regressors in the MIMO case is not very different from the SISO case. All the
regressors are used in the dynamics for all the outputs of the system. The RegressorUsage property
may be used to assign specific regressors to be used for specific outputs.

    nanbnk = [ones(2,2), 2*ones(2,6), ones(2,6)];
    sysMIMO = idnlarx(z.OutputName, z.InputName, nanbnk, linear);
    C = customRegressor({'u5','u6'},{1 1},@(x,y)x.*y);
    P1 = polynomialRegressor('u1',1,2);
    P2 = polynomialRegressor('y2',1,3);
    sysMIMO.Regressors = [sysMIMO.Regressors; C; P1; P2];
    getreg(sysMIMO)

ans = 17×1 cell
    {'y1(t-1)'         }
    {'y2(t-1)'         }
    {'u1(t-1)'         }
    {'u1(t-2)'         }
    {'u2(t-1)'         }
    {'u2(t-2)'         }
    {'u3(t-1)'         }
    {'u3(t-2)'         }
    {'u4(t-1)'         }
    {'u4(t-2)'         }
    {'u5(t-1)'         }
    {'u5(t-2)'         }
    {'u6(t-1)'         }
    {'u6(t-2)'         }
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    {'u1(t-1)^2'       }
    {'y2(t-1)^3'       }
    {'u5(t-1).*u6(t-1)'}

    sysMIMO = nlarx(z, sysMIMO)

sysMIMO = 
Nonlinear ARX model with 2 outputs and 6 inputs
  Inputs: u1, u2, u3, u4, u5, u6
  Outputs: y1, y2

Regressors:
  1. Linear regressors in variables y1, y2, u1, u2, u3, u4, u5, u6
  2. Order 2 regressors in variables u1
  3. Order 3 regressors in variables y2
  4. Custom regressor: u5(t-1).*u6(t-1)
  List of all regressors

 All model outputs are linear in their regressors.
Sample time: 0.02 seconds

Status:                                                      
Estimated using NLARX on time domain data "Motorized Camera".
Fit to estimation data: [99.05;98.85]% (prediction focus)    
FPE: 0.2067, MSE: 0.7496

    

Compare model response to estimation data.

    compare(z,sysMIMO)

 Building Nonlinear ARX Models with Nonlinear and Custom Regressors

11-125



    

Analyze model residuals for their auto-correlation (whiteness test) and cross-correlation to the input
signal (correlation test)

    fig = figure;
    fig.Position(3) = 2*fig.Position(3);
    resid(z,sysMIMO)
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Identify Hammerstein-Wiener Models

• “What are Hammerstein-Wiener Models?” on page 12-2
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Using Hammerstein-Wiener Models” on page 12-9
• “Available Nonlinearity Estimators for Hammerstein-Wiener Models” on page 12-10
• “Estimate Hammerstein-Wiener Models in the App” on page 12-12
• “Estimate Hammerstein-Wiener Models at the Command Line” on page 12-15
• “Validating Hammerstein-Wiener Models” on page 12-21
• “How the Software Computes Hammerstein-Wiener Model Output” on page 12-25
• “Estimate Hammerstein-Wiener Models Initialized Using Linear OE Models” on page 12-28
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What are Hammerstein-Wiener Models?
When the output of a system depends nonlinearly on its inputs, sometimes it is possible to decompose
the input-output relationship into two or more interconnected elements. In this case, you can
represent the dynamics by a linear transfer function and capture the nonlinearities using nonlinear
functions of inputs and outputs of the linear system. The Hammerstein-Wiener model achieves this
configuration as a series connection of static nonlinear blocks with a dynamic linear block.
Hammerstein-Wiener model applications span several areas, such as modeling electromechanical
system and radio frequency components, audio and speech processing, and predictive control of
chemical processes. These models have a convenient block representation, a transparent relationship
to linear systems, and are easier to implement than heavy-duty nonlinear models such as neural
networks and Volterra models.

You can use a Hammerstein-Wiener model as a black-box model structure because it provides a
flexible parameterization for nonlinear models. For example, you can estimate a linear model and try
to improve its fidelity by adding an input or output nonlinearity to this model. You can also use a
Hammerstein-Wiener model as a grey-box structure to capture physical knowledge about process
characteristics. For example, the input nonlinearity can represent typical physical transformations in
actuators and the output nonlinearity can describe common sensor characteristics. For more
information about when to fit nonlinear models, see “About Identified Nonlinear Models” on page 11-
2.

Structure of Hammerstein-Wiener Models
Hammerstein-Wiener models describe dynamic systems using one or two static nonlinear blocks in
series with a linear block. The linear block is a discrete transfer function that represents the dynamic
component of the model.

This block diagram represents the structure of a Hammerstein-Wiener model:

Where,

• f is a nonlinear function that transforms input data u(t) as w(t) = f(u(t)).

w(t), an internal variable, is the output of the Input Nonlinearity block and has the same
dimension as u(t).

• B/F is a linear transfer function that transforms w(t) as x(t) = (B/F)w(t).

x(t), an internal variable, is the output of the Linear block and has the same dimension as y(t).

B and F are similar to polynomials in a linear Output-Error model. For more information about
Output-Error models, see “What Are Polynomial Models?” on page 6-2.

For ny outputs and nu inputs, the linear block is a transfer function matrix containing entries:

B j, i(q)
F j, i(q)

where j = 1,2,...,ny and i = 1,2,...,nu.
• h is a nonlinear function that maps the output of the linear block x(t) to the system output y(t) as

y(t) = h(x(t)).
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Because f acts on the input port of the linear block, this function is called the input nonlinearity.
Similarly, because h acts on the output port of the linear block, this function is called the output
nonlinearity. If your system contains several inputs and outputs, you must define the functions f and h
for each input and output signal. You do not have to include both the input and the output
nonlinearity in the model structure. When a model contains only the input nonlinearity f, it is called a
Hammerstein model. Similarly, when the model contains only the output nonlinearity h, it is called a
Wiener model.

The software computes the Hammerstein-Wiener model output y in three stages:

1 Compute w(t) = f(u(t)) from the input data.

w(t) is an input to the linear transfer function B/F.

The input nonlinearity is a static (memoryless) function, where the value of the output a given
time t depends only on the input value at time t.

You can configure the input nonlinearity as a sigmoid network, wavelet network, saturation, dead
zone, piecewise linear function, one-dimensional polynomial, or a custom network. You can also
remove the input nonlinearity.

2 Compute the output of the linear block using w(t) and initial conditions: x(t) = (B/F)w(t).

You can configure the linear block by specifying the orders of numerator B and denominator F.
3 Compute the model output by transforming the output of the linear block x(t) using the nonlinear

function h as y(t) = h(x(t)).

Similar to the input nonlinearity, the output nonlinearity is a static function. You can configure
the output nonlinearity in the same way as the input nonlinearity. You can also remove the output
nonlinearity, such that y(t) = x(t).

Resulting models are idnlhw objects that store all model data, including model parameters and
nonlinearity estimators. For more information about these objects, see “Nonlinear Model Structures”
on page 11-6.

You can estimate Hammerstein-Wiener models in the System Identification app or at the command
line using the nlhw command. You can use uniformly sampled time-domain input-output data for
estimating Hammerstein-Wiener models. Your data can have one or more input and output channels.
You cannot use time series data (output only) or frequency-domain data for estimation. If you have
time series data, to fit a nonlinear model, identify nonlinear ARX models or nonlinear grey-box
models. For more information about these models, see “Identifying Nonlinear ARX Models” on page
11-15 and “Estimate Nonlinear Grey-Box Models” on page 13-25.

See Also
idnlhw | nlhw

More About
• “About Identified Nonlinear Models” on page 11-2
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Available Nonlinearity Estimators for Hammerstein-Wiener Models” on page 12-10
• “Using Hammerstein-Wiener Models” on page 12-9
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• “How the Software Computes Hammerstein-Wiener Model Output” on page 12-25
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Identifying Hammerstein-Wiener Models
Hammerstein-Wiener models describe dynamic systems using one or two static nonlinear blocks in
series with a linear block. The linear block is a discrete transfer function and represents the dynamic
component of the model. For more information about the structure of these models, see “What are
Hammerstein-Wiener Models?” on page 12-2

You can estimate Hammerstein-Wiener models in the System Identification app or at the command
line using the nlhw command. To estimate a Hammerstein-Wiener model, you first prepare the
estimation data. You then configure the model structure and estimation algorithm, and then perform
estimation. After estimation, you can validate the estimated model as described in “Validating
Hammerstein-Wiener Models” on page 12-21.

Prepare Data for Identification
You can use only uniformly sampled time-domain input-output data for estimating Hammerstein-
Wiener models. Your data can have one or more input and output channels. You cannot use time
series data (output only) or frequency-domain data for estimation. Use nonlinear ARX on page 11-15
or nonlinear grey-box models on page 13-25 for time series data.

To prepare the data for model estimation, import your data into the MATLAB workspace, and do one
of the following:

• In the System Identification app — Import data into the app, as described in “Represent Data”.
• At the command line — Represent your data as an iddata object.

After importing the data, you can analyze data quality and preprocess data by interpolating missing
values, filtering to emphasize a specific frequency range, or resampling using a different sample time.
For more information, see “Ways to Prepare Data for System Identification” on page 2-5. For most
applications, you do not need to remove offsets and linear trends from the data before nonlinear
modeling. However, data detrending can be useful in some cases, such as before modeling the
relationship between the change in input and output about an operating point.

After preparing your estimation data, you can configure your model structure, loss function, and
estimation algorithm, and then estimate the model using the estimation data.

Configure Hammerstein-Wiener Model Structure
The Hammerstein-Wiener model structure consists of input and output nonlinear blocks in series with
a linear block. The linear block is a discrete transfer function and represents the dynamic component
of the model.

To configure the structure of a Hammerstein-Wiener model:

1 Configure the linear transfer function block.

Perform one of the following:

• Specify model order and input delay for the linear transfer function as:
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• nb — Number of zeros plus one. nb is the length of the numerator (B) polynomial.
• nf — Number of poles. nf is the order of the transfer function denominator (F polynomial).
• nk — Delay from input to the output in terms of the number of samples.

For MIMO systems with Ny outputs and Nu inputs, nb, nf, and nk are Ny-by-Nu matrices.
• Initialize the linear block using a discrete-time linear model — You can initialize using linear

models at the command line only. The initialization sets the transfer function of the linear
block to that of the specified linear model. For more information, see “Initialize Hammerstein-
Wiener Estimation Using Linear Model” on page 12-7.

2 Configure the input and output nonlinearities, f and h respectively.

The default input and output nonlinearity estimators are piecewise linear functions. See the
pwlinear reference page for more information. To configure the input and output nonlinearity
estimators:

a Choose the type of input and output nonlinearity estimators, and configure their properties.

For a list of available nonlinearity estimators, see “Available Nonlinearity Estimators for
Hammerstein-Wiener Models” on page 12-10.

b Exclude the input or output nonlinear block.

You do not have to include both the input and the output nonlinearity in the model structure.
When a model contains only the input nonlinearity f, it is called a Hammerstein model.
Similarly, when the model contains only the output nonlinearity h, it is called a Wiener
model.

For information about how to configure the model structure at the command line and in the app, see
“Estimate Hammerstein-Wiener Models at the Command Line” on page 12-15 and “Estimate
Hammerstein-Wiener Models in the App” on page 12-12.

Specify Estimation Options for Hammerstein-Wiener Models
To configure the model estimation, specify the loss function to be minimized, and choose the
estimation algorithm and other estimation options to perform the minimization.

Configure Loss Function

The loss function or cost function is a function of the error between the model output and the
measured output. For more information about loss functions, see “Loss Function and Model Quality
Metrics” on page 1-46.

At the command line, use the nlhw option set, nlhwOptions to configure your loss function. You can
specify the following options:

• OutputWeight — Specify a weighting of the error in multi-output estimations.
• Regularization — Modify the loss function to add a penalty on the variance of the estimated

parameters. For more information, see “Regularized Estimates of Model Parameters” on page 1-
34.

For details about how to specify these options in the app, see “Estimate Hammerstein-Wiener Models
in the App” on page 12-12.
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Specify Estimation Algorithm

To estimate a Hammerstein-Wiener model, the software uses iterative search algorithms to minimize
the loss function. At the command line, use nlhwOptions to specify the search algorithm and other
estimation options. Some of the options you can specify are:

• SearchMethod — Search method for minimization of prediction or simulation errors, such as
Gauss-Newton and Levenberg-Marquardt line search, and Trust-region reflective Newton
approach.

• SearchOptions — Option set for the search algorithm, with fields that depend on the value of
SearchMethod, such as:

• MaxIterations — Maximum number of iterations to perform.
• Tolerance — Condition for terminating iterative search when the expected improvement of

the parameter values is less than a specified value.
• InitialCondition — By default, the software treats the initial states of the model as zero and

does not estimate the states. You can choose to estimate initial states, which sometimes can
improve parameter estimates.

To see a complete list of available estimation options, see nlhwOptions. For details about how to
specify these estimation options in the app, see “Estimate Hammerstein-Wiener Models in the App”
on page 12-12.

After preprocessing the estimation data and configuring the model structure, loss function, and
estimation options, you can estimate the model in the System Identification app, or using nlhw.
The resulting model is an idnlhw object that stores all model data, including model parameters and
nonlinearity estimator. For more information about these model objects, see “Nonlinear Model
Structures” on page 11-6. You can validate the estimated model as described in “Validating
Hammerstein-Wiener Models” on page 12-21.

Initialize Hammerstein-Wiener Estimation Using Linear Model
At the command line, you can use one of the following linear models to initialize the linear block of a
Hammerstein-Wiener model:

• Polynomial model of Output-Error (OE) structure (idpoly)
• State-space model with no disturbance component (idss model with K = 0)
• Transfer function (idtf model)

Typically, you use the oe, n4sid, or tfest commands to obtain the linear model. You can provide the
linear model when constructing or estimating a Hammerstein-Wiener model. For example, use the
following syntax to estimate a Hammerstein-Wiener model using estimation data and a linear model
LinModel.

m = nlhw(data,LinModel)

Here m is an idnlhw object, and data is a time-domain iddata object. The software uses the linear
model for initializing the Hammerstein-Wiener estimation by:

• Assigning the linear model orders as initial values of nonlinear model orders (nb and nf
properties of the Hammerstein-Wiener (idnlhw) and delays (nk property).
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• Setting the B and F polynomials of the linear transfer function in the Hammerstein-Wiener model
structure on page 12-2.

During estimation, the estimation algorithm uses these values to adjust the nonlinear model to the
data. By default, both the input and output nonlinearity estimators are piecewise linear functions (see
pwlinear).

You can also specify different input and output nonlinearity estimators. For example, a sigmoid
network input nonlinearity estimator and a dead-zone output nonlinearity estimator.

m = nlhw(data,LinModel,'sigmoidnet','deadzone')

For an example, see “Estimate Hammerstein-Wiener Models Initialized Using Linear OE Models” on
page 12-28.

See Also

More About
• “What are Hammerstein-Wiener Models?” on page 12-2
• “Estimate Hammerstein-Wiener Models in the App” on page 12-12
• “Estimate Hammerstein-Wiener Models at the Command Line” on page 12-15
• “Validating Hammerstein-Wiener Models” on page 12-21
• “Using Hammerstein-Wiener Models” on page 12-9
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Using Hammerstein-Wiener Models
After identifying a Hammerstein-Wiener model, you can use the model for the following tasks:

• Simulation — At the command line, use sim to simulate the model output. To compare models to
measured output and to each other, use compare. Note that for Hammerstein-Wiener models, the
simulated and predicted model output are equivalent because these models have a trivial noise
component, that is disturbance in these models is white noise. For information about plotting
simulated output in the app, see “Simulation and Prediction in the App” on page 17-15.

You can also specify the initial conditions for simulation. The toolbox provides various options to
facilitate how you specify initial states. For example, you can use findstates to automatically
search for state values in simulation and prediction applications. You can also specify the states
manually. See the idnlhw reference page for a definition of the Hammerstein-Wiener model
states.

To learn more about how sim computes the model output, see “How the Software Computes
Hammerstein-Wiener Model Output” on page 12-25.

• Linearization — Compute linear approximation of Hammerstein-Wiener models using
linearize or linapp.

The linearize command provides a first-order Taylor series approximation of the system about
an operating point. linapp computes a linear approximation of a nonlinear model for a given
input data. For more information, see the “Linear Approximation of Nonlinear Black-Box Models”
on page 11-48. You can compute the operating point for linearization using findop.

After computing a linear approximation of a nonlinear model, you can perform linear analysis and
control design on your model using Control System Toolbox commands. For more information, see
“Using Identified Models for Control Design Applications” on page 19-2 and “Create and Plot
Identified Models Using Control System Toolbox Software” on page 19-5.

• Simulation and code generation using Simulink — You can import the estimated
Hammerstein-Wiener model into Simulink software using the Hammerstein-Wiener block
(IDNLHW Model) from the System Identification Toolbox block library. After you bring the idnlhw
object from the workspace into Simulink, you can simulate the model output.

The IDNLHW Model block supports code generation with Simulink Coder software, using both
generic and embedded targets. Code generation does not work when the model contains
customnet as the input or output nonlinearity. For more information, see “Simulate Identified
Model in Simulink” on page 20-5.

See Also

More About
• “What are Hammerstein-Wiener Models?” on page 12-2
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Linear Approximation of Nonlinear Black-Box Models” on page 11-48
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Available Nonlinearity Estimators for Hammerstein-Wiener
Models

System Identification Toolbox software provides several scalar nonlinearity estimators, for
Hammerstein-Wiener models. The nonlinearity estimators are available for both the input and output
nonlinearities f and h, respectively. For more information about f and h, see “Structure of
Hammerstein-Wiener Models” on page 12-2.

Each nonlinearity estimator corresponds to an object class in this toolbox. When you estimate
Hammerstein-Wiener models in the System Identification app, the toolbox creates and configures
objects based on these classes. You can also create and configure nonlinearity estimators at the
command line. For a detailed description of each estimator, see the references page of the
corresponding nonlinearity class.

Nonlinearity Class Structure Comments
Piecewise linear
(default)

pwlinear A piecewise linear function parameterized by
breakpoint locations.

By default, the number
of breakpoints is 10.

One layer
sigmoid network

sigmoidnet
g(x) = ∑

k = 1

n
αkκ βk x− γk

κ(s) is the sigmoid function κ(s) = es + 1 −1. βk
is a row vector such that βk(x− γk) is a scalar.

Default number of units
n is 10.

Wavelet network wavenet
g(x) = ∑

k = 1

n
αkκ βk x− γk

where κ(s) is the wavelet function.

By default, the
estimation algorithm
determines the number
of units n automatically.

Saturation saturation Parameterize hard limits on the signal value as
upper and lower saturation limits.

Use to model known
saturation effects on
signal amplitudes.

Dead zone deadzone Parameterize dead zones in signals as the
duration of zero response.

Use to model known
dead zones in signal
amplitudes.

One-
dimensional
polynomial

poly1d Single-variable polynomial of a degree that you
specify.

By default, the
polynomial degree is 1.

Unit gain unitgain Excludes the input or output nonlinearity from
the model structure to achieve a Wiener or
Hammerstein configuration, respectively.

Note Excluding both the input and output
nonlinearities reduces the Hammerstein-Wiener
structure to a linear transfer function.

Useful for configuring
multi-input, multi-
output (MIMO) models
to exclude
nonlinearities from
specific input and
output channels.

Custom network

(user-defined)

customnet Similar to sigmoid network but you specify κ(s). (For advanced use)

Uses the unit function
that you specify.
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See Also

More About
• “What are Hammerstein-Wiener Models?” on page 12-2
• “Identifying Hammerstein-Wiener Models” on page 12-5
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Estimate Hammerstein-Wiener Models in the App
You can estimate Hammerstein-Wiener models in the System Identification app after performing
the following tasks:

• Import data into the System Identification app (see “Preparing Data for Nonlinear Identification”
on page 11-11).

• (Optional) Choose a nonlinearity estimator in “Available Nonlinearity Estimators for Hammerstein-
Wiener Models” on page 12-10.

• (Optional) Estimate or construct an OE or state-space linear model to use for initialization. See
“Initialize Hammerstein-Wiener Estimation Using Linear Model” on page 12-7.

To estimate a Hammerstein-Wiener model using the imported estimation data, chosen nonlinearity
estimators, and initial linear models:

1 In the System Identification app, select Estimate > Nonlinear models to open the Nonlinear
Models dialog box.

2 In the Configure tab, select Hammerstein-Wiener from the Model type list.
3 (Optional) Edit the Model name by clicking the pencil icon. The name of the model should be

unique to all Hammerstein-Wiener models in the System Identification app.
4 (Optional) If you want to refine a previously estimated model, click Initialize to select a

previously estimated model from the Initial Model list.

Note Refining a previously estimated model starts with the parameter values of the initial model
and uses the same model structure. You can change these settings.

The Initial Model list includes models that:

• Exist in the System Identification app.
• Have the same number of inputs and outputs as the dimensions of the estimation data

(selected as Working Data in the System Identification app).
5 Keep the default settings in the Nonlinear Models dialog box that specify the model structure, or

modify these settings:

Note For more information about available options, click Help in the Nonlinear Models dialog
box to open the app help.
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What to Configure Options in Nonlinear
Models GUI

Comment

Input or output nonlinearity In the I/O Nonlinearity tab,
select the Nonlinearity and
specify the No. of Units.

If you do not know which
nonlinearity to try, use the
(default) piecewise linear
nonlinearity.

When you estimate from
binary input data, you cannot
reliably estimate the input
nonlinearity. In this case, set
Nonlinearity for the input
channel to None.

For multiple-input and
multiple-output systems, you
can assign nonlinearities to
specific input and output
channels.

Model order and delay In the Linear Block tab,
specify B Order, F Order,
and Input Delay. For MIMO
systems, select the output
channel and specify the
orders and delays from each
input channel.

If you do not know the input
delay values, click Infer
Input Delay. This action
opens the Infer Input Delay
dialog box which suggests
possible delay values.

Estimation algorithm In the Estimate tab, click
Estimation Options.

You can specify to estimate
initial states.

6 To obtain regularized estimates of model parameters, in the Estimate tab, click Estimation
Options. Specify the regularization constants in the Regularization_Tradeoff_Constant and
Regularization_Weighting fields. To learn more, see “Regularized Estimates of Model
Parameters” on page 1-34.

7 Click Estimate to add this model to the System Identification app.

The Estimate tab displays the estimation progress and results.
8 Validate the model response by selecting the desired plot in the Model Views area of the System

Identification app.

If you get a poor fit, try changing the model structure or algorithm configuration in step 5.

You can export the estimated model to the MATLAB workspace by dragging it to To Workspace in
the System Identification app.

See Also

More About
• “What are Hammerstein-Wiener Models?” on page 12-2
• “Available Nonlinearity Estimators for Hammerstein-Wiener Models” on page 12-10
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• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Validating Hammerstein-Wiener Models” on page 12-21
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Estimate Hammerstein-Wiener Models at the Command Line
You can estimate Hammerstein-Wiener models after performing the following tasks:

• Prepare your data, as described in “Preparing Data for Nonlinear Identification” on page 11-11.
• (Optional) Choose a nonlinearity estimator in “Available Nonlinearity Estimators for Hammerstein-

Wiener Models” on page 12-10.
• (Optional) Estimate or construct an input-output polynomial model of Output-Error (OE) structure

(idpoly) or a state-space model with no disturbance component (idss with K=0) for initialization
of Hammerstein-Wiener model. See “Initialize Hammerstein-Wiener Estimation Using Linear
Model” on page 12-7.

Estimate Model Using nlhw
Use nlhw to both construct and estimate a Hammerstein-Wiener model. After each estimation,
validate the model on page 12-21 by comparing it to other models and simulating or predicting the
model response.

Basic Estimation

Start with the simplest estimation using m = nlhw(data,[nb nf nk]). For example:

load iddata3;
% nb = nf = 2 and nk = 1 
m = nlhw(z3,[2 2 1])

m =
Hammerstein-Wiener model with 1 output and 1 input
 Linear transfer function corresponding to the orders nb = 2, nf = 2, nk = 1
 Input nonlinearity: Piecewise Linear
 Output nonlinearity: Piecewise Linear
Sample time: 1 seconds

Status:                                       
Estimated using NLHW on time domain data "z3".
Fit to estimation data: 75.31%                
FPE: 2.019, MSE: 1.472

The second input argument [nb nf nk] sets the order of the linear transfer function, where nb is the
number of zeros plus 1, nf is the number of poles, and nk is the input delay. By default, both the
input and output nonlinearity estimators are piecewise linear functions (see the pwlinear reference
page). m is an idnlhw object.

For MIMO systems, nb, nf, and nk are ny-by-nu matrices. See the nlhw reference page for more
information about MIMO estimation.

Configure Nonlinearity Estimators
You can specify a different nonlinearity estimator than the default piecewise linear estimators.

m = nlhw(data,[nb,nf,nk],InputNL,OutputNL)

InputNL and OutputNL are nonlinearity estimator objects. If your input signal is binary, set
InputNL to unitgain.
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To use nonlinearity estimators with default settings, specify InputNL and OutputNL using character
vectors (such as 'wavenet' for wavelet network or 'sigmoidnet' for sigmoid network).

load iddata3;
m = nlhw(z3,[2 2 1],'sigmoidnet','deadzone');

If you need to configure the properties of a nonlinearity estimator, use its object representation. For
example, to estimate a Hammerstein-Wiener model that uses saturation as its input nonlinearity and
one-dimensional polynomial of degree 3 as its output nonlinearity:

m = nlhw(z3,[2 2 1],'saturation',poly1d('Degree',3));

The third input 'saturation' specifies the saturation nonlinearity with default property values.
poly1d('Degree',3) creates a one-dimensional polynomial object of degree 3.

For MIMO models, specify the nonlinearities using objects unless you want to use the same
nonlinearity with default configuration for all channels.

This table summarizes values that specify the nonlinearity estimators.

Nonlinearity Value (Default Nonlinearity Configuration) Class
Piecewise linear
(default)

'pwlinear' pwlinear

One layer sigmoid network 'sigmoidnet' sigmoidnet
Wavelet network 'wavenet' wavenet
Saturation 'saturation' saturation
Dead zone 'deadzone' deadzone
One-
dimensional polynomial

'poly1d' poly1d

Unit gain 'unitgain' or [ ] unitgain

Additional available nonlinearities include custom networks that you create. Specify a custom
network by defining a function called gaussunit.m, as described in the customnet reference page.
Define the custom network object CNetw as:

For more information, see “Available Nonlinearity Estimators for Hammerstein-Wiener Models” on
page 12-10.

Exclude Input or Output Nonlinearity
Exclude a nonlinearity for a specific channel by specifying the unitgain value for the
InputNonlinearity or OutputNonlinearity properties.

If the input signal is binary, set InputNL to unitgain.

For more information about model estimation and properties, see the nlhw and idnlhw reference
pages.

For a description of each nonlinearity estimator, see “Available Nonlinearity Estimators for
Hammerstein-Wiener Models” on page 12-10.
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Iteratively Refine Model
Estimate a Hammerstein-Wiener model and then use nlhw command to iteratively refine the model.

load iddata3;
m1 = nlhw(z3,[2 2 1],'sigmoidnet','wavenet');
m2 = nlhw(z3,m1);

Alternatively, use pem to refine the model.

m2 = pem(z3,m1);

Check the search termination criterion in m.Report.Termination.WhyStop. If WhyStop indicates
that the estimation reached the maximum number of iterations, try repeating the estimation and
possibly specifying a larger value for the MaxIterations.

Run 30 more iterations starting at model m1.

opt = nlhwOptions;
opt.SearchOptions.MaxIterations = 30;
m2 = nlhw(z3,m1,opt);

When the m.Report.Termination.WhyStop value is Near (local) minimum, (norm(g) <
tol or No improvement along the search direction with line search, validate your
model to see if this model adequately fits the data. If not, the solution might be stuck in a local
minimum of the cost-function surface. Try adjusting the SearchOptions.Tolerance or the
SearchMethod option of the nlhw option set, and repeat the estimation.

You can also try perturbing the parameters of the last model using init, and then refine the model
using nlhw command.

Randomly perturb parameters of original model m1 about nominal values.

m1p = init(m1);

Estimate the parameters of perturbed model.

M2 = nlhw(z3,m1p);

Note that using init does not guarantee a better solution on further refinement.

Improve Estimation Results Using Initial States
If your estimated Hammerstein-Wiener model provides a poor fit to measured data, you can repeat
the estimation using the initial state values estimated from the data. By default, the initial states
corresponding to the linear block of the Hammerstein-Wiener model are zero.

To specify estimating initial states during model estimation:

load iddata3;
opt = nlhwOptions('InitialCondition', 'estimate');
m = nlhw(z3,[2 2 1],sigmoidnet,[],opt);
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Troubleshoot Estimation
If you do not get a satisfactory model after many trials with various model structures and estimation
options, it is possible that the data is poor. For example, your data might be missing important input
or output variables and does not sufficiently cover all the operating points of the system.

Nonlinear black-box system identification usually requires more data than linear model identification
to gain enough information about the system. See also “Troubleshooting Model Estimation” on page
17-92.

Estimate Multiple Hammerstein-Wiener Models
This example shows how to estimate and compare multiple Hammerstein-Wiener models using
measured input-output data.

Load estimation and validation data.

load twotankdata
z = iddata(y,u,0.2);
ze = z(1:1000); 
zv = z(1001:3000);

Estimate several models using the estimation data ze and different model orders, delays, and
nonlinearity settings.

m1 = nlhw(ze,[2 3 1]);
m2 = nlhw(ze,[2 2 3]);
m3 = nlhw(ze,[2 2 3],pwlinear('NumberofUnits',13),pwlinear('NumberofUnits',10));
m4 = nlhw(ze,[2 2 3],sigmoidnet('NumberofUnits',2),pwlinear('NumberofUnits',10));

An alternative way to perform the estimation is to configure the model structure first using idnlhw,
and then estimate the model.

m5 = idnlhw([2 2 3],'deadzone','saturation');
m5 = nlhw(ze,m5);

Compare the resulting models by plotting the model outputs and the measured output in validation
data zv.

compare(zv,m1,m2,m3,m4,m5)
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Improve a Linear Model Using Hammerstein-Wiener Structure
This example shows how to use the Hammerstein-Wiener model structure to improve a previously
estimated linear model.

After estimating the linear model, insert it into the Hammerstein-Wiener structure that includes input
or output nonlinearities.

Estimate a linear model.

load iddata1
LM = arx(z1,[2 2 1]);

Extract the transfer function coefficients from the linear model.

[Num,Den] = tfdata(LM);

Create a Hammerstein-Wiener model, where you initialize the linear block properties B and F using
Num and Den, respectively.

nb = 1;       % In general, nb = ones(ny,nu)
              % ny is number of outputs and nu is number of inputs
nf = nb;
nk = 0;       % In general, nk = zeros(ny,nu)
              % ny is number of outputs and nu is number of inputs
M = idnlhw([nb nf nk],[],'pwlinear');
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M.B = Num;
M.F = Den;

Estimate the model coefficients, which refines the linear model coefficients in Num and Den .

M = nlhw(z1,M);

Compare responses of linear and nonlinear model against measured data.

compare(z1,LM,M);

See Also

More About
• “What are Hammerstein-Wiener Models?” on page 12-2
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Validating Hammerstein-Wiener Models” on page 12-21
• “Estimate Hammerstein-Wiener Models Initialized Using Linear OE Models” on page 12-28
• “A Tutorial on Identification of Nonlinear ARX and Hammerstein-Wiener Models” on page 11-77
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Validating Hammerstein-Wiener Models
After estimating a Hammerstein-Wiener model on page 12-5 for your system, you can validate
whether it reproduces the system behavior within acceptable bounds. It is recommended that you use
separate data sets for estimating and validating your model. If the validation indicates low confidence
in the estimation, then see “Troubleshooting Model Estimation” on page 17-92 for next steps. For
general information about validating models, see “Model Validation”.

Compare Simulated Model Output to Measured Output
Plot simulated model output and measured output data for comparison, and compute best fit values.
At the command line, use compare command. You can also use sim to simulate model response. Note
that for Hammerstein-Wiener models, the simulated and predicted model output are equivalent
because these models have a trivial noise-component, that is the additive disturbance in these models
is white noise. For information about plotting simulated output in the app, see “Simulation and
Prediction in the App” on page 17-15.

Check Iterative Search Termination Conditions
The estimation report that is generated after model estimation lists the reason the software
terminated the estimation. For example, suppose that the report indicates that the estimation
reached the maximum number of iterations. You can try repeating the estimation by specifying a
larger value for the maximum number of iterations. For information about how to configure the
maximum number of iterations and other estimation options, see “Specify Estimation Algorithm” on
page 12-7.

To view the estimation report in the app, after model estimation is complete, view the Estimation
Report area of the Estimate tab. At the command line, use M.Report.Termination to display the
estimation termination conditions, where M is the estimated Hammerstein-Wiener model. For
example, check the M.Report.Termination.WhyStop field that describes why the estimation was
stopped.

For more information about the estimation report, see “Estimation Report” on page 1-21.

Check the Final Prediction Error and Loss Function Values
You can compare the performance of several estimated models by comparing the final prediction
error and loss function values that are shown in the estimation report.

To view these values for an estimated model M at the command line, use the M.Report.Fit.FPE
(final prediction error) and M.Report.Fit.LossFcn (value of loss function at estimation
termination) properties. Smaller values typically indicate better performance. However,
M.Report.Fit.FPE values can be unreliable when the model contains many parameters relative to
the estimation data size. Use these indicators with other validation techniques to draw reliable
conclusions.

Perform Residual Analysis
Residuals are differences between the model output and the measured output. Thus, residuals
represent the portion of the output not explained by the model. You can analyze the residuals using
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techniques such as the whiteness test and the independence test. For more information about these
tests, see “What Is Residual Analysis?” on page 17-40

At the command line, use resid to compute, plot, and analyze the residuals. To plot residuals in the
app, see “How to Plot Residuals in the App” on page 17-43.

Examine Hammerstein-Wiener Plots
A Hammerstein-Wiener plot displays the static input and output nonlinearities and linear responses of
a Hammerstein-Wiener model.

Examining a Hammerstein-Wiener plot can help you determine whether you have selected a
complicated nonlinearity for modeling your system. For example, suppose you use a piecewise-linear
input nonlinearity to estimate your model, but the plot indicates saturation behavior. You can estimate
a new model using the simpler saturation nonlinearity instead. For multivariable systems, you can use
the Hammerstein-Wiener plot to determine whether to exclude nonlinearities for specific channels. If
the nonlinearity for a specific input or output channel does not exhibit strong nonlinear behavior, you
can estimate a new model after setting the nonlinearity at that channel to unit gain.

You can generate these plots in the System Identification app and at the command line. In the plot
window, you can view the nonlinearities and linear responses by clicking one of the three blocks that
represent the model:

• uNL (input nonlinearity)— Click this block to view the static nonlinearity at the input to the Linear
Block. The plot displays evaluate(M.InputNonlinearity,u) where M is the Hammerstein-
Wiener model, and u is the input to the input nonlinearity block. For information about the blocks,
see “Structure of Hammerstein-Wiener Models” on page 12-2.

• Linear Block — Click this block to view the Step, impulse, Bode, and pole-zero response plots of
the embedded linear model (M.LinearModel). By default, a step plot of the linear model is
displayed.

• yNL (output nonlinearity) — Click this block to view the static nonlinearity at the output of the
Linear Block. The plot displays evaluate(M.OutputNonlinearity,x), where x is the
output of the linear block.

Creating a Hammerstein-Wiener Plot

To create a Hammerstein-Wiener plot in the System Identification app, after you have estimated the
model, select the Hamm-Wiener check box in the Model Views area. For general information about
creating and working with plots in the app, see “Working with Plots” on page 21-8.

At the command line, after you have estimated a Hammerstein-Wiener model M, you can access the
objects representing the input and output nonlinearity estimators using M.InputNonlinearity and
M.OutputNonlinearity.

Use plot to view the shape of the nonlinearities and the properties of the linear block.

plot(M)

You can use additional plot arguments to specify the following information:

• Include several Hammerstein-Wiener models on the plot.
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• Configure how to evaluate the nonlinearity at each input and output channel.
• Specify the time or frequency values for computing transient and frequency response plots of the

linear block.

Configuring a Hammerstein-Wiener Plot

To configure the plots of the nonlinear blocks:

1 In the Hammerstein-Wiener Model Plot window, select the nonlinear block you want to plot.

• To plot the response of the input nonlinearity function, click the uNL block.
• To plot the response of the output nonlinearity function, click the yNL block.

The selected block is highlighted green.

Note The input to the output nonlinearity block yNL is the output from the Linear Block and not
the measured input data.

2 If your model contains multiple inputs or outputs, select the channel in the Select nonlinearity
at channel list. Selecting the channel updates the plot and displays the nonlinearity values
versus the corresponding input to this nonlinear block.

3 Change the range of the horizontal axis of the plot. This feature is available only for plots
generated in the System Identification app.

In the plot window, select Options > Set input range to open the Range for Input to
Nonlinearity dialog box. This feature is only available in the System Identification app.

Enter the range using the format [MinValue MaxValue]. Click Apply and then Close to
update the plot.

To configure the linear block response plot:

1 In the Hammerstein-Wiener Model Plot window, click the Linear Block.
2 Select the input-output data pair for which you want to view the response in the Select I/O pair

list.
3 Select the type of linear response plot. In the Choose plot type list, choose from the following

options:

• Step
• Impulse
• Bode
• Pole-Zero Map

4 Set the time span for a step or impulse response plot. This feature is available only for plots
generated in the System Identification app.

In the plot window, select Options > Time span. In the Time Range dialog box, specify the time
span in the units of time you specified for the model. For a time span T, the resulting response is
plotted from -T/4 to T. Click Apply and then Close.

5 Set the frequency range for a Bode plot. This feature is available only for plots generated in the
app.
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The default frequency vector is 128 linearly distributed values, greater than zero and less than or
equal to the Nyquist frequency. To change the range, select Options > Frequency range. In the
Frequency Range dialog box, specify a new frequency vector in units of rad per model time units
using one of following methods:

• MATLAB expression, such as (1:100)*pi/100 or logspace(-3,-1,200). The expression
cannot contain variables in the MATLAB workspace.

• Row vector of values, such as (1:0.1:100).

Click Apply and then Close.

See Also

More About
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Estimate Hammerstein-Wiener Models in the App” on page 12-12
• “Estimate Hammerstein-Wiener Models at the Command Line” on page 12-15
• “Using Hammerstein-Wiener Models” on page 12-9

12 Identify Hammerstein-Wiener Models

12-24



How the Software Computes Hammerstein-Wiener Model
Output

This topic describes how the software evaluates the output of nonlinearity estimators and uses this
output to compute the response of a Hammerstein-Wiener model.

Evaluating Nonlinearities (SISO)
Evaluating the output of a nonlinearity for a input u requires that you first extract the input or output
nonlinearity from the model:

F = M.InputNonlinearity; 
H = M.OutputNonlinearity;

Evaluate F(u):

w = evaluate(F,u)

where u is a scalar representing the value of the input signal at a given time.

You can evaluate output at multiple time instants by evaluating F for several time values
simultaneously using a column vector of input values:

w = evaluate(F,[u1;u2;u3])

Similarly, you can evaluate the value of the nonlinearity H using the output of the linear block x(t) as
its input:

y = evaluate(H,x)

Evaluating Nonlinearities (MIMO)
For MIMO models, F and H are vectors of length nu and ny, respectively. nu is the number of inputs
and ny is the number of outputs. In this case, you must evaluate the predicted output of each
nonlinearity separately.

For example, suppose that you estimate a two-input model:

M = nlhw(data,[nb nf nk],[wavenet;poly1d],'saturation')

In the input nonlinearity:

F = M.InputNonlinearity
F1 = F(1);
F2 = F(2);

F is a vector function containing two elements: F=[F1(u1_value);F2(u2_value)], where F1 is a
wavenet object and F2 is a poly1d object. u1_value is the first input signal and u2_value is the
second input signal.

Evaluate F by evaluating F1 and F2 separately:

w1 = evaluate(F(1),u1_value);
w2 = evaluate(F(2),u2_value);
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The total input to the linear block, w, is a vector of w1 and w2 (w = [w1 w2]).

Similarly, you can evaluate the value of the nonlinearity H:

H = M.OutputNonlinearity;

Simulation of Hammerstein-Wiener Model
This example shows how the software evaluates the simulated output by first computing the output of
the input and output nonlinearity estimators.

Estimate a Hammerstein-Wiener model.

load twotankdata
estData = iddata(y,u,0.2);
M = nlhw(estData,[1 5 3],'pwlinear','poly1d');

Extract the input nonlinearity, linear model, and output nonlinearity as separate variables.

uNL = M.InputNonlinearity;
linModel = M.LinearModel;
yNL = M.OutputNonlinearity;

Simulate the output of the input nonlinearity estimator.

Input data for simulation

u = estData.u;

Compute output of input nonlinearity

w = evaluate(uNL,u);

Compute response of linear model to input w and zero initial conditions.

x = sim(linModel,w);

Compute the output of the Hammerstein-Wiener model M as the output of the output nonlinearity
estimator to input x.

y = evaluate(yNL,x);

The previous set of commands are equivalent to directly simulating the output of M using the sim
command.

ysim = sim(M,u);

Plot y and ysim, the manual and direct simulation results, respectively.

time = estData.SamplingInstants;
plot(time,y,'b',time,ysim,'--r');
xlabel('Time');
ylabel('Simulated Output')
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The plot indicates that y and ysim are the same.

See Also
evaluate

More About
• “What are Hammerstein-Wiener Models?” on page 12-2
• “Identifying Hammerstein-Wiener Models” on page 12-5
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Estimate Hammerstein-Wiener Models Initialized Using Linear
OE Models

This example shows how to estimate Hammerstein-Wiener models using linear OE models.

Load the estimation data.

load throttledata.mat

This command loads the data object ThrottleData into the workspace. The object contains input
and output samples collected from an engine throttle system, sampled at a rate of 100Hz.

A DC motor controls the opening angle of the butterfly valve in the throttle system. A step signal (in
volts) drives the DC motor. The output is the angular position (in degrees) of the valve.

Plot the data to view and analyze the data characteristics.

plot(ThrottleData)

In the normal operating range of 15-90 degrees, the input and output variables have a linear
relationship. You use a linear model of low order to model this relationship.

In the throttle system, a hard stop limits the valve position to 90 degrees, and a spring brings the
valve to 15 degrees when the DC motor is turned off. These physical components introduce
nonlinearities that a linear model cannot capture.

12 Identify Hammerstein-Wiener Models

12-28



Estimate a Hammerstein-Wiener model to model the linear behavior of this single-input single-output
system in the normal operating range.

% Detrend the data because linear models cannot capture offsets.
Tr = getTrend(ThrottleData); 
Tr.OutputOffset = 15;
DetrendedData = detrend(ThrottleData,Tr);

% Estimate a linear OE model with na=2, nb=1, nk=1.
opt = oeOptions('Focus','simulation');
LinearModel = oe(DetrendedData,[2 1 1],opt);

Compare the simulated model response with estimation data.

compare(DetrendedData, LinearModel)

The linear model captures the rising and settling behavior in the linear operating range but does not
account for output saturation at 90 degrees.

Estimate a Hammerstein-Wiener model to model the output saturation.

NonlinearModel = nlhw(ThrottleData, LinearModel, [], 'saturation');

The software uses the orders and delay of the linear model for the orders of the nonlinear model. In
addition, the software uses the B and F polynomials of the linear transfer function.

Compare the nonlinear model with data.
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compare(ThrottleData, NonlinearModel)

See Also

More About
• “What are Hammerstein-Wiener Models?” on page 12-2
• “Identifying Hammerstein-Wiener Models” on page 12-5
• “Estimate Hammerstein-Wiener Models at the Command Line” on page 12-15
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ODE Parameter Estimation (Grey-Box
Modeling)

• “Supported Grey-Box Models” on page 13-2
• “Data Supported by Grey-Box Models” on page 13-3
• “Choosing idgrey or idnlgrey Model Object” on page 13-4
• “Estimate Linear Grey-Box Models” on page 13-6
• “Estimate Continuous-Time Grey-Box Model for Heat Diffusion” on page 13-9
• “Estimate Discrete-Time Grey-Box Model with Parameterized Disturbance” on page 13-12
• “Estimate Coefficients of ODEs to Fit Given Solution” on page 13-14
• “Estimate Model Using Zero/Pole/Gain Parameters” on page 13-21
• “Estimate Nonlinear Grey-Box Models” on page 13-25
• “Creating IDNLGREY Model Files” on page 13-45
• “Identifying State-Space Models with Separate Process and Measurement Noise Descriptions”

on page 13-54
• “After Estimating Grey-Box Models” on page 13-58
• “Building Structured and User-Defined Models Using System Identification Toolbox™”

on page 13-59
• “Represent Nonlinear Dynamics Using MATLAB File for Grey-Box Estimation” on page 13-80
• “Modeling a Vehicle Dynamics System” on page 13-95
• “Modeling an Aerodynamic Body” on page 13-116
• “Modeling an Industrial Robot Arm” on page 13-130
• “Two Tank System: C MEX-File Modeling of Time-Continuous SISO System” on page 13-143
• “Three Ecological Population Systems: MATLAB and C MEX-File Modeling of Time-Series”

on page 13-156
• “Narendra-Li Benchmark System: Nonlinear Grey Box Modeling of a Discrete-Time System”

on page 13-174
• “Friction Modeling: MATLAB File Modeling of Static SISO System” on page 13-186
• “Signal Transmission System: C MEX-File Modeling Using Optional Input Arguments”

on page 13-196
• “Dry Friction Between Two Bodies: Parameter Estimation Using Multiple Experiment Data”

on page 13-209
• “Industrial Three-Degrees-of-Freedom Robot: C MEX-File Modeling of MIMO System Using

Vector/Matrix Parameters” on page 13-216
• “Non-Adiabatic Continuous Stirred Tank Reactor: MATLAB File Modeling with Simulations in

Simulink®” on page 13-226
• “Classical Pendulum: Some Algorithm-Related Issues” on page 13-241
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Supported Grey-Box Models
If you understand the physics of your system and can represent the system using ordinary differential
or difference equations (ODEs) with unknown parameters, then you can use System Identification
Toolbox commands to perform linear or nonlinear grey-box modeling. Grey-box model ODEs specify
the mathematical structure of the model explicitly, including couplings between parameters. Grey-box
modeling is useful when you know the relationships between variables, constraints on model
behavior, or explicit equations representing system dynamics.

The toolbox supports both continuous-time and discrete-time linear and nonlinear models. However,
because most laws of physics are expressed in continuous time, it is easier to construct models with
physical insight in continuous time, rather than in discrete time.

In addition to dynamic input-output models, you can also create time-series models that have no
inputs and static models that have no states.

If it is too difficult to describe your system using known physical laws, you can use the black-box
modeling approach. For more information, see “Linear Model Identification” and “Nonlinear Model
Identification”.

You can also use the idss model object to perform structured model estimation by using its
Structure property to fix or free specific parameters. However, you cannot use this approach to
estimate arbitrary structures (arbitrary parameterization). For more information about structure
matrices, see “Estimate State-Space Models with Structured Parameterization” on page 7-32.

See Also
idgrey | idnlgrey | idss

Related Examples
• “Estimate Linear Grey-Box Models” on page 13-6
• “Estimate Nonlinear Grey-Box Models” on page 13-25

More About
• “Data Supported by Grey-Box Models” on page 13-3
• “Choosing idgrey or idnlgrey Model Object” on page 13-4
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Data Supported by Grey-Box Models
You can estimate both continuous-time or discrete-time grey-box models for data with the following
characteristics:

• Time-domain or frequency-domain data, including time-series data with no inputs.

Note Nonlinear grey-box models support only time-domain data.
• Single-output or multiple-output data

You must first import your data into the MATLAB workspace. You must represent your data as an
iddata or idfrd object. For more information about preparing data for identification, see “Data
Preparation”.

See Also
idgrey | idnlgrey | idss

Related Examples
• “Estimate Linear Grey-Box Models” on page 13-6
• “Estimate Nonlinear Grey-Box Models” on page 13-25

More About
• “Supported Grey-Box Models” on page 13-2
• “Choosing idgrey or idnlgrey Model Object” on page 13-4
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Choosing idgrey or idnlgrey Model Object
Grey-box models require that you specify the structure of the ODE model in a file. You use this file to
create the idgrey or idnlgrey model object. You can use both the idgrey and the idnlgrey
objects to model linear systems. However, you can only represent nonlinear dynamics using the
idnlgrey model object.

The idgrey object requires that you write a function to describe the linear dynamics in the state-
space form, such that this file returns the state-space matrices as a function of your parameters. For
more information, see “Specifying the Linear Grey-Box Model Structure” on page 13-6.

The idnlgrey object requires that you write a function or MEX-file to describe the dynamics as a set
of first-order differential equations, such that this file returns the output and state derivatives as a
function of time, input, state, and parameter values. For more information, see “Specifying the
Nonlinear Grey-Box Model Structure” on page 13-25.

The following table compares idgrey and idnlgrey model objects.

Comparison of idgrey and idnlgrey Objects

Settings and Operations Supported by idgrey? Supported by idnlgrey?
Set bounds on parameter values. Yes Yes
Handle initial states individually. Yes Yes
Perform linear analysis. Yes

For example, use the bode
command.

No

Honor stability constraints. Yes

Specify constraints using the
Advanced.StabilityThreshold
estimation option. For more
information, see greyestOptions.

No

Note You can use parameter
bounds to ensure stability of an
idnlgrey model, if these bounds
are known.

Estimate a disturbance model. Yes

The disturbance model is
represented by K in state-space
equations.

No

Optimize estimation results for
simulation or prediction.

Yes

Set the Focus estimation option to
'simulation' or 'prediction'.
For more information, see
greyestOptions.

No

Because idnlgrey models are
Output-Error models, there is no
difference between simulation and
prediction results.

See Also
idgrey | idnlgrey | idss
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Related Examples
• “Estimate Linear Grey-Box Models” on page 13-6
• “Estimate Nonlinear Grey-Box Models” on page 13-25

More About
• “Supported Grey-Box Models” on page 13-2
• “Data Supported by Grey-Box Models” on page 13-3
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Estimate Linear Grey-Box Models

Specifying the Linear Grey-Box Model Structure
You can estimate linear discrete-time and continuous-time grey-box models for arbitrary ordinary
differential or difference equations using single-output and multiple-output time-domain data, or
time-series data (output-only).

You must represent your system equations in state-space form. State-space models use state variables
x(t) to describe a system as a set of first-order differential equations, rather than by one or more nth-
order differential equations.

The first step in grey-box modeling is to write a function that returns state-space matrices as a
function of user-defined parameters and information about the model.

Use the following format to implement the linear grey-box model in the file:

[A,B,C,D] = myfunc(par1,par2,...,parN,Ts,aux1,aux2,...)

where the output arguments are the state-space matrices and myfunc is the name of the file.
par1,par2,...,parN are the N parameters of the model. Each entry may be a scalar, vector or
matrix.Ts is the sample time. aux1,aux2,... are the optional input arguments that myfunc uses to
compute the state-space matrices in addition to the parameters and sample time. aux contains
auxiliary variables in your system. You use auxiliary variables to vary system parameters at the input
to the function, and avoid editing the file.

You can write the contents of myfunc to parameterize either a continuous-time, or a discrete-time
state-space model, or both. When you create the linear grey-box model using myfunc, you can specify
the nature of the output arguments of myfunc. The continuous-time state-space model has the form:

In continuous-time, the state-space description has the following form:

ẋ(t) = Ax(t) + Bu(t) + Ke(t)
y(t) = Cx(t) + Du(t) + e(t)
x(0) = x0

where, A,B,C and D are matrices that are parameterized by the parameters par1,par2,...,parN.
The noise matrix K and initial state vector, x0, are not parameterized by myfunc. In some
applications, you may want to express K and x0 as quantities that are parameterized by chosen
parameters, just as the A, B, C and D matrices. To handle such cases, you can write the ODE file,
myfunc, to return K and x0 as additional output arguments:

[A,B,C,D,K,x0] = myfunc(par1,par2,...,parN,Ts,aux1,aux2,...)

K and x0 are thus treated in the same way as the A, B, C and D matrices. They are all functions of the
parameters par1,par2,...,parN. To configure the handling of initial states, x0, and the
disturbance component, K, during estimation, use the greyestOptions option set.

In discrete-time, the state-space description has a similar form:

x(k + 1) = Ax(k) + Bu(k) + Ke(t)
y(k) = Cx(k) + Du(k) + e(t)
x(0) = x0
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where, A, B, C and D are now the discrete-time matrices that are parameterized by the parameters
par1,par2,...,parN. K and x0 are not directly parameterized, but can be estimated if required by
configuring the corresponding estimation options.

After creating the function or MEX-file with your model structure, you must define an idgrey model
object.

Create Function to Represent a Grey-Box Model
This example shows how to represent the structure of the following continuous-time model:

This equation represents an electrical motor, where  is the angular position of the motor
shaft, and  is the angular velocity. The parameter  is the inverse time constant of the
motor, and  is the static gain from the input to the angular velocity.

The motor is at rest at t = 0, but its angular position  is unknown. Suppose that the approximate
nominal values of the unknown parameters are ,  and . For more information
about this example, see the section on state-space models in System Identification: Theory for the
User , Second Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

The continuous-time state-space model structure is defined by the following equation:

If you want to estimate the same model using a structured state-space representation, see “Estimate
Structured Continuous-Time State-Space Models” on page 7-35.

To prepare this model for estimation:

• Create the following file to represent the model structure in this example:

function [A,B,C,D,K,x0] = myfunc(par,T)
A = [0 1; 0 par(1)]; 
B = [0;par(2)];
C = eye(2);
D = zeros(2,1);
K = zeros(2,2);
x0 = [par(3);0];

Save the file such that it is in the MATLAB® search path.
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• Use the following syntax to define an idgrey model object based on the myfunc file:

par = [-1; 0.25; 0];
aux = {};
T = 0;
m = idgrey('myfunc',par,'c',aux,T);

where par represents a vector of all the user-defined parameters and contains their nominal (initial)
values. In this example, all the scalar-valued parameters are grouped in the par vector. The scalar-
valued parameters could also have been treated as independent input arguments to the ODE function
myfunc. 'c' specifies that the underlying parameterization is in continuous time. aux represents
optional arguments. As myfunc does not have any optional arguments, use aux = {}. T specifies the
sample time; T = 0 indicates a continuous-time model.

Load the estimation data.

load(fullfile(matlabroot,'toolbox','ident','iddemos','data','dcmotordata'));
data = iddata(y,u,0.1);

Use greyest to estimate the grey-box parameter values:

m_est = greyest(data,m);

where data is the estimation data and m is an estimation initialization idgrey model. m_est is the
estimated idgrey model.

See Also
greyest | idgrey

Related Examples
• “Estimate Continuous-Time Grey-Box Model for Heat Diffusion” on page 13-9
• “Estimate Discrete-Time Grey-Box Model with Parameterized Disturbance” on page 13-12
• “Estimate Coefficients of ODEs to Fit Given Solution” on page 13-14
• “Estimate Model Using Zero/Pole/Gain Parameters” on page 13-21
• “Estimate Nonlinear Grey-Box Models” on page 13-25
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Estimate Continuous-Time Grey-Box Model for Heat Diffusion
This example shows how to estimate the heat conductivity and the heat-transfer coefficient of a
continuous-time grey-box model for a heated-rod system.

This system consists of a well-insulated metal rod of length L and a heat-diffusion coefficient κ. The
input to the system is the heating power u(t) and the measured output y(t) is the temperature at the
other end.

Under ideal conditions, this system is described by the heat-diffusion equation—which is a partial
differential equation in space and time.

∂x(t, ξ)
∂t = κ∂

2x(t, ξ)
∂ξ2

To get a continuous-time state-space model, you can represent the second-derivative using the
following difference approximation:

∂2x(t, ξ)
∂ξ2 = x t, ξ + ΔL − 2x(t, ξ) + x t, ξ − ΔL

ΔL 2

where ξ = k ⋅ ΔL

This transformation produces a state-space model of order n = L
ΔL , where the state variables

x(t, k ⋅ ΔL) are lumped representations for x(t, ξ) for the following range of values:

k ⋅ ΔL ≤ ξ < k + 1 ΔL

The dimension of x depends on the spatial grid size ΔL in the approximation.

The heat-diffusion equation is mapped to the following continuous-time state-space model structure
to identify the state-space matrices:

ẋ(t) = Fx(t) + Gu(t) + Kw(t)
y(t) = Hx(t) + Du(t) + w(t)
x(0) = x0

The state-space matrices are parameterized by the heat diffusion coefficient κ and the heat transfer
coefficient at the far end of the rod htf. The expressions also depend upon the grid size, Ngrid, and
the length of the rod L. The initial conditions x0 are a function of the initial room temperature,
treated as a known quantity in this example.

1 Create a MATLAB file.

The following code describes the state-space equation for this model. The parameters are κ and
htf while the auxiliary variables are Ngrid, L and initial room temperature temp. The grid size is
supplied as an auxiliary variable so that the ODE function can be easily adapted for various grid
sizes.

function [A,B,C,D,K,x0] = heatd(kappa,htf,T,Ngrid,L,temp)
% ODE file parameterizing the heat diffusion model

% kappa (first parameter) - heat diffusion coefficient
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% htf (second parameter) - heat transfer coefficient 
%                          at the far end of rod

% Auxiliary variables for computing state-space matrices:
% Ngrid: Number of points in the space-discretization
% L: Length of the rod
% temp: Initial room temperature (uniform)

% Compute space interval
deltaL = L/Ngrid;

% A matrix
A = zeros(Ngrid,Ngrid);
for kk = 2:Ngrid-1
  A(kk,kk-1) = 1;
  A(kk,kk) = -2;
  A(kk,kk+1) = 1;
end

% Boundary condition on insulated end
A(1,1) = -1; A(1,2) = 1;
A(Ngrid,Ngrid-1) = 1;
A(Ngrid,Ngrid) = -1;
A = A*kappa/deltaL/deltaL;

% B matrix
B = zeros(Ngrid,1);
B(Ngrid,1) = htf/deltaL;

% C matrix
C = zeros(1,Ngrid);
C(1,1) = 1;

% D matrix (fixed to zero)
D = 0;

% K matrix: fixed to zero
K = zeros(Ngrid,1);

% Initial states: fixed to room temperature
x0 = temp*ones(Ngrid,1);

2 Use the following syntax to define an idgrey model object based on the heatd code file:

m = idgrey('heatd',{0.27 1},'c',{10,1,22});

This command specifies the auxiliary parameters as inputs to the function, include the model
order (grid size) 10, the rod length of 1 meter, and an initial temperature of 22 degrees Celsius.
The command also specifies the initial values for heat conductivity as 0.27, and for the heat
transfer coefficient as 1.

3 For given data, you can use greyest to estimate the grey-box parameter values:

me = greyest(data,m)

The following command shows how you can specify to estimate a new model with different auxiliary
variables:

m.Structure.ExtraArguments = {20,1,22};
me = greyest(data,m);
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This syntax uses the ExtraArguments model structure attribute to specify a finer grid using a larger
value for Ngrid. For more information about linear grey-box model properties, see the idgrey
reference page.

See Also
greyest | idgrey

Related Examples
• “Estimate Linear Grey-Box Models” on page 13-6
• “Estimate Discrete-Time Grey-Box Model with Parameterized Disturbance” on page 13-12
• “Estimate Coefficients of ODEs to Fit Given Solution” on page 13-14
• “Estimate Model Using Zero/Pole/Gain Parameters” on page 13-21
• “Estimate Nonlinear Grey-Box Models” on page 13-25
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Estimate Discrete-Time Grey-Box Model with Parameterized
Disturbance

This example shows how to create a single-input and single-output grey-box model structure when
you know the variance of the measurement noise. The code in this example uses the Control System
Toolbox command kalman for computing the Kalman gain from the known and estimated noise
variance.

Description of the SISO System
This example is based on a discrete, single-input and single-output (SISO) system represented by the
following state-space equations:

x(kT + T) =
par1 par2

1 0
x(kT) +

1
0

u(kT) + w(kT)

y(kT) = par3 par4 x(kT) + e(kT)
x(0) = x0

where w and e are independent white-noise terms with covariance matrices R1 and R2, respectively.
R1=E{ww'} is a 2–by-2 matrix and R2=E{ee'} is a scalar. par1, par2, par3, and par4 represent the
unknown parameter values to be estimated.

Assume that you know the variance of the measurement noise R2 to be 1. R1(1,1) is unknown and is
treated as an additional parameter par5. The remaining elements of R1 are known to be zero.

Estimating the Parameters of an idgrey Model
You can represent the system described in “Description of the SISO System” on page 13-12 as an
idgrey (grey-box) model using a function. Then, you can use this file and the greyest command to
estimate the model parameters based on initial parameter guesses.

To run this example, you must load an input-output data set and represent it as an iddata or idfrd
object called data. For more information about this operation, see “Representing Time- and
Frequency-Domain Data Using iddata Objects” on page 2-34 or “Representing Frequency-Response
Data Using idfrd Objects” on page 2-61.

To estimate the parameters of a grey-box model:

1 Create the file mynoise that computes the state-space matrices as a function of the five unknown
parameters and the auxiliary variable that represents the known variance R2. The initial
conditions are not parameterized; they are assumed to be zero during this estimation.

Note R2 is treated as an auxiliary variable rather than assigned a value in the file to let you
change this value directly at the command line and avoid editing the file.

function [A,B,C,D,K] = mynoise(par,T,aux)
R2 = aux(1); % Known measurement noise variance
A = [par(1) par(2);1 0];
B = [1;0];
C = [par(3) par(4)];
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D = 0;
R1 = [par(5) 0;0 0];
[~,K] = kalman(ss(A,eye(2),C,0,T),R1,R2);

2 Specify initial guesses for the unknown parameter values and the auxiliary parameter value R2:

par1 = 0.1; % Initial guess for A(1,1) 
par2 = -2;  % Initial guess for A(1,2) 
par3 = 1;   % Initial guess for C(1,1) 
par4 = 3;   % Initial guess for C(1,2) 
par5 = 0.2; % Initial guess for R1(1,1)
Pvec = [par1; par2; par3; par4; par5]
auxVal = 1; % R2=1

3 Construct an idgrey model using the mynoise file:

Minit = idgrey('mynoise',Pvec,'d',auxVal);

The third input argument 'd' specifies a discrete-time system.
4 Estimate the model parameter values from data:

opt = greyestOptions;
opt.InitialState = 'zero';
opt.Display = 'full';
Model = greyest(data,Minit,opt)

See Also
greyest | idgrey | kalman

Related Examples
• “Estimate Linear Grey-Box Models” on page 13-6
• “Estimate Continuous-Time Grey-Box Model for Heat Diffusion” on page 13-9
• “Estimate Coefficients of ODEs to Fit Given Solution” on page 13-14
• “Estimate Model Using Zero/Pole/Gain Parameters” on page 13-21
• “Estimate Nonlinear Grey-Box Models” on page 13-25

More About
• “Identifying State-Space Models with Separate Process and Measurement Noise Descriptions”

on page 13-54
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Estimate Coefficients of ODEs to Fit Given Solution
This example shows how to estimate model parameters using linear and nonlinear grey-box modeling.

Use grey-box identification to estimate coefficients of ODEs that describe the model dynamics to fit a
given response trajectory.

• For linear dynamics, represent the model using a linear grey-box model (idgrey). Estimate the
model coefficients using greyest.

• For nonlinear dynamics, represent the model using a nonlinear grey-box model (idnlgrey).
Estimate the model coefficients using nlgreyest.

In this example, you estimate the value of the friction coefficient of a simple pendulum using its
oscillation data. The equation of motion of a simple pendulum is:

 is the angular displacement of the pendulum relative to its state of rest. g is the gravitational
acceleration constant. m is the mass of the pendulum and l is the length of the pendulum. b is the
viscous friction coefficient whose value is estimated to fit the given angular displacement data. There
is no external driving force that is contributing to the pendulum motion.

Load measured data.

load(fullfile(matlabroot,'toolbox','ident', ...
     'iddemos','data','pendulumdata'));
data = iddata(y,[],0.1,'Name','Pendulum');
data.OutputName = 'Pendulum position';
data.OutputUnit = 'rad';
data.Tstart = 0;
data.TimeUnit = 's';

The measured angular displacement data is loaded and saved as data, an iddata object with a
sample time of 0.1 seconds. The set command is used to specify data attributes such as the output
name, output unit, and the start time and units of the time vector.

Perform linear grey-box estimation.

Assuming that the pendulum undergoes only small angular displacements, the equation describing
the pendulum motion can be simplified:

Using the angular displacement ( ) and the angular velocity ( ) as state variables, the simplified
equation can be rewritten in the form:

Here,
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The B and D matrices are zero because there is no external driving force for the simple pendulum.

1. Create an ODE file that relates the model coefficients to its state space representation.

function [A,B,C,D] = LinearPendulum(m,g,l,b,Ts)
A = [0 1; -g/l, -b/m/l^2];
B = zeros(2,0);
C = [1 0];
D = zeros(1,0);
end 

The function, LinearPendulum, returns the state space representation of the linear motion model of
the simple pendulum using the model coefficients m, g, l, and b. Ts is the sample time. Save this
function as LinearPendulum.m. The function LinearPendulum must be on the MATLAB® path.
Alternatively, you can specify the full path name for this function.

2. Create a linear grey-box model associated with the LinearPendulum function.

m = 1;
g = 9.81;
l = 1;
b = 0.2;
linear_model = idgrey('LinearPendulum',{m,g,l,b},'c');

m, g and, l specify the values of the known model coefficients. b specifies the initial guess for the
viscous friction coefficient. The 'c' input argument in the call to idgrey specifies linear_model as
a continuous-time system.

3. Specify m, g, and l as known parameters.

linear_model.Structure.Parameters(1).Free = false;
linear_model.Structure.Parameters(2).Free = false;
linear_model.Structure.Parameters(3).Free = false;

As defined in the previous step, m, g, and l are the first three parameters of linear_model. Using
the Structure.Parameters.Free field for each of the parameters, m, g, and l are specified as
fixed values.

4. Create an estimation option set that specifies the initial state to be estimated and turns on the
estimation progress display. Also force the estimation algorithm to return a stable model. This option
is available only for linear model (idgrey) estimation.

opt = greyestOptions('InitialState','estimate','Display','on');
opt.EnforceStability = true;

5. Estimate the viscous friction coefficient.
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linear_model = greyest(data,linear_model,opt);

The greyest command updates the parameter of linear_model.

b_est = linear_model.Structure.Parameters(4).Value;
[linear_b_est,dlinear_b_est] = getpvec(linear_model,'free')

linear_b_est =

    0.1178
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dlinear_b_est =

    0.0088

getpvec returns, dlinear_b_est, the 1 standard deviation uncertainty associated with b, the free
estimation parameter of linear_model.The estimated value of b, the viscous friction coefficient,
using linear grey-box estimation is returned in linear_b_est.

6. Compare the response of the linear grey-box model to the measured data.

compare(data,linear_model)

The linear grey-box estimation model provides a 49.9% fit to measured data. The poor fit is due to the
assumption that the pendulum undergoes small angular displacements, whereas the measured data
shows large oscillations.

Perform nonlinear grey-box estimation.

Nonlinear grey-box estimation requires that you express the differential equation as a set of first
order equations.

Using the angular displacement ( ) and the angular velocity ( ) as state variables, the equation of
motion can be rewritten as a set of first order nonlinear differential equations:
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1. Create an ODE file that relates the model coefficients to its nonlinear representation.

function [dx,y] = NonlinearPendulum(t,x,u,m,g,l,b,varargin)

% Output equation.
y = x(1); % Angular position.

% State equations.
dx = [x(2);                             ... % Angular position
      -(g/l)*sin(x(1))-b/(m*l^2)*x(2)   ... % Angular velocity
     ];
end

The function, NonlinearPendulum, returns the state derivatives and output of the nonlinear motion
model of the pendulum using the model coefficients m, g, l, and b. Save this function as
NonlinearPendulum.m on the MATLAB® path. Alternatively, you can specify the full path name for
this function.

2. Create a nonlinear grey-box model associated with the NonlinearPendulum function.

m = 1;
g = 9.81;
l = 1;
b = 0.2;
order         = [1 0 2];
parameters    = {m,g,l,b};
initial_states = [1; 0];
Ts            = 0;
nonlinear_model = idnlgrey('NonlinearPendulum',order,parameters,initial_states,Ts);

3. Specify m, g, and l as known parameters.

setpar(nonlinear_model,'Fixed',{true true true false});

As defined in the previous step, m, g, and l are the first three parameters of nonlinear_model.
Using the setpar command, m, g, and l are specified as fixed values and b is specified as a free
estimation parameter.

4. Estimate the viscous friction coefficient.

nonlinear_model = nlgreyest(data,nonlinear_model,'Display','Full');
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The nlgreyest command updates the parameter of nonlinear_model.

b_est = nonlinear_model.Parameters(4).Value;
[nonlinear_b_est, dnonlinear_b_est] = getpvec(nonlinear_model,'free')

nonlinear_b_est =

    0.1002

dnonlinear_b_est =
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    0.0149

getpvec returns, as dnonlinear_b_est, the 1 standard deviation uncertainty associated with b,
the free estimation parameter of nonlinear_model.The estimated value of b, the viscous friction
coefficient, using nonlinear grey-box estimation is returned in nonlinear_b_est.

5. Compare the response of the linear and nonlinear grey-box models to the measured data.

compare(data,linear_model,nonlinear_model)

The nonlinear grey-box model estimation provides a closer fit to the measured data.

See Also
greyest | idgrey | idnlgrey | nlgreyest

Related Examples
• “Estimate Linear Grey-Box Models” on page 13-6
• “Estimate Continuous-Time Grey-Box Model for Heat Diffusion” on page 13-9
• “Estimate Discrete-Time Grey-Box Model with Parameterized Disturbance” on page 13-12
• “Estimate Model Using Zero/Pole/Gain Parameters” on page 13-21
• “Estimate Nonlinear Grey-Box Models” on page 13-25
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Estimate Model Using Zero/Pole/Gain Parameters
This example shows how to estimate a model that is parameterized by poles, zeros, and gains. The
example requires Control System Toolbox™ software.

You parameterize the model using complex-conjugate pole/zero pairs. When you parameterize a real,
grey-box model using complex-conjugate pairs of parameters, the software updates parameter values
such that the estimated values are also complex conjugate pairs.

Load the measured data.

load zpkestdata zd;

The variable zd, which contains measured data, is loaded into the MATLAB® workspace.

plot(zd);

The output shows an input delay of approximately 3.14 seconds.

Estimate the model using the zero-pole-gain (zpk) form using the zpkestODE function. To view this
function, enter

type zpkestODE

function [a,b,c,d] = zpkestODE(z,p,k,Ts,varargin)
%zpkestODE ODE file that parameterizes a state-space model using poles and
%zeros as its parameters.
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%
% Requires Control System Toolbox.

%   Copyright 2011 The MathWorks, Inc.

sysc = zpk(z,p,k);
if Ts==0
   [a,b,c,d] = ssdata(sysc);
else
   [a,b,c,d] = ssdata(c2d(sysc,Ts,'foh'));
end

Create a linear grey-box model associated with the ODE function.

Assume that the model has five poles and four zeros. Assume that two of the poles and two of the
zeros are complex conjugate pairs.

z = [-0.5+1i, -0.5-1i, -0.5, -1]; 
p = [-1.11+2i, -1.11-2i, -3.01, -4.01, -0.02]; 
k = 10.1; 
parameters = {z,p,k};
Ts = 0;
odefun = @zpkestODE;
init_sys = idgrey(odefun,parameters,'cd',{},Ts,'InputDelay',3.14);

z, p, and k are the initial guesses for the model parameters.

init_sys is an idgrey model that is associated with the zpkestODE.m function. The 'cd' flag
indicates that the ODE function, zpkestODE, returns continuous or discrete models, depending on
the sampling period.

Evaluate the quality of the fit provided by the initial model.

compareOpt = compareOptions('InitialCondition','zero'); 
compare(zd,init_sys,compareOpt);
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The initial model provides a poor fit.

Specify estimation options.

opt = greyestOptions('InitialState','zero','DisturbanceModel','none','SearchMethod','gna');

Estimate the model.

sys = greyest(zd,init_sys,opt);

sys, an idgrey model, contains the estimated zero-pole-gain model parameters.

Compare the estimated and initial parameter values.

[getpvec(init_sys) getpvec(sys)]

ans = 10×2 complex

  -0.5000 + 1.0000i  -1.6158 + 1.6173i
  -0.5000 - 1.0000i  -1.6158 - 1.6173i
  -0.5000 + 0.0000i  -0.9417 + 0.0000i
  -1.0000 + 0.0000i  -1.4098 + 0.0000i
  -1.1100 + 2.0000i  -2.4050 + 1.4340i
  -1.1100 - 2.0000i  -2.4050 - 1.4340i
  -3.0100 + 0.0000i  -2.3387 + 0.0000i
  -4.0100 + 0.0000i  -2.3392 + 0.0000i
  -0.0200 + 0.0000i  -0.0082 + 0.0000i
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  10.1000 + 0.0000i   9.7881 + 0.0000i

The getpvec command returns the parameter values for a model. In the output above, each row
displays corresponding initial and estimated parameter values. All parameters that were initially
specified as complex conjugate pairs remain so after estimation.

Evaluate the quality of the fit provided by the estimated model.

compare(zd,init_sys,sys,compareOpt);

sys provides a closer fit (98.35%) to the measured data.

See Also
c2d | getpvec | greyest | idgrey | ssdata

Related Examples
• “Estimate Linear Grey-Box Models” on page 13-6
• “Estimate Coefficients of ODEs to Fit Given Solution” on page 13-14
• “Estimate Continuous-Time Grey-Box Model for Heat Diffusion” on page 13-9
• “Estimate Discrete-Time Grey-Box Model with Parameterized Disturbance” on page 13-12
• “Estimate Nonlinear Grey-Box Models” on page 13-25
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Estimate Nonlinear Grey-Box Models

Specifying the Nonlinear Grey-Box Model Structure
You must represent your system as a set of first-order nonlinear difference or differential equations:

x†(t) = F(t, x(t), u(t), par1, par2, ..., parN)
y(t) = H(t, x(t), u(t), par1, par2, ..., parN) + e(t)
x(0) = x0

where x†(t) = dx(t) dt for continuous-time representation and x†(t) = x(t + Ts) for discrete-time
representation with Ts as the sample time. F and H are arbitrary linear or nonlinear functions with
Nx and Ny components, respectively. Nx is the number of states and Ny is the number of outputs.

After you establish the equations for your system, create a function or MEX-file. MEX-files, which can
be created in C or Fortran, are dynamically linked subroutines that can be loaded and executed by
the MATLAB. For more information about MEX-files, see “C MEX File Applications”. This file is called
an ODE file or a model file.

The purpose of the model file is to return the state derivatives and model outputs as a function of
time, states, inputs, and model parameters, as follows:

[dx,y] = MODFILENAME(t,x,u,p1,p2, ...,pN,FileArgument)

Tip The template file for writing the C MEX-file, IDNLGREY_MODEL_TEMPLATE.c, is located in
matlab/toolbox/ident/nlident.

The output variables are:

• dx — Represents the right side(s) of the state-space equation(s). A column vector with Nx entries.
For static models, dx=[].

For discrete-time models. dx is the value of the states at the next time step x(t+Ts).

For continuous-time models. dx is the state derivatives at time t, or dx
dt .

• y — Represents the right side(s) of the output equation(s). A column vector with Ny entries.

The file inputs are:

• t — Current time.
• x — State vector at time t. For static models, equals [].
• u — Input vector at time t. For time-series models, equals [].
• p1,p2, ...,pN — Parameters, which can be real scalars, column vectors or two-dimensional

matrices. N is the number of parameter objects. For scalar parameters, N is the total number of
parameter elements.

• FileArgument — Contains auxiliary variables that might be required for updating the constants
in the state equations.
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Tip After creating a model file, call it directly from the MATLAB software with reasonable inputs and
verify the output values. Also check that for the expected input and parameter value ranges, the
model output and derivatives remain finite.

For an example of creating grey-box model files and idnlgrey model object, see Creating idnlgrey
Model Files.

For examples of code files and MEX-files that specify model structure, see the toolbox/ident/
iddemos/examples folder. For example, the model of a DC motor is described in files dcmotor_m
and dcmotor_c.

Constructing the idnlgrey Object
After you create the function or MEX-file with your model structure, define an idnlgrey object. This
object shares many of the properties of the linear idgrey model object.

Use the following general syntax to define the idnlgrey model object:

m = idnlgrey('filename',Order,Parameters,InitialStates)

The idnlgrey arguments are defined as follows:

• 'filename' — Name of the function or MEX-file storing the model structure. This file must be on
the MATLAB path when you use this model object for model estimation, prediction, or simulation.

• Order — Vector with three entries [Ny Nu Nx], specifying the number of model outputs Ny, the
number of inputs Nu, and the number of states Nx.

• Parameters — Parameters, specified as struct arrays, cell arrays, or double arrays.
• InitialStates — Specified in the same way as parameters. Must be the fourth input to the

idnlgrey constructor.

You can also specify additional properties of the idnlgrey model, including simulation method and
related options. For detailed information about this object and its properties, see the idnlgrey
reference page.

Use nlgreyest or pem to estimate your grey-box model. Before estimating, it is advisable to
simulate the model to verify that the model file has been coded correctly. For example, compute the
model response to estimation data's input signal using sim:

y = sim(model,data)

where, model is the idnlgrey object, and data is the estimation data (iddata object).

Using nlgreyest to Estimate Nonlinear Grey-Box Models
You can use the nlgreyest command to estimate the unknown idnlgrey model parameters and
initial states using measured data.

The input-output dimensions of the data must be compatible with the input and output orders you
specified for the idnlgrey model.

Use the following general estimation syntax:

m2 = nlgreyest(data,m)
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where data is the estimation data and m is the idnlgrey model object you constructed. The output
m2 is an idnlgrey model of same configuration as m, with parameters and initial states updated to fit
the data. More information on estimation can be retrieved from the Report property. For more
information on Report and how to use it, see “Output Arguments” in the nlgreyest reference page,
or type m2.Report on the command line.

You can specify additional estimation options using the nlgreyestOptions option set, including
SearchMethod and SearchOption.

For information about validating your models, see “Model Validation”.

Represent Nonlinear Dynamics Using MATLAB File for Grey-Box
Estimation
This example shows how to construct, estimate and analyze nonlinear grey-box models.

Nonlinear grey-box (idnlgrey) models are suitable for estimating parameters of systems that are
described by nonlinear state-space structures in continuous or discrete time. You can use both
idgrey (linear grey-box model) and idnlgrey objects to model linear systems. However, you can
only use idnlgrey to represent nonlinear dynamics. To learn about linear grey-box modeling using
idgrey, see “Building Structured and User-Defined Models Using System Identification Toolbox™”
on page 13-59.

About the Model

In this example, you model the dynamics of a linear DC motor using the idnlgrey object.

Figure 1: Schematic diagram of a DC-motor.

If you ignore the disturbances and choose y(1) as the angular position [rad] and y(2) as the angular
velocity [rad/s] of the motor, you can set up a linear state-space structure of the following form (see
Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hall PTR, 1999,
2nd ed., p. 95-97 for the derivation):

   d         | 0      1   |        |   0   |
   -- x(t) = |            | x(t) + |       | u(t)
   dt        | 0   -1/tau |        | k/tau |
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             | 1   0 |
      y(t) = |       | x(t)
             | 0   1 |

tau is the time-constant of the motor in [s] and k is the static gain from the input to the angular
velocity in [rad/(V*s)] . See Ljung (1999) for how tau and k relate to the physical parameters of the
motor.

About the Input-Output Data

1. Load the DC motor data.

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'dcmotordata'));

2. Represent the estimation data as an iddata object.

z = iddata(y, u, 0.1, 'Name', 'DC-motor');

3. Specify input and output signal names, start time and time units.

z.InputName = 'Voltage';
z.InputUnit =  'V';
z.OutputName = {'Angular position', 'Angular velocity'};
z.OutputUnit = {'rad', 'rad/s'};
z.Tstart = 0;
z.TimeUnit = 's';

4. Plot the data.

The data is shown in two plot windows.

figure('Name', [z.Name ': Voltage input -> Angular position output']);
plot(z(:, 1, 1));   % Plot first input-output pair (Voltage -> Angular position).
figure('Name', [z.Name ': Voltage input -> Angular velocity output']);
plot(z(:, 2, 1));   % Plot second input-output pair (Voltage -> Angular velocity).
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Figure 2: Input-output data from a DC-motor.

Linear Modeling of the DC-Motor

1. Represent the DC motor structure in a function.

In this example, you use a MATLAB® file, but you can also use C MEX-files (to gain computational
speed), P-files or function handles. For more information, see “Creating IDNLGREY Model Files” on
page 13-45.

The DC-motor function is called dcmotor_m.m and is shown below.

  function [dx, y] = dcmotor_m(t, x, u, tau, k, varargin)

  % Output equations.
  y = [x(1);                         ... % Angular position.
       x(2)                          ... % Angular velocity.
      ];

  % State equations.
  dx = [x(2);                        ... % Angular velocity.
        -(1/tau)*x(2)+(k/tau)*u(1)   ... % Angular acceleration.
       ];

The file must always be structured to return the following:

Output arguments:
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• dx is the vector of state derivatives in continuous-time case, and state update values in the
discrete-time case.

• y is the output equation

Input arguments:

• The first three input arguments must be: t (time), x (state vector, [] for static systems), u (input
vector, [] for time-series).

• Ordered list of parameters follow. The parameters can be scalars, column vectors, or 2-
dimensional matrices.

• varargin for the auxiliary input arguments

2. Represent the DC motor dynamics using an idnlgrey object.

The model describes how the inputs generate the outputs using the state equation(s).

FileName      = 'dcmotor_m';       % File describing the model structure.
Order         = [2 1 2];           % Model orders [ny nu nx].
Parameters    = [1; 0.28];         % Initial parameters. Np = 2.
InitialStates = [0; 0];            % Initial initial states.
Ts            = 0;                 % Time-continuous system.
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts, ...
                'Name', 'DC-motor');

In practice, there are disturbances that affect the outputs. An idnlgrey model does not explicitly
model the disturbances, but assumes that these are just added to the output(s). Thus, idnlgrey
models are equivalent to Output-Error (OE) models. Without a noise model, past outputs do not
influence prediction of future outputs, which means that predicted output for any prediction horizon k
coincide with simulated outputs.

3. Specify input and output names, and units.

set(nlgr, 'InputName', 'Voltage', 'InputUnit', 'V',               ...
          'OutputName', {'Angular position', 'Angular velocity'}, ...
          'OutputUnit', {'rad', 'rad/s'},                         ...
          'TimeUnit', 's');

4. Specify names and units of the initial states and parameters.

nlgr = setinit(nlgr, 'Name', {'Angular position' 'Angular velocity'});
nlgr = setinit(nlgr, 'Unit', {'rad' 'rad/s'});
nlgr = setpar(nlgr, 'Name', {'Time-constant' 'Static gain'});
nlgr = setpar(nlgr, 'Unit', {'s' 'rad/(V*s)'});

You can also use setinit and setpar to assign values, minima, maxima, and estimation status for
all initial states or parameters simultaneously.

5. View the initial model.

a. Get basic information about the model.

The DC-motor has 2 (initial) states and 2 model parameters.

size(nlgr)
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Nonlinear grey-box model with 2 outputs, 1 inputs, 2 states and 2 parameters (2 free).

b. View the initial states and parameters.

Both the initial states and parameters are structure arrays. The fields specify the properties of an
individual initial state or parameter. Type help idnlgrey.InitialStates and help
idnlgrey.Parameters for more information.

nlgr.InitialStates(1)
nlgr.Parameters(2)

ans = 

  struct with fields:

       Name: 'Angular position'
       Unit: 'rad'
      Value: 0
    Minimum: -Inf
    Maximum: Inf
      Fixed: 1

ans = 

  struct with fields:

       Name: 'Static gain'
       Unit: 'rad/(V*s)'
      Value: 0.2800
    Minimum: -Inf
    Maximum: Inf
      Fixed: 0

c. Retrieve information for all initial states or model parameters in one call.

For example, obtain information on initial states that are fixed (not estimated) and the minima of all
model parameters.

getinit(nlgr, 'Fixed')
getpar(nlgr, 'Min')

ans =

  2x1 cell array

    {[1]}
    {[1]}

ans =

  2x1 cell array

    {[-Inf]}
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    {[-Inf]}

d. Obtain basic information about the object:

nlgr

nlgr =
Continuous-time nonlinear grey-box model defined by 'dcmotor_m' (MATLAB file):

   dx/dt = F(t, u(t), x(t), p1, p2)
    y(t) = H(t, u(t), x(t), p1, p2) + e(t)

 with 1 input(s), 2 state(s), 2 output(s), and 2 free parameter(s) (out of 2).

Name: DC-motor

Status:                                                         
Created by direct construction or transformation. Not estimated.

Use get to obtain more information about the model properties. The idnlgrey object shares many
properties of parametric linear model objects.

get(nlgr)

             FileName: 'dcmotor_m'
                Order: [1x1 struct]
           Parameters: [2x1 struct]
        InitialStates: [2x1 struct]
         FileArgument: {}
    SimulationOptions: [1x1 struct]
         TimeVariable: 't'
        NoiseVariance: [2x2 double]
                   Ts: 0
             TimeUnit: 'seconds'
            InputName: {'Voltage'}
            InputUnit: {'V'}
           InputGroup: [1x1 struct]
           OutputName: {2x1 cell}
           OutputUnit: {2x1 cell}
          OutputGroup: [1x1 struct]
                Notes: [0x1 string]
             UserData: []
                 Name: 'DC-motor'
               Report: [1x1 idresults.nlgreyest]

Performance Evaluation of the Initial DC-Motor Model

Before estimating the parameters tau and k, simulate the output of the system with the parameter
guesses using the default differential equation solver (a Runge-Kutta 45 solver with adaptive step
length adjustment). The simulation options are specified using the "SimulationOptions" model
property.

1. Set the absolute and relative error tolerances to small values (1e-6 and 1e-5, respectively).

nlgr.SimulationOptions.AbsTol = 1e-6;
nlgr.SimulationOptions.RelTol = 1e-5;

 Estimate Nonlinear Grey-Box Models

13-33



2. Compare the simulated output with the measured data.

compare displays both measured and simulated outputs of one or more models, whereas predict,
called with the same input arguments, displays the simulated outputs.

The simulated and measured outputs are shown in a plot window.

compare(z, nlgr);

Figure 3: Comparison between measured outputs and the simulated outputs of the initial DC-motor
model.

Parameter Estimation

Estimate the parameters and initial states using nlgreyest, which is a prediction error minimization
method for nonlinear grey box models. The estimation options, such as the choice of estimation
progress display, are specified using the "nlgreyestOptions" option set.

nlgr = setinit(nlgr, 'Fixed', {false false}); % Estimate the initial states.
opt = nlgreyestOptions('Display', 'on');
nlgr = nlgreyest(z, nlgr, opt);
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Performance Evaluation of the Estimated DC-Motor Model

1. Review the information about the estimation process.

This information is stored in the Report property of the idnlgrey object. The property also contains
information about how the model was estimated, such as solver and search method, data set, and why
the estimation was terminated.

nlgr.Report
fprintf('\n\nThe search termination condition:\n')
nlgr.Report.Termination
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ans = 

         Status: 'Estimated using NLGREYEST'
         Method: 'Solver: ode45; Search: lsqnonlin'
            Fit: [1x1 struct]
     Parameters: [1x1 struct]
    OptionsUsed: [1x1 idoptions.nlgreyest]
      RandState: []
       DataUsed: [1x1 struct]
    Termination: [1x1 struct]

The search termination condition:

ans = 

  struct with fields:

                 WhyStop: 'Change in cost was less than the specified tolerance.'
              Iterations: 5
    FirstOrderOptimality: 1.4013e-04
                FcnCount: 6
               Algorithm: 'trust-region-reflective'

2. Evaluate the model quality by comparing simulated and measured outputs.

The fits are 98% and 84%, which indicate that the estimated model captures the dynamics of the DC
motor well.

compare(z, nlgr);
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Figure 4: Comparison between measured outputs and the simulated outputs of the estimated
IDNLGREY DC-motor model.

3. Compare the performance of the idnlgrey model with a second-order ARX model.

na = [2 2; 2 2];
nb = [2; 2];
nk = [1; 1];
dcarx = arx(z, [na nb nk]);
compare(z, nlgr, dcarx);
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Figure 5: Comparison between measured outputs and the simulated outputs of the estimated
IDNLGREY and ARX DC-motor models.

4. Check the prediction errors.

The prediction errors obtained are small and are centered around zero (non-biased).

pe(z, nlgr);
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Figure 6: Prediction errors obtained with the estimated IDNLGREY DC-motor model.

5. Check the residuals ("leftovers").

Residuals indicate what is left unexplained by the model and are small for good model quality. Use
the resid command to view the correlations among the residuals. The first column of plots shows the
autocorrelations of the residuals for the two outputs. The second column shows the cross-correlation
of these residuals with the input "Voltage". The correlations are within acceptable bounds (blue
region).

figure('Name',[nlgr.Name ': residuals of estimated model']);
resid(z,nlgr);
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Figure 7: Residuals obtained with the estimated IDNLGREY DC-motor model.

6. Plot the step response.

A unit input step results in an angular position showing a ramp-type behavior and to an angular
velocity that stabilizes at a constant level.

figure('Name', [nlgr.Name ': step response of estimated model']);
step(nlgr);
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Figure 8: Step response with the estimated IDNLGREY DC-motor model.

7. Examine the model covariance.

You can assess the quality of the estimated model to some extent by looking at the estimated
covariance matrix and the estimated noise variance. A "small" value of the (i, i) diagonal element
of the covariance matrix indicates that the i:th model parameter is important for explaining the
system dynamics when using the chosen model structure. Small noise variance (covariance for multi-
output systems) elements are also a good indication that the model captures the estimation data in a
good way.

getcov(nlgr)
nlgr.NoiseVariance

ans =

   1.0e-04 *

    0.1573    0.0021
    0.0021    0.0008

ans =

    0.0010   -0.0000
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   -0.0000    0.0110

For more information about the estimated model, use present to display the initial states and
estimated parameter values, and estimated uncertainty (standard deviation) for the parameters.

present(nlgr);

                                                                                           
nlgr =                                                                                     
Continuous-time nonlinear grey-box model defined by 'dcmotor_m' (MATLAB file):             
                                                                                           
   dx/dt = F(t, u(t), x(t), p1, p2)                                                        
    y(t) = H(t, u(t), x(t), p1, p2) + e(t)                                                 
                                                                                           
 with 1 input(s), 2 state(s), 2 output(s), and 2 free parameter(s) (out of 2).             
                                                                                           
 Inputs:                                                                                   
    u(1)  Voltage(t) [V]                                                                   
 States:                              Initial value                                        
    x(1)  Angular position(t) [rad]     xinit@exp1   0.0302675   (estimated) in [-Inf, Inf]
    x(2)  Angular velocity(t) [rad/s]   xinit@exp1   -0.133777   (estimated) in [-Inf, Inf]
 Outputs:                                                                                  
    y(1)  Angular position(t) [rad]                                                        
    y(2)  Angular velocity(t) [rad/s]                                                      
 Parameters:                        Value Standard Deviation                               
    p1   Time-constant [s]           0.243649       0.00396671   (estimated) in [-Inf, Inf]
    p2   Static gain [rad/(V*s)]     0.249644      0.000284486   (estimated) in [-Inf, Inf]
                                                                                           
Name: DC-motor                                                                             
                                                                                           
Status:                                                                                    
Termination condition: Change in cost was less than the specified tolerance..              
Number of iterations: 5, Number of function evaluations: 6                                 
                                                                                           
Estimated using Solver: ode45; Search: lsqnonlin on time domain data "DC-motor".           
Fit to estimation data: [98.34;84.47]%                                                     
FPE: 0.001096, MSE: 0.1187                                                                 
More information in model's "Report" property.                                             

Conclusions

This example illustrates the basic tools for performing nonlinear grey-box modeling. See the other
nonlinear grey-box examples to learn about:

• Using nonlinear grey-box models in more advanced modeling situations, such as building
nonlinear continuous- and discrete-time, time-series and static models.

• Writing and using C MEX model-files.

• Handling nonscalar parameters.

• Impact of certain algorithm choices.

13 ODE Parameter Estimation (Grey-Box Modeling)

13-42



For more information on identification of dynamic systems with System Identification Toolbox, visit
the System Identification Toolbox product information page.

Nonlinear Grey-Box Model Properties and Estimation Options
idnlgrey creates a nonlinear grey-box model based on the model structure and properties. The
parameters and initial states of the created idnlgrey object are estimated using nlgreyest.

The following model properties and estimation options affect the model creation and estimation
results.

Simulation Method

You specify the simulation method using the SimulationOptions (struct) property of idnlgrey.

System Identification Toolbox software provides several variable-step and fixed-step solvers for
simulating idnlgrey models.

For discrete-time systems, the default solver is 'FixedStepDiscrete'. For continuous-time
systems, the default solver is 'ode45'. By default, SimulationOptions.Solver is set to 'Auto',
which automatically selects either 'ode45' or 'FixedStepDiscrete' during estimation and
simulation—depending on whether the system is continuous or discrete in time.

To view a list of available solvers and their properties, see the SimulationOptions model property
in idnlgrey reference page.

Search Method

You specify the search method for estimating model parameters using the SearchMethod option of
the nlgreyestOptions option set. Two categories of methods are available for nonlinear grey-box
modeling.

One category of methods consists of the minimization schemes that are based on line-search
methods, including Gauss-Newton type methods, steepest-descent methods, and Levenberg-
Marquardt methods.

The Trust-Region Reflective Newton method of nonlinear least-squares (lsqnonlin), where the cost
is the sum of squares of errors between the measured and simulated outputs, requires Optimization
Toolbox™ software. When the parameter bounds differ from the default +/- Inf, this search method
handles the bounds better than the schemes based on a line search. However, unlike the line-search-
based methods, lsqnonlin cannot handle automatic weighting by the inverse of estimated noise
variance in multi-output cases. For more information, see OutputWeight estimation option in the
nlgreyestOptions reference page.

By default, SearchMethod is set to Auto, which automatically selects a method from the available
minimizers. If the Optimization Toolbox product is installed, SearchMethod is set to 'lsqnonlin'.
Otherwise, SearchMethod is a combination of line-search based schemes.

For detailed information about this and other nlgreyest estimation options, see
nlgreyestOptions.
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Gradient Options

You specify the method for calculating gradients using the GradientOptions option of the
nlgreyestOptions option set. Gradients are the derivatives of errors with respect to unknown
parameters and initial states.

Gradients are calculated by numerically perturbing unknown quantities and measuring their effects
on the simulation error.

Option for gradient computation include the choice of the differencing scheme (forward, backward or
central), the size of minimum perturbation of the unknown quantities, and whether the gradients are
calculated simultaneously or individually.

For detailed information about this and other nlgreyest estimation options, see
nlgreyestOptions.

See Also
idnlgrey | nlgreyest

Related Examples
• “Creating IDNLGREY Model Files” on page 13-45
• “Estimate Linear Grey-Box Models” on page 13-6

More About
• “Supported Grey-Box Models” on page 13-2
• “Data Supported by Grey-Box Models” on page 13-3
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Creating IDNLGREY Model Files
This example shows how to write ODE files for nonlinear grey-box models as MATLAB and C MEX
files.

Grey box modeling is conceptually different to black box modeling in that it involves a more
comprehensive modeling step. For IDNLGREY (the nonlinear grey-box model object; the nonlinear
counterpart of IDGREY), this step consists of creating an ODE file, also called a "model file". The ODE
file specifies the right-hand sides of the state and the output equations typically arrived at through
physical first principle modeling. In this example we will concentrate on general aspects of
implementing it as a MATLAB file or a C MEX file.

IDNLGREY Model Files

IDNLGREY supports estimation of parameters and initial states in nonlinear model structures written
on the following explicit state-space form (so-called output-error, OE, form, named so as the noise e(t)
only affects the output of the model structure in an additive manner):

xn(t) = F(t, x(t), u(t), p1, ..., pNpo); x(0) = X0;

y(t) = H(t, x(t), u(t), p1, ..., pNpo) + e(t)

For discrete-time structures, xn(t) = x(T+Ts) with Ts being the sample time, and for continuous-time
structures xn(t) = d/dt x(t). In addition, F(.) and H(.) are arbitrary linear or nonlinear functions with
Nx (number of states) and Ny (number of outputs) components, respectively. Any of the model
parameters p1, ..., pNpo as well as the initial state vector X(0) can be estimated. Worth stressing is
that

1 time-series modeling, i.e., modeling without an exogenous input signal u(t), and
2 static modeling, i.e., modeling without any states x(t)

are two special cases that are supported by IDNLGREY. (See the tutorials idnlgreydemo3 and
idnlgreydemo5 for examples of these two modeling categories).

The first IDNLGREY modeling step to perform is always to implement a MATLAB or C MEX model file
specifying how to update the states and compute the outputs. More to the point, the user must write
a model file, MODFILENAME.m or MODFILENAME.c, defined with the following input and output
arguments (notice that this form is required for both MATLAB and C MEX type of model files)

[dx, y] = MODFILENAME(t, x, u, p1, p2, ..., pNpo, FileArgument)

MODFILENAME can here be any user chosen file name of a MATLAB or C MEX-file, e.g., see
twotanks_m.m, pendulum_c.c etc. This file should be defined to return two outputs:

• dx: the right-hand side(s) of the state-space equation(s) (a column vector with Nx real entries; []
for static models)

• y: the right-hand side(s) of the output equation(s) (a column vector with Ny real entries)

and it should take 3+Npo(+1) input arguments specified as follows:

• t: the current time
• x: the state vector at time t ([] for static models)
• u: the input vector at time t ([] for time-series models)
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• p1, p2, ..., pNpo: the individual parameters (which can be real scalars, column vectors or 2-
dimensional matrices); Npo is here the number of parameter objects, which for models with scalar
parameters coincide with the number of parameters Np

• FileArgument: optional inputs to the model file

In the onward discussion we will focus on writing model using either MATLAB language or using C-
MEX files. However, IDNLGREY also supports P-files (protected MATLAB files obtained using the
MATLAB command "pcode") and function handles. In fact, it is not only possible to use C MEX model
files but also Fortran MEX files. Consult the MATLAB documentation on External Interfaces for more
information about the latter.

What kind of model file should be implemented? The answer to this question really depends on the
use of the model.

Implementation using MATLAB language (resulting in a *.m file) has some distinct advantages.
Firstly, one can avoid time-consuming, low-level programming and concentrate more on the modeling
aspects. Secondly, any function available within MATLAB and its toolboxes can be used directly in the
model files. Thirdly, such files will be smaller and, without any modifications, all built-in MATLAB
error checking will automatically be enforced. In addition, this is obtained without any code
compilation.

C MEX modeling is much more involved and requires basic knowledge about the C programming
language. The main advantage with C MEX model files is the improved execution speed. Our general
advice is to pursue C MEX modeling when the model is going to be used many times, when large data
sets are employed, and/or when the model structure contains a lot of computations. It is often
worthwhile to start with using a MATLAB file and later on turn to the C MEX counterpart.

IDNLGREY Model Files Written Using MATLAB Language

With this said, let us next move on to MATLAB file modeling and use a nonlinear second order model
structure, describing a two tank system, as an example. See idnlgreydemo2 for the modeling details.
The contents of twotanks_m.m are as follows.

type twotanks_m.m

function [dx, y] = twotanks_m(t, x, u, A1, k, a1, g, A2, a2, varargin)
%TWOTANKS_M  A two tank system.

%   Copyright 2005-2006 The MathWorks, Inc.

% Output equation.
y = x(2);                                              % Water level, lower tank.

% State equations.
dx = [1/A1*(k*u(1)-a1*sqrt(2*g*x(1)));             ... % Water level, upper tank.
      1/A2*(a1*sqrt(2*g*x(1))-a2*sqrt(2*g*x(2)))   ... % Water level, lower tank.
     ];

In the function header, we here find the required t, x, and u input arguments followed by the six
scalar model parameters, A1, k, a1, g, A2 and a2. In the MATLAB file case, the last input argument
should always be varargin to support the passing of an optional model file input argument,
FileArgument. In an IDNLGREY model object, FileArgument is stored as a cell array that might hold
any kind of data. The first element of FileArgument is here accessed through varargin{1}{1}.

The variables and parameters are referred in the standard MATLAB way. The first state is x(1) and
the second x(2), the input is u(1) (or just u in case it is scalar), and the scalar parameters are simply
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accessed through their names (A1, k, a1, g, A2 and a2). Individual elements of vector and matrix
parameters are accessed as P(i) (element i of a vector parameter named P) and as P(i, j) (element at
row i and column j of a matrix parameter named P), respectively.

IDNLGREY C MEX Model Files

Writing a C MEX model file is more involved than writing a MATLAB model file. To simplify this step,
it is recommended that the available IDNLGREY C MEX model template is copied to
MODFILENAME.c. This template contains skeleton source code as well as detailed instructions on
how to customize the code for a particular application. The location of the template file is found by
typing the following at the MATLAB command prompt.

fullfile(matlabroot, 'toolbox', 'ident', 'nlident',
'IDNLGREY_MODEL_TEMPLATE.c')

For the two tank example, this template was copied to twotanks_c.c. After some initial modifications
and configurations (described below) the state and output equations were entered, thereby resulting
in the following C MEX source code.

type twotanks_c.c

/*   Copyright 2005-2015 The MathWorks, Inc. */
/*   Written by Peter Lindskog. */

/* Include libraries. */
#include "mex.h"
#include <math.h>

/* Specify the number of outputs here. */
#define NY 1

/* State equations. */
void compute_dx(double *dx, double t, double *x, double *u, double **p,
                const mxArray *auxvar)
{
    /* Retrieve model parameters. */
    double *A1, *k, *a1, *g, *A2, *a2;
    A1 = p[0];   /* Upper tank area.        */
    k  = p[1];   /* Pump constant.          */
    a1 = p[2];   /* Upper tank outlet area. */
    g  = p[3];   /* Gravity constant.       */
    A2 = p[4];   /* Lower tank area.        */
    a2 = p[5];   /* Lower tank outlet area. */
    
    /* x[0]: Water level, upper tank. */
    /* x[1]: Water level, lower tank. */
    dx[0] = 1/A1[0]*(k[0]*u[0]-a1[0]*sqrt(2*g[0]*x[0]));
    dx[1] = 1/A2[0]*(a1[0]*sqrt(2*g[0]*x[0])-a2[0]*sqrt(2*g[0]*x[1]));
}

/* Output equation. */
void compute_y(double *y, double t, double *x, double *u, double **p,
               const mxArray *auxvar)
{
    /* y[0]: Water level, lower tank. */
    y[0] = x[1];
}
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/*----------------------------------------------------------------------- *
   DO NOT MODIFY THE CODE BELOW UNLESS YOU NEED TO PASS ADDITIONAL
   INFORMATION TO COMPUTE_DX AND COMPUTE_Y
 
   To add extra arguments to compute_dx and compute_y (e.g., size
   information), modify the definitions above and calls below.
 *-----------------------------------------------------------------------*/

void mexFunction(int nlhs, mxArray *plhs[],
                 int nrhs, const mxArray *prhs[])
{
    /* Declaration of input and output arguments. */
    double *x, *u, **p, *dx, *y, *t;
    int     i, np;
    size_t  nu, nx;
    const mxArray *auxvar = NULL; /* Cell array of additional data. */
    
    if (nrhs < 3) {
        mexErrMsgIdAndTxt("IDNLGREY:ODE_FILE:InvalidSyntax",
        "At least 3 inputs expected (t, u, x).");
    }
    
    /* Determine if auxiliary variables were passed as last input.  */
    if ((nrhs > 3) && (mxIsCell(prhs[nrhs-1]))) {
        /* Auxiliary variables were passed as input. */
        auxvar = prhs[nrhs-1];
        np = nrhs - 4; /* Number of parameters (could be 0). */
    } else {
        /* Auxiliary variables were not passed. */
        np = nrhs - 3; /* Number of parameters. */
    }
    
    /* Determine number of inputs and states. */
    nx = mxGetNumberOfElements(prhs[1]); /* Number of states. */
    nu = mxGetNumberOfElements(prhs[2]); /* Number of inputs. */
    
    /* Obtain double data pointers from mxArrays. */
    t = mxGetPr(prhs[0]);  /* Current time value (scalar). */
    x = mxGetPr(prhs[1]);  /* States at time t. */
    u = mxGetPr(prhs[2]);  /* Inputs at time t. */
    
    p = mxCalloc(np, sizeof(double*));
    for (i = 0; i < np; i++) {
        p[i] = mxGetPr(prhs[3+i]); /* Parameter arrays. */
    }
    
    /* Create matrix for the return arguments. */
    plhs[0] = mxCreateDoubleMatrix(nx, 1, mxREAL);
    plhs[1] = mxCreateDoubleMatrix(NY, 1, mxREAL);
    dx      = mxGetPr(plhs[0]); /* State derivative values. */
    y       = mxGetPr(plhs[1]); /* Output values. */
    
    /*
      Call the state and output update functions.
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      Note: You may also pass other inputs that you might need,
      such as number of states (nx) and number of parameters (np).
      You may also omit unused inputs (such as auxvar).
      
      For example, you may want to use orders nx and nu, but not time (t)
      or auxiliary data (auxvar). You may write these functions as:
          compute_dx(dx, nx, nu, x, u, p);
          compute_y(y, nx, nu, x, u, p);
    */
    
    /* Call function for state derivative update. */
    compute_dx(dx, t[0], x, u, p, auxvar);
    
    /* Call function for output update. */
    compute_y(y, t[0], x, u, p, auxvar);
    
    /* Clean up. */
    mxFree(p);
}

Let us go through the contents of this file. As a first observation, we can divide the work of writing a
C MEX model file into four separate sub-steps, the last one being optional:

1 Inclusion of C-libraries and definitions of the number of outputs.
2 Writing the function computing the right-hand side(s) of the state equation(s), compute_dx.
3 Writing the function computing the right-hand side(s) of the output equation(s), compute_y.
4 Optionally updating the main interface function which includes basic error checking functionality,

code for creating and handling input and output arguments, and calls to compute_dx and
compute_y.

Before we address these sub-steps in more detail, let us briefly comment upon a couple of general
features of the C programming language.

1 High-precision variables (all inputs, states, outputs and parameters of an IDNLGREY object)
should be defined to be of the data type "double".

2 The unary * operator placed just in front of the variable or parameter names is a so-called
dereferencing operator. The C-declaration "double *A1;" specifies that A1 is a pointer to a double
variable. The pointer construct is a concept within C that is not always that easy to comprehend.
Fortunately, if the declarations of the output/input variables of compute_y and compute_dx are
not changed and all unpacked model parameters are internally declared with a *, then there is no
need to know more about pointers from an IDNLGREY modeling point of view.

3 Both compute_y and compute_dx are first declared and implemented, where after they are called
in the main interface function. In the declaration, the keyword "void" states explicitly that no
value is to be returned.

For further details of the C programming language we refer to the book

B.W. Kernighan and D. Ritchie. The C Programming Language, 2nd

edition, Prentice Hall, 1988.

In the first sub-step we first include the C-libraries "mex.h" (required) and "math.h" (required for
more advanced mathematics). The number of outputs is also declared per modeling file using a
standard C-define:
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/* Include libraries. */

#include "mex.h"

#include "math.h"

/* Specify the number of outputs here. */

#define NY 1

If desired, one may also include more C-libraries than the ones above.

The "math.h" library must be included whenever any state or output equation contains more
advanced mathematics, like trigonometric and square root functions. Below is a selected list of
functions included in "math.h" and the counterpart found within MATLAB:

C-function MATLAB function

========================================

sin, cos, tan sin, cos, tan

asin, acos, atan asin, acos, atan

sinh, cosh, tanh sinh, cosh, tanh

exp, log, log10 exp, log, log10

pow(x, y) x^y

sqrt sqrt

fabs abs

Notice that the MATLAB functions are more versatile than the corresponding C-functions, e.g., the
former handle complex numbers, while the latter do not.

Next, in the file we find the functions for updating the states, compute_dx, and the output, compute_y.
Both these functions hold argument lists, with the output to be computed (dx or y) at position 1, after
which follows all variables and parameters required to compute the right-hand side(s) of the state
and the output equations, respectively.

All parameters are contained in the parameter array p. The first step in compute_dx and compute_y is
to unpack and name the parameters to be used in the subsequent equations. In twotanks_c.c,
compute_dx declares six parameter variables whose values are determined accordingly:

/* Retrieve model parameters. */

double *A1, *k, *a1, *g, *A2, *a2;

A1 = p[0]; /* Upper tank area. */

k = p[1]; /* Pump constant. */

a1 = p[2]; /* Upper tank outlet area. */

g = p[3]; /* Gravity constant. */
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A2 = p[4]; /* Lower tank area. */

a2 = p[5]; /* Lower tank outlet area. */

compute_y on the other hand does not require any parameter for computing the output, and hence no
model parameter is retrieved.

As is the case in C, the first element of an array is stored at position 0. Hence, dx[0] in C corresponds
to dx(1) in MATLAB (or just dx in case it is a scalar), the input u[0] corresponds to u (or u(1)), the
parameter A1[0] corresponds to A1, and so on.

In the example above, we are only using scalar parameters, in which case the overall number of
parameters Np equals the number of parameter objects Npo. If any vector or matrix parameter is
included in the model, then Npo < Np.

The scalar parameters are referenced as P[0] (P(1) or just P in a MATLAB file) and the i:th vector
element as P[i-1] (P(i) in a MATLAB file). The matrices passed to a C MEX model file are different in
the sense that the columns are stacked upon each other in the obvious order. Hence, if P is a 2-by-2
matrix, then P(1, 1) is referred as P[0], P(2, 1) as P[1], P(1, 2) as P[2] and P(2, 2) as P[3]. See
"Tutorials on Nonlinear Grey Box Identification: An Industrial Three Degrees of Freedom Robot : C
MEX-File Modeling of MIMO System Using Vector/Matrix Parameters", idnlgreydemo8, for an
example where scalar, vector and matrix parameters are used.

The state and output update functions may also include other computations than just retrieving
parameters and computing right-hand side expressions. For execution speed, one might, e.g., declare
and use intermediate variables, whose values are used several times in the coming expressions. The
robot tutorial mentioned above, idnlgreydemo8, is a good example in this respect.

compute_dx and compute_y are also able to handle an optional FileArgument. The FileArgument data
is passed to these functions in the auxvar variable, so that the first component of FileArgument (a cell
array) can be obtained through

mxArray* auxvar1 = mxGetCell(auxvar, 0);

Here, mxArray is a MATLAB-defined data type that enables interchange of data between the C MEX-
file and MATLAB. In turn, auxvar1 may contain any data. The parsing, checking and use of auxvar1
must be handled solely within these functions, where it is up to the model file designer to implement
this functionality. Let us here just refer to the MATLAB documentation on External Interfaces for
more information about functions that operate on mxArrays. An example of how to use optional C
MEX model file arguments is provided in idnlgreydemo6, "Tutorials on Nonlinear Grey Box
Identification: A Signal Transmission System : C MEX-File Modeling Using Optional Input
Arguments".

The main interface function should almost always have the same content and for most applications no
modification whatsoever is needed. In principle, the only part that might be considered for changes is
where the calls to compute_dx and compute_y are made. For static systems, one can leave out the call
to compute_dx. In other situations, it might be desired to only pass the variables and parameters
referred in the state and output equations. For example, in the output equation of the two tank
system, where only one state is used, one could very well shorten the input argument list to

void compute_y(double *y, double *x)

and call compute_y in the main interface function as

compute_y(y, x);
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The input argument lists of compute_dx and compute_y might also be extended to include further
variables inferred in the interface function. The following integer variables are computed and might
therefore be passed on: nu (the number of inputs), nx (the number of states), and np (here the
number of parameter objects). As an example, nx is passed to compute_y in the model investigated in
the tutorial idnlgreydemo6.

The completed C MEX model file must be compiled before it can be used for IDNLGREY modeling.
The compilation can readily be done from the MATLAB command line as

mex MODFILENAME.c

Notice that the mex-command must be configured before it is used for the very first time. This is also
achieved from the MATLAB command line via

mex -setup

IDNLGREY Model Object

With an execution ready model file, it is straightforward to create IDNLGREY model objects for which
simulations, parameter estimations, and so forth can be carried out. We exemplify this by creating
two different IDNLGREY model objects for describing the two tank system, one using the model file
written in MATLAB and one using the C MEX file detailed above (notice here that the C MEX model
file has already been compiled).

Order         = [1 1 2];               % Model orders [ny nu nx].
Parameters    = [0.5; 0.003; 0.019; ...
                 9.81; 0.25; 0.016];   % Initial parameter vector.
InitialStates = [0; 0.1];              % Initial values of initial states.
nlgr_m    = idnlgrey('twotanks_m', Order, Parameters, InitialStates, 0)

nlgr_m =
Continuous-time nonlinear grey-box model defined by 'twotanks_m' (MATLAB file):

   dx/dt = F(t, u(t), x(t), p1, ..., p6)
    y(t) = H(t, u(t), x(t), p1, ..., p6) + e(t)

 with 1 input(s), 2 state(s), 1 output(s), and 6 free parameter(s) (out of 6).

Status:                                                         
Created by direct construction or transformation. Not estimated.

nlgr_cmex = idnlgrey('twotanks_c', Order, Parameters, InitialStates, 0)

nlgr_cmex =
Continuous-time nonlinear grey-box model defined by 'twotanks_c' (MEX-file):

   dx/dt = F(t, u(t), x(t), p1, ..., p6)
    y(t) = H(t, u(t), x(t), p1, ..., p6) + e(t)

 with 1 input(s), 2 state(s), 1 output(s), and 6 free parameter(s) (out of 6).

Status:                                                         
Created by direct construction or transformation. Not estimated.

Conclusions

In this tutorial we have discussed how to write IDNLGREY MATLAB and C MEX model files. We
finally conclude the presentation by listing the currently available IDNLGREY model files and the
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tutorial/case study where they are being used. To simplify further comparisons, we list both the
MATLAB (naming convention FILENAME_m.m) and the C MEX model files (naming convention
FILENAME_c.c), and indicate in the tutorial column which type of modeling approach that is being
employed in the tutorial or case study.

Tutorial/Case study MATLAB file C MEX-file

======================================================================

idnlgreydemo1 (MATLAB) dcmotor_m.m dcmotor_c.c

idnlgreydemo2 (C MEX) twotanks_m.m twotanks_c.c

idnlgreydemo3 (MATLAB) preys_m.m preys_c.c

(C MEX) predprey1_m.m predprey1_c.c

(C MEX) predprey2_m.m predprey2_c.c

idnlgreydemo4 (MATLAB) narendrali_m.m narendrali_c.c

idnlgreydemo5 (MATLAB) friction_m.m friction_c.c

idnlgreydemo6 (C MEX) signaltransmission_m.m signaltransmission_c.c

idnlgreydemo7 (C MEX) twobodies_m.m twobodies_c.c

idnlgreydemo8 (C MEX) robot_m.m robot_c.c

idnlgreydemo9 (MATLAB) cstr_m.m cstr_c.c

idnlgreydemo10 (MATLAB) pendulum_m.m pendulum_c.c

idnlgreydemo11 (C MEX) vehicle_m.m vehicle_c.c

idnlgreydemo12 (C MEX) aero_m.m aero_c.c

idnlgreydemo13 (C MEX) robotarm_m.m robotarm_c.c

The contents of these model files can be displayed in the MATLAB command window through the
command "type FILENAME_m.m" or "type FILENAME_c.c". All model files are found in the directory
returned by the following MATLAB command.

fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'examples')

See Also
idgrey | idnlgrey | idss

Related Examples
• “Estimate Linear Grey-Box Models” on page 13-6
• “Estimate Nonlinear Grey-Box Models” on page 13-25
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Identifying State-Space Models with Separate Process and
Measurement Noise Descriptions

General Model Structure
An identified linear model is used to simulate and predict system outputs for given input and noise
signals. The input signals are measured while the noise signals are only known via their statistical
mean and variance. The general form of the state-space model, often associated with Kalman
filtering, is an example of such a model, and is defined as:

x(t + 1) = A(θ)x(t) + B(θ)u(t) + w(t)
y(t) = C(θ)x(t) + D(θ)u(t) + v(t),

 (13-1)

where, at time t:

• x(t) is the vector of model states.
• u(t) is the measured input data.
• y(t) is the measured output data.
• w(t) is the process noise.
• v(t) is the measurement noise.

The noise disturbances are independent random variables with zero mean and covariances:

E w(t)w⊺(t) = R1(θ)

E v(t)v⊺(t) = R2(θ)

E w(t)v⊺(t) = R12(θ)

The vector θ parameterizes the model, including the coefficients of the system matrices and the noise
covariances. However, all elements of the model are not necessarily free. If you have physical insight
into the states of the system and sources of noise, the model can have a specific structure with few
parameters in the vector θ.

Innovations Form and One-Step Ahead Predictor
For a given value of θ, you want to predict the best estimates of x(t) and y(t) in the presence of any
disturbances. The required predictor model equations are derived from the Kalman filtering
technique:

x (t + 1, θ) = A(θ)x(t) + B(θ)u(t) + K(θ) y(t)− C(θ)x (t, θ)− D(θ)u(t)
y (t, θ) = C(θ)x (t) + D(θ)u(t),

 (13-2)

where x (t, θ) is the predicted value of the state vector x(t) at time instant t, and y (t, θ) is the
predicted value of output y(t). The variables u(t) and y(t) in the above equation represent the
measured input and output values at time t. The Kalman Gain matrix, K(θ), is derived from the system
matrices and noise covariances as follows:

K(θ) = A(θ)Γ(θ)C⊺(θ) + R12(θ) C(θ)Γ(θ)C⊺(θ) + R2(θ) −1,
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where Γ(θ) is the covariance of the state estimate error:

Γ(θ) = E x(t)− x (t, θ) x(t)− x (t, θ) ⊺ .

Γ(θ) is the solution of an algebraic Riccati equation. For more information, see dare and [1]

Denoting the output prediction error as e(t) = y(t)− y (t, θ), you can write the general state-space
model in a simpler form:

x(t + 1, θ) = A(θ)x(t) + B(θ)u(t) + K(θ)e(t)
y(t) = C(θ)x(t) + D(θ)u(t) + e(t) .

 (13-3)

This simpler representation is the innovations form of the state-space model, and has only one unique
disturbance source, e(t). This form corresponds to choosing R2=I, R12=K, and R1=KKT for the general
model structure. System Identification Toolbox software uses the innovations form as its primary
representation of state-space models.

Both the general and innovations form of the model lead to the same predictor model as shown in
“Equation 13-2”. Use the predict command to compute the predicted model response and to
generate this predictor system.

Model Identification
The identification task is to use input and output measurement data to determine the
parameterization vector, θ. The approach to take depends on the amount of prior information
available regarding the system and the noise disturbances.

Black Box Identification

When only input-output data measurements are available, and you have no knowledge of the noise
structure, you can only estimate the model in the innovations form. To do so, we use the one-step
ahead prediction error minimization approach (PEM) to compute the best output predictor. For this
approach, the matrix K is parameterized independently of the other system matrices, and no prior
information about the system states or output covariances is considered for estimation. The estimated
model can be cast back into the general model structure in many nonunique ways, one of which is to
assume R2=I, R12=K, and R1=KKT. The innovations form is a system representation of the predictor in
which e(t) does not necessarily represent the actual measurement noise.

Estimate state-space models in the innovations form using the n4sid, ssest, and ssregest
commands. The system matrices A, B, C, D, and K are parameterized independently and the
identification minimizes the weighted norm of the prediction error, e(t). For more information, see
“Estimating State-Space Models Using ssest, ssregest and n4sid” on page 7-25 and the estimation
examples in ssest.

Note In this case, the estimation algorithm chooses the model states arbitrarily. As a result, it is
difficult to imagine physically meaningful descriptions of the states and the sources for the
disturbances affecting them.

Structured Identification

In some situations, in addition to the input-output data, you know something about the state and
measurement disturbances. To make the notion of state disturbances meaningful, it is necessary that

 Identifying State-Space Models with Separate Process and Measurement Noise Descriptions

13-55



the states be well-defined, such as the positions and velocities in a mechanical lumped-mass system.
Well-defined states and known noise sources result in a structured state-space model, which you can
then parameterize using the general model structure of “Equation 13-1”.

To identify such models, use a grey-box modeling approach, which lets you use any prior knowledge
regarding the system parameters and noise covariances. For example, you may know that only the
first element of R1 is nonzero, or that all the off-diagonal terms of R2 are zero. When using grey-box
modeling, provide initial guess values for the parameterization vector, θ. If the model states are
physically meaningful, it should be possible to determine initial estimates for the parameters in θ.

To estimate a grey-box model with parameterized disturbances:

• Create a MATLAB function, called the ODE file, that:

• Computes the parameterized state-space matrices, A, B, C, and D, using the parameter vector
θ, which is supplied as an input argument.

• Computes the noise covariance matrices R1, R2, and R12. Each of these matrices can be
completely or partially unknown. Any unknown matrix elements are defined in terms of
parameters in θ.

• Uses the system matrices A and C, and the noise covariances with the kalman command to
find the Kalman gain matrix, K.

[~,K] = kalman(ss(A,eye(nx),C,zeros(ny,nx),Ts),R1,R2,R12);

Here, nx is the number of model states, ny is the number of model outputs, and Ts is the
sample time. The kalman command requires Control System Toolbox software.

• Returns A, B, C, D, and K as output arguments.
• Create an idgrey model that uses the ODE function and an initial guess value for the parameter

vector, θ.
• Configure any estimation options using the greyestOptions command.
• Estimate θ using greyest command.

For an example of using parameterized disturbances with grey-box modeling, see “Estimate Discrete-
Time Grey-Box Model with Parameterized Disturbance” on page 13-12.

Summary
Use the innovations form if all you have is measured input-output data. It is worthwhile to use the
general form only if you can define a system parameterization with meaningful states, and you have
nontrivial knowledge about the noise covariances. In this case, use grey-box estimation to identify the
state-space model.

Both the general form and the innovations form lead to the same predictor. So, if your end goal is to
deploy the model for predicting future outputs or to perform simulations, it is more convenient to use
the innovations form of the model.

References
[1] Ljung, L. “State-Space Models.” Section 4.3 in System Identification: Theory for the User. 2nd ed.

Upper Saddle River, NJ: Prentice Hall, 1999, pp. 93–102.
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See Also
greyest | idgrey | n4sid | predict | ssest | ssregest

Related Examples
• “Estimate Discrete-Time Grey-Box Model with Parameterized Disturbance” on page 13-12
• “Estimate Linear Grey-Box Models” on page 13-6
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After Estimating Grey-Box Models
After estimating linear and nonlinear grey-box models, you can simulate the model output using the
sim command. For more information, see “Validating Models After Estimation” on page 17-2.

The toolbox represents linear grey-box models using the idgrey model object. To convert grey-box
models to state-space form, use the idss command, as described in “Transforming Between Linear
Model Representations” on page 4-29. You must convert your model to an idss object to perform
input-output concatenation or to use sample time conversion functions (c2d, d2c, d2d).

Note Sample-time conversion functions require that you convert idgrey models with
FunctionType ='cd' to idss models.

The toolbox represents nonlinear grey-box models as idnlgrey model objects. These model objects
store the parameter values resulting from the estimation. You can access these parameters from the
model objects to use these variables in computation in the MATLAB workspace.

Note Linearization of nonlinear grey-box models is not supported.

You can import nonlinear and linear grey box models into a Simulink model using the System
Identification Toolbox Block Library. For more information, see “Simulate Identified Model in
Simulink” on page 20-5.

See Also
idgrey | idnlgrey

Related Examples
• “Estimate Linear Grey-Box Models” on page 13-6
• “Estimate Nonlinear Grey-Box Models” on page 13-25
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Building Structured and User-Defined Models Using System
Identification Toolbox™

This example shows how to estimate parameters in user-defined model structures. Such structures
are specified by IDGREY (linear state-space) or IDNLGREY (nonlinear state-space) models. We shall
investigate how to assign structure, fix parameters and create dependencies among them.

Experiment Data

We shall investigate data produced by a (simulated) dc-motor. We first load the data:

load dcmdata
who

Your variables are:

text  u     y     

The matrix y contains the two outputs: y1 is the angular position of the motor shaft and y2 is the
angular velocity. There are 400 data samples and the sample time is 0.1 seconds. The input is
contained in the vector u. It is the input voltage to the motor.

z = iddata(y,u,0.1); % The IDDATA object
z.InputName = 'Voltage';
z.OutputName = {'Angle';'AngVel'};
plot(z(:,1,:))
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Figure: Measurement Data: Voltage to Angle

plot(z(:,2,:))
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Figure: Measurement Data: Voltage to Angular Velocity

Model Structure Selection

     d/dt x = A x + B u + K e
        y   = C x + D u + e

We shall build a model of the dc-motor. The dynamics of the motor is well known. If we choose x1 as
the angular position and x2 as the angular velocity it is easy to set up a state-space model of the
following character neglecting disturbances: (see Example 4.1 in Ljung(1999):

         | 0     1  |      | 0   |
d/dt x = |          | x  + |     | u
         | 0   -th1 |      | th2 |

        | 1  0 |
   y =  |      | x
        | 0  1 |

The parameter th1 is here the inverse time-constant of the motor and th2 is such that th2/th1 is
the static gain from input to the angular velocity. (See Ljung(1987) for how th1 and th2 relate to the
physical parameters of the motor). We shall estimate these two parameters from the observed data.
The model structure (parameterized state space) described above can be represented in MATLAB®
using IDSS and IDGREY models. These models let you perform estimation of parameters using
experimental data.
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Specification of a Nominal (Initial) Model

If we guess that th1=1 and th2 = 0.28 we obtain the nominal or initial model

A = [0 1; 0 -1]; % initial guess for A(2,2) is -1
B = [0; 0.28]; % initial guess for B(2) is 0.28
C = eye(2);
D = zeros(2,1);

and we package this into an IDSS model object:

ms = idss(A,B,C,D);

The model is characterized by its matrices, their values, which elements are free (to be estimated)
and upper and lower limits of those:

ms.Structure.a

 
ans =
 
       Name: 'A'
      Value: [2x2 double]
    Minimum: [2x2 double]
    Maximum: [2x2 double]
       Free: [2x2 logical]
      Scale: [2x2 double]
       Info: [2x2 struct]

 
1x1 param.Continuous
 

ms.Structure.a.Value
ms.Structure.a.Free

ans =

     0     1
     0    -1

ans =

  2x2 logical array

   1   1
   1   1

Specification of Free (Independent) Parameters Using IDSS Models

So we should now mark that it is only A(2,2) and B(2,1) that are free parameters to be estimated.

ms.Structure.a.Free = [0 0; 0 1];
ms.Structure.b.Free = [0; 1];
ms.Structure.c.Free = 0; % scalar expansion used

13 ODE Parameter Estimation (Grey-Box Modeling)

13-62



ms.Structure.d.Free = 0;
ms.Ts = 0;  % This defines the model to be continuous

The Initial Model

ms % Initial model

ms =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
       x1  x2
   x1   0   1
   x2   0  -1
 
  B = 
         u1
   x1     0
   x2  0.28
 
  C = 
       x1  x2
   y1   1   0
   y2   0   1
 
  D = 
       u1
   y1   0
   y2   0
 
  K = 
       y1  y2
   x1   0   0
   x2   0   0
 
Parameterization:
   STRUCTURED form (some fixed coefficients in  A, B, C).
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 2
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

Estimation of Free Parameters of the IDSS Model

The prediction error (maximum likelihood) estimate of the parameters is now computed by:

dcmodel = ssest(z,ms,ssestOptions('Display','on'));
dcmodel

dcmodel =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
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       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
           x1      x2
   x1       0       1
   x2       0  -4.013
 
  B = 
       Voltage
   x1        0
   x2    1.002
 
  C = 
           x1  x2
   Angle    1   0
   AngVel   0   1
 
  D = 
           Voltage
   Angle         0
   AngVel        0
 
  K = 
        Angle  AngVel
   x1       0       0
   x2       0       0
 
Parameterization:
   STRUCTURED form (some fixed coefficients in  A, B, C).
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 2
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                       
Estimated using SSEST on time domain data "z".
Fit to estimation data: [98.35;84.42]%        
FPE: 0.001071, MSE: 0.1192                    
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The estimated values of the parameters are quite close to those used when the data were simulated
(-4 and 1). To evaluate the model's quality we can simulate the model with the actual input by and
compare it with the actual output.

compare(z,dcmodel);
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We can now, for example plot zeros and poles and their uncertainty regions. We will draw the regions
corresponding to 3 standard deviations, since the model is quite accurate. Note that the pole at the
origin is absolutely certain, since it is part of the model structure; the integrator from angular
velocity to position.

clf
showConfidence(iopzplot(dcmodel),3)
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Now, we may make various modifications. The 1,2-element of the A-matrix (fixed to 1) tells us that x2
is the derivative of x1. Suppose that the sensors are not calibrated, so that there may be an unknown
proportionality constant. To include the estimation of such a constant we just "let loose" A(1,2) and
re-estimate:

dcmodel2 = dcmodel;
dcmodel2.Structure.a.Free(1,2) = 1;
dcmodel2 = pem(z,dcmodel2,ssestOptions('Display','on'));

State-space Model Identification
                                
Estimation data: Time domain data z          
Data has 2 outputs, 1 inputs and 400 samples.
Number of states: 2                          

Algorithm: Nonlinear least squares with automatically chosen line search method
 <br>
------------------------------------------------------------------------------------------
 <br>
                          Norm of      First-order    Improvement (%) <br> Iteration       Cost       step         optimality     Expected   Achieved    Bisections <br>------------------------------------------------------------------------------------------
     0     0.00106082          -             40      0.0256           -         -                                                                                                                                                                                                                                                                                                                                                                         
     1     0.00106055     0.0038           8.21      0.0256      0.0255         0
     2     0.00106055   5.48e-05       0.000879    1.13e-05    1.13e-05         0
------------------------------------------------------------------------------------------
Estimating parameter covariance...
done.
Termination condition: Near (local) minimum, (norm(g) < tol)..
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Number of iterations: 2, Number of function evaluations: 5    
                                                              
Status: Estimated using PEM                                   
Fit to estimation data: [98.35;84.42]%, FPE: 0.00107658       

The resulting model is

dcmodel2

dcmodel2 =
  Continuous-time identified state-space model:
      dx/dt = A x(t) + B u(t) + K e(t)
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       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
           x1      x2
   x1       0  0.9975
   x2       0  -4.011
 
  B = 
       Voltage
   x1        0
   x2    1.004
 
  C = 
           x1  x2
   Angle    1   0
   AngVel   0   1
 
  D = 
           Voltage
   Angle         0
   AngVel        0
 
  K = 
        Angle  AngVel
   x1       0       0
   x2       0       0
 
Parameterization:
   STRUCTURED form (some fixed coefficients in  A, B, C).
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 3
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                     
Estimated using PEM on time domain data "z".
Fit to estimation data: [98.35;84.42]%      
FPE: 0.001077, MSE: 0.1192                  

We find that the estimated A(1,2) is close to 1. To compare the two model we use the compare
command:

compare(z,dcmodel,dcmodel2)
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Specification of Models with Coupled Parameters Using IDGREY Objects

Suppose that we accurately know the static gain of the dc-motor (from input voltage to angular
velocity, e.g. from a previous step-response experiment. If the static gain is G, and the time constant
of the motor is t, then the state-space model becomes

          |0     1|    |  0  |
d/dt x =  |       |x + |     | u
          |0  -1/t|    | G/t |

          |1   0|
   y   =  |     | x
          |0   1|

With G known, there is a dependence between the entries in the different matrices. In order to
describe that, the earlier used way with "Free" parameters will not be sufficient. We thus have to
write a MATLAB file which produces the A, B, C, and D, and optionally also the K and X0 matrices as
outputs, for each given parameter vector as input. It also takes auxiliary arguments as inputs, so that
the user can change certain things in the model structure, without having to edit the file. In this case
we let the known static gain G be entered as such an argument. The file that has been written has the
name 'motorDynamics.m'.

type motorDynamics

function [A,B,C,D,K,X0] = motorDynamics(par,ts,aux)
%MOTORDYNAMICS ODE file representing the dynamics of a motor.
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%
%   [A,B,C,D,K,X0] = motorDynamics(Tau,Ts,G)
%   returns the State Space matrices of the DC-motor with
%   time-constant Tau (Tau = par) and known static gain G. The sample
%   time is Ts.
%
%   This file returns continuous-time representation if input argument Ts
%   is zero. If Ts>0, a discrete-time representation is returned. To make
%   the IDGREY model that uses this file aware of this flexibility, set the
%   value of Structure.FcnType property to 'cd'. This flexibility is useful
%   for conversion between continuous and discrete domains required for
%   estimation and simulation.
%
%   See also IDGREY, IDDEMO7.

%   L. Ljung
%   Copyright 1986-2015 The MathWorks, Inc.

t = par(1);
G = aux(1);

A = [0 1;0 -1/t];
B = [0;G/t];
C = eye(2);
D = [0;0];
K = zeros(2);
X0 = [0;0];
if ts>0 % Sample the model with sample time Ts
   s = expm([[A B]*ts; zeros(1,3)]);
   A = s(1:2,1:2);
   B = s(1:2,3);
end

We now create an IDGREY model object corresponding to this model structure: The assumed time
constant will be

par_guess = 1;

We also give the value 0.25 to the auxiliary variable G (gain) and sample time.

aux = 0.25;
dcmm = idgrey('motorDynamics',par_guess,'cd',aux,0);

The time constant is now estimated by

dcmm = greyest(z,dcmm,greyestOptions('Display','on'));
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We have thus now estimated the time constant of the motor directly. Its value is in good agreement
with the previous estimate.

dcmm

dcmm =
  Continuous-time linear grey box model defined by "motorDynamics" function:
      dx/dt = A x(t) + B u(t) + K e(t)
       y(t) = C x(t) + D u(t) + e(t)
 
  A = 
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           x1      x2
   x1       0       1
   x2       0  -4.006
 
  B = 
       Voltage
   x1        0
   x2    1.001
 
  C = 
           x1  x2
   Angle    1   0
   AngVel   0   1
 
  D = 
           Voltage
   Angle         0
   AngVel        0
 
  K = 
        Angle  AngVel
   x1       0       0
   x2       0       0
 
  Model parameters:
   Par1 = 0.2496
 
Parameterization:
   ODE Function: motorDynamics
   (parametrizes both continuous- and discrete-time equations)
   Disturbance component: parameterized by the ODE function
   Initial state: parameterized by the ODE function
   Number of free coefficients: 1
   Use "getpvec", "getcov" for parameters and their uncertainties.

Status:                                         
Estimated using GREYEST on time domain data "z".
Fit to estimation data: [98.35;84.42]%          
FPE: 0.00107, MSE: 0.1193                       

With this model we can now proceed to test various aspects as before. The syntax of all the
commands is identical to the previous case. For example, we can compare the idgrey model with the
other state-space model:

compare(z,dcmm,dcmodel)
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They are clearly very close.

Estimating Multivariate ARX Models

The state-space part of the toolbox also handles multivariate (several outputs) ARX models. By a
multivariate ARX-model we mean the following:

A(q) y(t) = B(q) u(t) + e(t)

Here A(q) is a ny | ny matrix whose entries are polynomials in the delay operator 1/q. The k-l element
is denoted by:

where:

It is thus a polynomial in 1/q of degree nakl.

Similarly B(q) is a ny | nu matrix, whose kj-element is:
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There is thus a delay of nkkj from input number j to output number k. The most common way to
create those would be to use the ARX-command. The orders are specified as: nn = [na nb nk] with
na being a ny-by-ny matrix whose kj-entry is nakj; nb and nk are defined similarly.

Let's test some ARX-models on the dc-data. First we could simply build a general second order model:

dcarx1 = arx(z,'na',[2,2;2,2],'nb',[2;2],'nk',[1;1])

dcarx1 =
Discrete-time ARX model:                                                   
  Model for output "Angle": A(z)y_1(t) = - A_i(z)y_i(t) + B(z)u(t) + e_1(t)
    A(z) = 1 - 0.5545 z^-1 - 0.4454 z^-2                                   
                                                                           
    A_2(z) = -0.03548 z^-1 - 0.06405 z^-2                                  
                                                                           
    B(z) = 0.004243 z^-1 + 0.006589 z^-2                                   
                                                                           
  Model for output "AngVel": A(z)y_2(t) = - A_i(z)y_i(t) + B(z)u(t) + e_2(t)
    A(z) = 1 - 0.2005 z^-1 - 0.2924 z^-2                                    
                                                                            
    A_1(z) = 0.01849 z^-1 - 0.01937 z^-2                                    
                                                                            
    B(z) = 0.08642 z^-1 + 0.03877 z^-2                                      
                                                                            
Sample time: 0.1 seconds
  
Parameterization:
   Polynomial orders:   na=[2 2;2 2]   nb=[2;2]   nk=[1;1]
   Number of free coefficients: 12
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                  
Estimated using ARX on time domain data "z".             
Fit to estimation data: [97.87;83.44]% (prediction focus)
FPE: 0.002157, MSE: 0.1398                               

The result, dcarx1, is stored as an IDPOLY model, and all previous commands apply. We could for
example explicitly list the ARX-polynomials by:

dcarx1.a

ans =

  2x2 cell array

    {[1 -0.5545 -0.4454]}    {[0 -0.0355 -0.0640]}
    {[ 0 0.0185 -0.0194]}    {[1 -0.2005 -0.2924]}

as cell arrays where e.g. the {1,2} element of dcarx1.a is the polynomial A(1,2) described earlier,
relating y2 to y1.

We could also test a structure, where we know that y1 is obtained by filtering y2 through a first order
filter. (The angle is the integral of the angular velocity). We could then also postulate a first order
dynamics from input to output number 2:
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na = [1 1; 0 1];
nb = [0 ; 1];
nk = [1 ; 1];
dcarx2 = arx(z,[na nb nk])

dcarx2 =
Discrete-time ARX model:                                                   
  Model for output "Angle": A(z)y_1(t) = - A_i(z)y_i(t) + B(z)u(t) + e_1(t)
    A(z) = 1 - 0.9992 z^-1                                                 
                                                                           
    A_2(z) = -0.09595 z^-1                                                 
                                                                           
    B(z) = 0                                                               
                                                                           
  Model for output "AngVel": A(z)y_2(t) = B(z)u(t) + e_2(t)
    A(z) = 1 - 0.6254 z^-1                                 
                                                           
    B(z) = 0.08973 z^-1                                    
                                                           
Sample time: 0.1 seconds
  
Parameterization:
   Polynomial orders:   na=[1 1;0 1]   nb=[0;1]   nk=[1;1]
   Number of free coefficients: 4
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                  
Estimated using ARX on time domain data "z".             
Fit to estimation data: [97.52;81.46]% (prediction focus)
FPE: 0.003452, MSE: 0.177                                

To compare the different models obtained we use

compare(z,dcmodel,dcmm,dcarx2)
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Finally, we could compare the bodeplots obtained from the input to output one for the different
models by using bode: First output:

dcmm2 = idss(dcmm); % convert to IDSS for subreferencing
bode(dcmodel(1,1),'r',dcmm2(1,1),'b',dcarx2(1,1),'g')
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Second output:

bode(dcmodel(2,1),'r',dcmm2(2,1),'b',dcarx2(2,1),'g')
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The two first models are more or less in exact agreement. The ARX-models are not so good, due to the
bias caused by the non-white equation error noise. (We had white measurement noise in the
simulations).

Conclusions

Estimation of models with pre-selected structures can be performed using System Identification
toolbox. In state-space form, parameters may be fixed to their known values or constrained to lie
within a prescribed range. If relationship between parameters or other constraints need to be
specified, IDGREY objects may be used. IDGREY models evaluate a user-specified MATLAB file for
estimating state-space system parameters. Multi-variate ARX models offer another option for quickly
estimating multi-output models with user-specified structure.
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Represent Nonlinear Dynamics Using MATLAB File for Grey-Box
Estimation

This example shows how to construct, estimate and analyze nonlinear grey-box models.

Nonlinear grey-box (idnlgrey) models are suitable for estimating parameters of systems that are
described by nonlinear state-space structures in continuous or discrete time. You can use both
idgrey (linear grey-box model) and idnlgrey objects to model linear systems. However, you can
only use idnlgrey to represent nonlinear dynamics. To learn about linear grey-box modeling using
idgrey, see “Building Structured and User-Defined Models Using System Identification Toolbox™”
on page 13-59.

About the Model

In this example, you model the dynamics of a linear DC motor using the idnlgrey object.

Figure 1: Schematic diagram of a DC-motor.

If you ignore the disturbances and choose y(1) as the angular position [rad] and y(2) as the angular
velocity [rad/s] of the motor, you can set up a linear state-space structure of the following form (see
Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hall PTR, 1999,
2nd ed., p. 95-97 for the derivation):

   d         | 0      1   |        |   0   |
   -- x(t) = |            | x(t) + |       | u(t)
   dt        | 0   -1/tau |        | k/tau |

             | 1   0 |
      y(t) = |       | x(t)
             | 0   1 |

tau is the time-constant of the motor in [s] and k is the static gain from the input to the angular
velocity in [rad/(V*s)] . See Ljung (1999) for how tau and k relate to the physical parameters of the
motor.

About the Input-Output Data

1. Load the DC motor data.

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'dcmotordata'));
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2. Represent the estimation data as an iddata object.

z = iddata(y, u, 0.1, 'Name', 'DC-motor');

3. Specify input and output signal names, start time and time units.

z.InputName = 'Voltage';
z.InputUnit =  'V';
z.OutputName = {'Angular position', 'Angular velocity'};
z.OutputUnit = {'rad', 'rad/s'};
z.Tstart = 0;
z.TimeUnit = 's';

4. Plot the data.

The data is shown in two plot windows.

figure('Name', [z.Name ': Voltage input -> Angular position output']);
plot(z(:, 1, 1));   % Plot first input-output pair (Voltage -> Angular position).
figure('Name', [z.Name ': Voltage input -> Angular velocity output']);
plot(z(:, 2, 1));   % Plot second input-output pair (Voltage -> Angular velocity).

 Represent Nonlinear Dynamics Using MATLAB File for Grey-Box Estimation

13-81



Figure 2: Input-output data from a DC-motor.

Linear Modeling of the DC-Motor

1. Represent the DC motor structure in a function.

In this example, you use a MATLAB® file, but you can also use C MEX-files (to gain computational
speed), P-files or function handles. For more information, see “Creating IDNLGREY Model Files” on
page 13-45.

The DC-motor function is called dcmotor_m.m and is shown below.

  function [dx, y] = dcmotor_m(t, x, u, tau, k, varargin)

  % Output equations.
  y = [x(1);                         ... % Angular position.
       x(2)                          ... % Angular velocity.
      ];

  % State equations.
  dx = [x(2);                        ... % Angular velocity.
        -(1/tau)*x(2)+(k/tau)*u(1)   ... % Angular acceleration.
       ];

The file must always be structured to return the following:

Output arguments:
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• dx is the vector of state derivatives in continuous-time case, and state update values in the
discrete-time case.

• y is the output equation

Input arguments:

• The first three input arguments must be: t (time), x (state vector, [] for static systems), u (input
vector, [] for time-series).

• Ordered list of parameters follow. The parameters can be scalars, column vectors, or 2-
dimensional matrices.

• varargin for the auxiliary input arguments

2. Represent the DC motor dynamics using an idnlgrey object.

The model describes how the inputs generate the outputs using the state equation(s).

FileName      = 'dcmotor_m';       % File describing the model structure.
Order         = [2 1 2];           % Model orders [ny nu nx].
Parameters    = [1; 0.28];         % Initial parameters. Np = 2.
InitialStates = [0; 0];            % Initial initial states.
Ts            = 0;                 % Time-continuous system.
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts, ...
                'Name', 'DC-motor');

In practice, there are disturbances that affect the outputs. An idnlgrey model does not explicitly
model the disturbances, but assumes that these are just added to the output(s). Thus, idnlgrey
models are equivalent to Output-Error (OE) models. Without a noise model, past outputs do not
influence prediction of future outputs, which means that predicted output for any prediction horizon k
coincide with simulated outputs.

3. Specify input and output names, and units.

set(nlgr, 'InputName', 'Voltage', 'InputUnit', 'V',               ...
          'OutputName', {'Angular position', 'Angular velocity'}, ...
          'OutputUnit', {'rad', 'rad/s'},                         ...
          'TimeUnit', 's');

4. Specify names and units of the initial states and parameters.

nlgr = setinit(nlgr, 'Name', {'Angular position' 'Angular velocity'});
nlgr = setinit(nlgr, 'Unit', {'rad' 'rad/s'});
nlgr = setpar(nlgr, 'Name', {'Time-constant' 'Static gain'});
nlgr = setpar(nlgr, 'Unit', {'s' 'rad/(V*s)'});

You can also use setinit and setpar to assign values, minima, maxima, and estimation status for
all initial states or parameters simultaneously.

5. View the initial model.

a. Get basic information about the model.

The DC-motor has 2 (initial) states and 2 model parameters.

size(nlgr)
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Nonlinear grey-box model with 2 outputs, 1 inputs, 2 states and 2 parameters (2 free).

b. View the initial states and parameters.

Both the initial states and parameters are structure arrays. The fields specify the properties of an
individual initial state or parameter. Type help idnlgrey.InitialStates and help
idnlgrey.Parameters for more information.

nlgr.InitialStates(1)
nlgr.Parameters(2)

ans = 

  struct with fields:

       Name: 'Angular position'
       Unit: 'rad'
      Value: 0
    Minimum: -Inf
    Maximum: Inf
      Fixed: 1

ans = 

  struct with fields:

       Name: 'Static gain'
       Unit: 'rad/(V*s)'
      Value: 0.2800
    Minimum: -Inf
    Maximum: Inf
      Fixed: 0

c. Retrieve information for all initial states or model parameters in one call.

For example, obtain information on initial states that are fixed (not estimated) and the minima of all
model parameters.

getinit(nlgr, 'Fixed')
getpar(nlgr, 'Min')

ans =

  2x1 cell array

    {[1]}
    {[1]}

ans =

  2x1 cell array

    {[-Inf]}
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    {[-Inf]}

d. Obtain basic information about the object:

nlgr

nlgr =
Continuous-time nonlinear grey-box model defined by 'dcmotor_m' (MATLAB file):

   dx/dt = F(t, u(t), x(t), p1, p2)
    y(t) = H(t, u(t), x(t), p1, p2) + e(t)

 with 1 input(s), 2 state(s), 2 output(s), and 2 free parameter(s) (out of 2).

Name: DC-motor

Status:                                                         
Created by direct construction or transformation. Not estimated.

Use get to obtain more information about the model properties. The idnlgrey object shares many
properties of parametric linear model objects.

get(nlgr)

             FileName: 'dcmotor_m'
                Order: [1x1 struct]
           Parameters: [2x1 struct]
        InitialStates: [2x1 struct]
         FileArgument: {}
    SimulationOptions: [1x1 struct]
         TimeVariable: 't'
        NoiseVariance: [2x2 double]
                   Ts: 0
             TimeUnit: 'seconds'
            InputName: {'Voltage'}
            InputUnit: {'V'}
           InputGroup: [1x1 struct]
           OutputName: {2x1 cell}
           OutputUnit: {2x1 cell}
          OutputGroup: [1x1 struct]
                Notes: [0x1 string]
             UserData: []
                 Name: 'DC-motor'
               Report: [1x1 idresults.nlgreyest]

Performance Evaluation of the Initial DC-Motor Model

Before estimating the parameters tau and k, simulate the output of the system with the parameter
guesses using the default differential equation solver (a Runge-Kutta 45 solver with adaptive step
length adjustment). The simulation options are specified using the "SimulationOptions" model
property.

1. Set the absolute and relative error tolerances to small values (1e-6 and 1e-5, respectively).

nlgr.SimulationOptions.AbsTol = 1e-6;
nlgr.SimulationOptions.RelTol = 1e-5;
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2. Compare the simulated output with the measured data.

compare displays both measured and simulated outputs of one or more models, whereas predict,
called with the same input arguments, displays the simulated outputs.

The simulated and measured outputs are shown in a plot window.

compare(z, nlgr);

Figure 3: Comparison between measured outputs and the simulated outputs of the initial DC-motor
model.

Parameter Estimation

Estimate the parameters and initial states using nlgreyest, which is a prediction error minimization
method for nonlinear grey box models. The estimation options, such as the choice of estimation
progress display, are specified using the "nlgreyestOptions" option set.

nlgr = setinit(nlgr, 'Fixed', {false false}); % Estimate the initial states.
opt = nlgreyestOptions('Display', 'on');
nlgr = nlgreyest(z, nlgr, opt);
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Performance Evaluation of the Estimated DC-Motor Model

1. Review the information about the estimation process.

This information is stored in the Report property of the idnlgrey object. The property also contains
information about how the model was estimated, such as solver and search method, data set, and why
the estimation was terminated.

nlgr.Report
fprintf('\n\nThe search termination condition:\n')
nlgr.Report.Termination
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ans = 

         Status: 'Estimated using NLGREYEST'
         Method: 'Solver: ode45; Search: lsqnonlin'
            Fit: [1x1 struct]
     Parameters: [1x1 struct]
    OptionsUsed: [1x1 idoptions.nlgreyest]
      RandState: []
       DataUsed: [1x1 struct]
    Termination: [1x1 struct]

The search termination condition:

ans = 

  struct with fields:

                 WhyStop: 'Change in cost was less than the specified tolerance.'
              Iterations: 5
    FirstOrderOptimality: 1.4013e-04
                FcnCount: 6
               Algorithm: 'trust-region-reflective'

2. Evaluate the model quality by comparing simulated and measured outputs.

The fits are 98% and 84%, which indicate that the estimated model captures the dynamics of the DC
motor well.

compare(z, nlgr);
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Figure 4: Comparison between measured outputs and the simulated outputs of the estimated
IDNLGREY DC-motor model.

3. Compare the performance of the idnlgrey model with a second-order ARX model.

na = [2 2; 2 2];
nb = [2; 2];
nk = [1; 1];
dcarx = arx(z, [na nb nk]);
compare(z, nlgr, dcarx);
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Figure 5: Comparison between measured outputs and the simulated outputs of the estimated
IDNLGREY and ARX DC-motor models.

4. Check the prediction errors.

The prediction errors obtained are small and are centered around zero (non-biased).

pe(z, nlgr);
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Figure 6: Prediction errors obtained with the estimated IDNLGREY DC-motor model.

5. Check the residuals ("leftovers").

Residuals indicate what is left unexplained by the model and are small for good model quality. Use
the resid command to view the correlations among the residuals. The first column of plots shows the
autocorrelations of the residuals for the two outputs. The second column shows the cross-correlation
of these residuals with the input "Voltage". The correlations are within acceptable bounds (blue
region).

figure('Name',[nlgr.Name ': residuals of estimated model']);
resid(z,nlgr);

 Represent Nonlinear Dynamics Using MATLAB File for Grey-Box Estimation

13-91



Figure 7: Residuals obtained with the estimated IDNLGREY DC-motor model.

6. Plot the step response.

A unit input step results in an angular position showing a ramp-type behavior and to an angular
velocity that stabilizes at a constant level.

figure('Name', [nlgr.Name ': step response of estimated model']);
step(nlgr);
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Figure 8: Step response with the estimated IDNLGREY DC-motor model.

7. Examine the model covariance.

You can assess the quality of the estimated model to some extent by looking at the estimated
covariance matrix and the estimated noise variance. A "small" value of the (i, i) diagonal element
of the covariance matrix indicates that the i:th model parameter is important for explaining the
system dynamics when using the chosen model structure. Small noise variance (covariance for multi-
output systems) elements are also a good indication that the model captures the estimation data in a
good way.

getcov(nlgr)
nlgr.NoiseVariance

ans =

   1.0e-04 *

    0.1573    0.0021
    0.0021    0.0008

ans =

    0.0010   -0.0000
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   -0.0000    0.0110

For more information about the estimated model, use present to display the initial states and
estimated parameter values, and estimated uncertainty (standard deviation) for the parameters.

present(nlgr);

                                                                                           
nlgr =                                                                                     
Continuous-time nonlinear grey-box model defined by 'dcmotor_m' (MATLAB file):             
                                                                                           
   dx/dt = F(t, u(t), x(t), p1, p2)                                                        
    y(t) = H(t, u(t), x(t), p1, p2) + e(t)                                                 
                                                                                           
 with 1 input(s), 2 state(s), 2 output(s), and 2 free parameter(s) (out of 2).             
                                                                                           
 Inputs:                                                                                   
    u(1)  Voltage(t) [V]                                                                   
 States:                              Initial value                                        
    x(1)  Angular position(t) [rad]     xinit@exp1   0.0302675   (estimated) in [-Inf, Inf]
    x(2)  Angular velocity(t) [rad/s]   xinit@exp1   -0.133777   (estimated) in [-Inf, Inf]
 Outputs:                                                                                  
    y(1)  Angular position(t) [rad]                                                        
    y(2)  Angular velocity(t) [rad/s]                                                      
 Parameters:                        Value Standard Deviation                               
    p1   Time-constant [s]           0.243649       0.00396671   (estimated) in [-Inf, Inf]
    p2   Static gain [rad/(V*s)]     0.249644      0.000284486   (estimated) in [-Inf, Inf]
                                                                                           
Name: DC-motor                                                                             
                                                                                           
Status:                                                                                    
Termination condition: Change in cost was less than the specified tolerance..              
Number of iterations: 5, Number of function evaluations: 6                                 
                                                                                           
Estimated using Solver: ode45; Search: lsqnonlin on time domain data "DC-motor".           
Fit to estimation data: [98.34;84.47]%                                                     
FPE: 0.001096, MSE: 0.1187                                                                 
More information in model's "Report" property.                                             

Conclusions

This example illustrates the basic tools for performing nonlinear grey-box modeling. See the other
nonlinear grey-box examples to learn about:

• Using nonlinear grey-box models in more advanced modeling situations, such as building
nonlinear continuous- and discrete-time, time-series and static models.

• Writing and using C MEX model-files.

• Handling nonscalar parameters.

• Impact of certain algorithm choices.

For more information on identification of dynamic systems with System Identification Toolbox, visit
the System Identification Toolbox product information page.
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Modeling a Vehicle Dynamics System
This example shows nonlinear grey-box modeling of vehicle dynamics. Many new vehicle features
(like Electronic Stability Programs (ESP), indirect Tire Pressure Monitoring Systems (TPMS), road-
tire friction monitoring systems, and so forth) rely on models of the underlying vehicle dynamics. The
so-called bicycle vehicle model is a rather simple model structure that is frequently being used in the
vehicle dynamics literature. In this example we will start-off with this model structure and try to
estimate the longitudinal and the lateral stiffness of a tire. The actual modeling work was originally
carried out by Erik Narby in his MSc work at NIRA Dynamics AB, Sweden.

Vehicle Dynamics Modeling

The following figure illustrates the vehicle modeling situation to be considered.

Figure 1: Schematic view of a vehicle dynamics system.

By the use of Newton's law of motion and some basic geometric relationships, the longitudinal
velocity v_x(t), the lateral velocity v_y(t) and the yaw rate r(t) measured around the Center Of Gravity
(COG) of the vehicle can be described by the following three differential equations:

  d
  -- v_x(t) = v_y(t)*r(t) + 1/m*(  (F_x,FL(t)+F_x,FR(t))*cos(delta(t))
  dt                             - (F_y,FL(t)+F_y,FR(t))*sin(delta(t))
                                 + F_x,RL(t)+F_x,RR(t)
                                 - C_A*v_x(t)^2)
  d
  -- v_y(t) = -v_x(t)*r(t) + 1/m*(  (F_x,FL(t)+F_x,FR(t))*sin(delta(t))
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  dt                              + (F_y,FL(t)+F_y,FR(t))*cos(delta(t))
                                  + F_y,RL(t)+F_y,RR(t))
  d
  -- r(t)   = 1/J*(  a*(  (F_x,FL(t)+F_x,FR(t))*sin(delta(t))
  dt                    + (F_y,FL(t)+F_y,FR(t))*cos(delta(t)))
                   - b*(F_y,RL(t)+F_y,RR(t)))

where subscript x is used to denote that a force F acts in the longitudinal direction and y that it acts
in the lateral direction. The abbreviations FL, FR, RL and RR label the tires: Front Left, Front Right,
Rear Left and Rear Right, respectively. The first equation describing the longitudinal acceleration
also contains an air resistance term that is assumed to be a quadratic function of the longitudinal
vehicle velocity v_x(t). In addition, delta(t) (an input) is the steering angle, J a moment of inertia, and
a and b the distances from the center of gravity to the front and rear axles, respectively.

Let us assume that the tire forces can be modeled through the following linear approximations:

  F_x,i(t) = C_x*s_i(t)
  F_y,i(t) = C_y*alpha_i(t)     for i = {FL, FR, RL, RR}

where C_x and C_y are the longitudinal and lateral tire stiffness, respectively. Here we have assumed
that these stiffness parameters are the same for all 4 tires. s_i(t) is the so-called (longitudinal) slip of
tire i and alpha_i(t) a tire slip angle. For a front-wheel driven vehicle (as considered here), the slips
s_FL(t) and s_FR(t) are derived from the individual wheel speeds (measured) by assuming that the
rear wheels do not show any slip (i.e., s_RL(t) = s_RR(t) = 0). Hence the slips are inputs to our model
structure. For the front wheels, the tire slip angles alpha_Fj(t) can be approximated by (when v_x(t) >
0)

alpha_Fj(t) = delta(t) - arctan((v_y(t) + a*r(t))/v_x(t))
            ~ delta(t) - (v_y(t) + a*r(t))/v_x(t)        for j = {L, R}

For the rear wheels, the tire slip angles alpha_Rj(t) are similarly derived and computed as

alpha_Rj(t) = - arctan((v_y(t) - b*r(t))/v_x(t))
            ~ - (v_y(t) - b*r(t))/v_x(t)                 for j = {L, R}

With J = 1/((0.5*(a+b))^2*m) we can next set up a state-space structure describing the vehicle
dynamics. Introduce the states:

  x1(t) = v_x(t)      Longitudinal velocity [m/s].
  x2(t) = v_y(t)      Lateral velocity [m/s].
  x3(t) = r(t)        Yaw rate [rad/s].

the five measured or derived input signals

  u1(t) = s_FL(t)     Slip of Front Left tire [ratio].
  u2(t) = s_FR(t)     Slip of Front Right tire [ratio].
  u3(t) = s_RL(t)     Slip of Rear Left tire [ratio].
  u4(t) = s_RR(t)     Slip of Rear Right tire [ratio].
  u5(t) = delta(t)    Steering angle [rad].

and the model parameters:

  m                   Mass of the vehicle [kg].
  a                   Distance from front axle to COG [m].
  b                   Distance from rear axle to COG [m].
  Cx                  Longitudinal tire stiffness [N].
  Cy                  Lateral tire stiffness [N/rad].
  CA                  Air resistance coefficient [1/m].
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The outputs of the system are the longitudinal vehicle velocity y1(t) = x1(t), the lateral vehicle
acceleration (measured by an accelerometer):

y2(t) = a_y(t) = 1/m*(  (F_x,FL(t) + F_x,FR(t))*sin(delta(t))
                      + (F_y,FL(t) + F_y,FR(t))*cos(delta(t))
                      + F_y,RL(t) + F_y,RR(t))

and the yaw rate y3(t) = r(t) (measured by a gyro).

Put together, we arrive at the following state-space model structure:

  d
  -- x1(t) = x2(t)*x3(t) + 1/m*(  Cx*(u1(t)+u2(t))*cos(u5(t))
  dt                            - 2*Cy*(u5(t)-(x2(t)+a*x3(t))/x1(t))*sin(u5(t))
                                + Cx*(u3(t)+u4(t))
                                - CA*x1(t)^2)

  d
  -- x2(t) = -x1(t)*x3(t) + 1/m*(  Cx*(u1(t)+u2(t))*sin(u5(t))
  dt                             + 2*Cy*(u5(t)-(x2(t)+a*x3(t))/x1(t))*cos(u5(t))
                                 + 2*Cy*(b*x3(t)-x2(t))/x1(t))

  d
  -- x3(t) = 1/((0.5*(a+b))^2)*m)*(  a*(  Cx*(u1(t)+u2(t)*sin(u5(t))
  dt                                    + 2*Cy*(u5(t) - (x2(t)+a*x3(t))/x1(t))*cos(u5(t)))
                                   - 2*b*Cy*(b*x3(t)-x2(t))/x1(t))

     y1(t) = x1(t)
     y2(t) = 1/m*(  Cx*(u1(t)+u2(t))*sin(u5(t))
                  + 2*Cy*(u5(t)-(x2(t)+a*x3(t))/x1(t))*cos(u5(t))
                  + 2*Cy*(b*x3(t)-x2(t))/x1(t))
     y3(t) = x3(t)

IDNLGREY Vehicle Model

As a basis for our vehicle identification experiments we first need to create an IDNLGREY model file
describing these vehicle equations. Here we rely on C-MEX modeling and create a vehicle_c.c model
file, in which NY is set to 3. The state and output update functions of vehicle_c.c, compute_dx and
compute_y, are somewhat involved and includes several standard C-defined mathematical functions,
like cos(.) and sin(.) as well as pow(.) for computing the power of its argument.

The state update function compute_dx returns dx (argument 1) and uses 3 input arguments: the state
vector x, the input vector u, and the six scalar parameters encoded in p (t and auxvar of the template
C-MEX model file have been removed here):

  /* State equations. */
  void compute_dx(double *dx, double *x, double *u, double **p)
  {
      /* Retrieve model parameters. */
      double *m, *a, *b, *Cx, *Cy, *CA;
      m  = p[0];   /* Vehicle mass.                    */
      a  = p[1];   /* Distance from front axle to COG. */
      b  = p[2];   /* Distance from rear axle to COG.  */
      Cx = p[3];   /* Longitudinal tire stiffness.     */
      Cy = p[4];   /* Lateral tire stiffness.          */
      CA = p[5];   /* Air resistance coefficient.      */

      /* x[0]: Longitudinal vehicle velocity. */
      /* x[1]: Lateral vehicle velocity. */
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      /* x[2]: Yaw rate. */
      dx[0] = x[1]*x[2]+1/m[0]*(Cx[0]*(u[0]+u[1])*cos(u[4])
              -2*Cy[0]*(u[4]-(x[1]+a[0]*x[2])/x[0])*sin(u[4])
              +Cx[0]*(u[2]+u[3])-CA[0]*pow(x[0],2));
      dx[1] = -x[0]*x[2]+1/m[0]*(Cx[0]*(u[0]+u[1])*sin(u[4])
              +2*Cy[0]*(u[4]-(x[1]+a[0]*x[2])/x[0])*cos(u[4])
              +2*Cy[0]*(b[0]*x[2]-x[1])/x[0]);
      dx[2] = 1/(pow(((a[0]+b[0])/2),2)*m[0])
              *(a[0]*(Cx[0]*(u[0]+u[1])*sin(u[4])
              +2*Cy[0]*(u[4]-(x[1]+a[0]*x[2])/x[0])*cos(u[4]))
              -2*b[0]*Cy[0]*(b[0]*x[2]-x[1])/x[0]);
  }

The output update function compute_y returns y (argument 1) and uses 3 input arguments: the state
vector x, the input vector u, and five of the six parameters (the air resistance CA is not needed)
encoded in p:

  /* Output equations. */
  void compute_y(double *y, double *x, double *u, double **p)
  {
      /* Retrieve model parameters. */
      double *m  = p[0];   /* Vehicle mass.                    */
      double *a  = p[1];   /* Distance from front axle to COG. */
      double *b  = p[2];   /* Distance from rear axle to COG.  */
      double *Cx = p[3];   /* Longitudinal tire stiffness.     */
      double *Cy = p[4];   /* Lateral tire stiffness.          */

      /* y[0]: Longitudinal vehicle velocity. */
      /* y[1]: Lateral vehicle acceleration. */
      /* y[2]: Yaw rate. */
      y[0] = x[0];
      y[1] = 1/m[0]*(Cx[0]*(u[0]+u[1])*sin(u[4])
             +2*Cy[0]*(u[4]-(x[1]+a[0]*x[2])/x[0])*cos(u[4])
             +2*Cy[0]*(b[0]*x[2]-x[1])/x[0]);
      y[2] = x[2];
  }

Having a proper model structure file, the next step is to create an IDNLGREY object reflecting the
modeling situation. For ease of bookkeeping, we also specify the names and units of the inputs and
outputs.

FileName      = 'vehicle_c';                        % File describing the model structure.
Order         = [3 5 3];                            % Model orders [ny nx nu].
Parameters    = [1700; 1.5; 1.5; 1.5e5; 4e4; 0.5];  % Initial parameters.
InitialStates = [1; 0; 0];                          % Initial value of initial states.
Ts            = 0;                                  % Time-continuous system.
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts, ...
                'Name', 'Bicycle vehicle model', 'TimeUnit', 's');
        nlgr.InputName =  {'Slip on front left tire';               ...   % u(1).
                         'Slip on front right tire';              ...   % u(2).
                         'Slip on rear left tire';                ...   % u(3).
                         'Slip on rear right tire';               ...   % u(4).
                         'Steering angle'};                       ...   % u(5).
          nlgr.InputUnit =  {'ratio'; 'ratio'; 'ratio'; 'ratio'; 'rad'};

          nlgr.OutputName = {'Long. velocity';  ...   % y(1); Longitudinal vehicle velocity
                         'Lat. accel.';   ...     % y(2); Lateral vehicle acceleration
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                         'Yaw rate'};                             ...   % y(3).
          nlgr.OutputUnit = {'m/s'; 'm/s^2'; 'rad/s'};

The names and the units of the (initial) states and the model parameters are specified via SETINIT.
We also use this command to specify that the first initial state (the longitudinal velocity) ought to be
strictly positive for the model to be valid and to specify that all model parameters should be strictly
positive. These constraints will subsequently be honored when performing initial state and/or model
parameter estimation.

nlgr = setinit(nlgr, 'Name', {'Longitudinal vehicle velocity'        ... % x(1).
                       'Lateral vehicle velocity'             ... % x(2).
                       'Yaw rate'});                          ... % x(3).
nlgr = setinit(nlgr, 'Unit', {'m/s'; 'm/s'; 'rad/s'});
nlgr.InitialStates(1).Minimum = eps(0);   % Longitudinal velocity > 0 for the model to be valid.
nlgr = setpar(nlgr, 'Name', {'Vehicle mass';                         ... % m.
                      'Distance from front axle to COG';      ... % a
                      'Distance from rear axle to COG';       ... % b.
                      'Longitudinal tire stiffness';          ... % Cx.
                      'Lateral tire stiffness';               ... % Cy.
                      'Air resistance coefficient'});         ... % CA.
nlgr = setpar(nlgr, 'Unit', {'kg'; 'm'; 'm'; 'N'; 'N/rad'; '1/m'});
nlgr = setpar(nlgr, 'Minimum', num2cell(eps(0)*ones(6, 1)));   % All parameters > 0!

Four of the six parameters of this model structure can readily be obtained through the data sheet of
the vehicle in question:

  m  = 1700 kg
  a  = 1.5 m
  b  = 1.5 m
  CA = 0.5 or 0.7 1/m (see below)

Hence we will not estimate these parameters:

nlgr.Parameters(1).Fixed = true;
nlgr.Parameters(2).Fixed = true;
nlgr.Parameters(3).Fixed = true;
nlgr.Parameters(6).Fixed = true;

With this, a textual summary of the entered IDNLGREY model structure is obtained through
PRESENT as follows.

present(nlgr);

                                                                                          
nlgr =                                                                                    
Continuous-time nonlinear grey-box model defined by 'vehicle_c' (MEX-file):               
                                                                                          
   dx/dt = F(t, u(t), x(t), p1, ..., p6)                                                  
    y(t) = H(t, u(t), x(t), p1, ..., p6) + e(t)                                           
                                                                                          
 with 5 input(s), 3 state(s), 3 output(s), and 2 free parameter(s) (out of 6).            
                                                                                          
 Inputs:                                                                                  
    u(1)  Slip on front left tire(t) [ratio]                                              
    u(2)  Slip on front right tire(t) [ratio]                                             
    u(3)  Slip on rear left tire(t) [ratio]                                               
    u(4)  Slip on rear right tire(t) [ratio]                                              
    u(5)  Steering angle(t) [rad]                                                         
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 States:                                         Initial value                            
    x(1)  Longitudinal vehicle velocity(t) [m/s]   xinit@exp1   1   (fixed) in ]0, Inf]   
    x(2)  Lateral vehicle velocity(t) [m/s]        xinit@exp1   0   (fixed) in [-Inf, Inf]
    x(3)  Yaw rate(t) [rad/s]                      xinit@exp1   0   (fixed) in [-Inf, Inf]
 Outputs:                                                                                 
    y(1)  Long. velocity(t) [m/s]                                                         
    y(2)  Lat. accel.(t) [m/s^2]                                                          
    y(3)  Yaw rate(t) [rad/s]                                                             
 Parameters:                                 Value                                        
    p1   Vehicle mass [kg]                         1700      (fixed) in ]0, Inf]          
    p2   Distance from front axle to COG [m]        1.5      (fixed) in ]0, Inf]          
    p3   Distance from rear axle to COG [m]         1.5      (fixed) in ]0, Inf]          
    p4   Longitudinal tire stiffness [N]         150000      (estimated) in ]0, Inf]      
    p5   Lateral tire stiffness [N/rad]           40000      (estimated) in ]0, Inf]      
    p6   Air resistance coefficient [1/m]           0.5      (fixed) in ]0, Inf]          
                                                                                          
Name: Bicycle vehicle model                                                               
                                                                                          
Status:                                                                                   
Created by direct construction or transformation. Not estimated.                          
More information in model's "Report" property.                                            

Input-Output Data

At this point, we load the available input-output data. This file contains data from three different
experiments:

  A. Simulated data with high stiffness tires [y1 u1].
  B. Simulated data with low stiffness tires  [y2 u2].
  C. Measured data from a Volvo V70           [y3 u3].

In all cases, the sample time Ts = 0.1 seconds.

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'vehicledata'));

A. System Identification Using Simulated High Tire Stiffness Data

In our first vehicle identification experiment we consider simulated high tire stiffness data. A copy of
the model structure nlgr and an IDDATA object z1 reflecting this particular modeling situation is first
created. The 5 input signals are stored in u1 and the 3 output signals in y1. The slip inputs (generated
from the wheel speed signals) for the front wheels were chosen to be sinusoidal with a constant
offset; the yaw rate was also sinusoidal but with a different amplitude and frequency. In reality, this is
a somewhat artificial situation, because one rarely excites the vehicle so much in the lateral direction.

nlgr1 = nlgr;
nlgr1.Name = 'Bicycle vehicle model with high tire stiffness';
z1 = iddata(y1, u1, 0.1, 'Name', 'Simulated high tire stiffness vehicle data');
z1.InputName = nlgr1.InputName;
z1.InputUnit = nlgr1.InputUnit;
z1.OutputName = nlgr1.OutputName;
z1.OutputUnit = nlgr1.OutputUnit;
z1.Tstart = 0;
z1.TimeUnit = 's';

The inputs and outputs are shown in two plot figures.

h_gcf = gcf;
set(h_gcf,'DefaultLegendLocation','southeast');
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h_gcf.Position = [100 100 795 634];
for i = 1:z1.Nu
   subplot(z1.Nu, 1, i);
   plot(z1.SamplingInstants, z1.InputData(:,i));
   title(['Input #' num2str(i) ': ' z1.InputName{i}]);
   xlabel('');
   axis tight;
end
xlabel([z1.Domain ' (' z1.TimeUnit ')']);

Figure 2: Inputs to a vehicle system with high tire stiffness.

for i = 1:z1.Ny
   subplot(z1.Ny, 1, i);
   plot(z1.SamplingInstants, z1.OutputData(:,i));
   title(['Output #' num2str(i) ': ' z1.OutputName{i}]);
   xlabel('');
   axis tight;
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end
xlabel([z1.Domain ' (' z1.TimeUnit ')']);

Figure 3: Outputs from a vehicle system with high tire stiffness.

The next step is to investigate the performance of the initial model and for this we perform a
simulation. Notice that the initial state has been fixed to a non-zero value as the first state (the
longitudinal vehicle velocity) is used as denominator in the model structure. A comparison between
the true and the simulated outputs (with the initial model) is shown in a plot window.

clf
compare(z1, nlgr1, [], compareOptions('InitialCondition', 'model'));
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Figure 4: Comparison between true outputs and the simulated outputs of the initial vehicle model
with high tire stiffness.

In order to improve the model fit, the two tire stiffness parameters Cx and Cy are next estimated, and
a new simulation with the estimated model is carried out.

nlgr1 = nlgreyest(z1, nlgr1);

A comparison between the true and the simulated outputs (with the estimated model) is shown in a
plot window.

compare(z1, nlgr1, [], compareOptions('InitialCondition', 'model'));
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Figure 5: Comparison between true outputs and the simulated outputs of the estimated vehicle
model with high tire stiffness.

The simulation performance of the estimated model is quite good. The estimated stiffness parameters
are also close to the ones used in Simulink® to generate the true output data:

disp('                        True      Estimated');
fprintf('Longitudinal stiffness: %6.0f    %6.0f\n', 2e5, nlgr1.Parameters(4).Value);
fprintf('Lateral stiffness     : %6.0f    %6.0f\n', 5e4, nlgr1.Parameters(5).Value);

                        True      Estimated
Longitudinal stiffness: 200000    198517
Lateral stiffness     :  50000     53752

B. System Identification Using Simulated Low Tire Stiffness Data

In the second experiment we repeat the modeling from the first experiment, but now with simulated
low tire stiffness data.
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nlgr2 = nlgr;
nlgr2.Name = 'Bicycle vehicle model with low tire stiffness';
z2 = iddata(y2, u2, 0.1, 'Name', 'Simulated low tire stiffness vehicle data');
z2.InputName = nlgr2.InputName;
z2.InputUnit = nlgr2.InputUnit;
z2.OutputName = nlgr2.OutputName;
z2.OutputUnit = nlgr2.OutputUnit;
z2.Tstart = 0;
z2.TimeUnit =  's';

The inputs and outputs are shown in two plot figures.

clf
for i = 1:z2.Nu
   subplot(z2.Nu, 1, i);
   plot(z2.SamplingInstants, z2.InputData(:,i));
   title(['Input #' num2str(i) ': ' z2.InputName{i}]);
   xlabel('');
   axis tight;
end
xlabel([z2.Domain ' (' z2.TimeUnit ')']);
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Figure 6: Inputs to a vehicle system with low tire stiffness.

clf
for i = 1:z2.Ny
   subplot(z2.Ny, 1, i);
   plot(z2.SamplingInstants, z2.OutputData(:,i));
   title(['Output #' num2str(i) ': ' z2.OutputName{i}]);
   xlabel('');
   axis tight;
end
xlabel([z2.Domain ' (' z2.TimeUnit ')']);
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Figure 7: Outputs from a vehicle system with low tire stiffness.

Next we investigate the performance of the initial model (which has the same parameters as the
initial high tire stiffness model). A comparison between the true and the simulated outputs (with the
initial model) is shown in a plot window.

clf
compare(z2, nlgr2, [], compareOptions('InitialCondition', 'model'));
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Figure 8: Comparison between true outputs and the simulated outputs of the initial vehicle model
with low tire stiffness.

The two stiffness parameters are next estimated.

nlgr2 = nlgreyest(z2, nlgr2);

A comparison between the true and the simulated outputs (with the estimated model) is shown in a
plot window.

compare(z2, nlgr2, [], compareOptions('InitialCondition', 'model'));
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Figure 9: Comparison between true outputs and the simulated outputs of the estimated vehicle
model with low tire stiffness.

The simulation performance of the estimated model is again really good. Even with the same
parameter starting point as was used in the high tire stiffness case, the estimated stiffness
parameters are also here close to the ones used in Simulink to generate the true output data:

disp('                        True      Estimated');
fprintf('Longitudinal stiffness: %6.0f    %6.0f\n', 1e5, nlgr2.Parameters(4).Value);
fprintf('Lateral stiffness     : %6.0f    %6.0f\n', 2.5e4, nlgr2.Parameters(5).Value);

                        True      Estimated
Longitudinal stiffness: 100000     99573
Lateral stiffness     :  25000     26117

C. System Identification Using Measured Volvo V70 Data

In the final experiment we consider data collected in a Volvo V70. As above, we make a copy of the
generic vehicle model object nlgr and create a new IDDATA object containing the measured data.
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Here we have also increased the air resistance coefficient from 0.50 to 0.70 to better reflect the Volvo
V70 situation.

nlgr3 = nlgr;
nlgr3.Name = 'Volvo V70 vehicle model';
nlgr3.Parameters(6).Value = 0.70;   % Use another initial CA for the Volvo data.
z3 = iddata(y3, u3, 0.1, 'Name', 'Volvo V70 data');
z3.InputName = nlgr3.InputName;
z3.InputUnit = nlgr3.InputUnit;
z3.OutputName = nlgr3.OutputName;
z3.OutputUnit = nlgr3.OutputUnit;
z3.Tstart = 0;
z3.TimeUnit = 's';

The inputs and outputs are shown in two plot figures. As can be seen, the measured data is rather
noisy.

clf
for i = 1:z3.Nu
   subplot(z3.Nu, 1, i);
   plot(z3.SamplingInstants, z3.InputData(:,i));
   title(['Input #' num2str(i) ': ' z3.InputName{i}]);
   xlabel('');
   axis tight;
end
xlabel([z3.Domain ' (' z3.TimeUnit ')']);
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Figure 10: Measured inputs from a Volvo V70 vehicle.

clf
for i = 1:z3.Ny
   subplot(z3.Ny, 1, i);
   plot(z3.SamplingInstants, z3.OutputData(:,i));
   title(['Output #' num2str(i) ': ' z3.OutputName{i}]);
   xlabel('');
   axis tight;
end
xlabel([z3.Domain ' (' z3.TimeUnit ')']);
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Figure 11: Measured outputs from a Volvo V70 vehicle.

Next we investigate the performance of the initial model with the initial states being estimated. A
comparison between the true and the simulated outputs (with the initial model) is shown in a plot
window.

nlgr3 = setinit(nlgr3, 'Value', {18.7; 0; 0});   % Initial value of initial states.
clf
compare(z3, nlgr3);
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Figure 12: Comparison between measured outputs and the simulated outputs of the initial Volvo V70
vehicle model.

The tire stiffness parameters Cx and Cy are next estimated, in this case using the Levenberg-
Marquardt search method, whereupon a new simulation with the estimated model is performed. In
addition, we here estimate the initial value of the longitudinal velocity, whereas the initial values of
the lateral velocity and the yaw rate are kept fixed.

nlgr3 = setinit(nlgr3, 'Fixed', {false; true; true});
nlgr3 = nlgreyest(z3, nlgr3, nlgreyestOptions('SearchMethod', 'lm'));

A comparison between the true and the simulated outputs (with the estimated model) is shown in a
plot window.

compare(z3, nlgr3);
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Figure 13: Comparison between measured outputs and the simulated outputs of the first estimated
Volvo V70 vehicle model.

The estimated stiffness parameters of the final Volvo V70 model are reasonable, yet it is here
unknown what their real values are.

disp('                        Estimated');
fprintf('Longitudinal stiffness: %6.0f\n', nlgr3.Parameters(4).Value);
fprintf('Lateral stiffness     : %6.0f\n', nlgr3.Parameters(5).Value);

                        Estimated
Longitudinal stiffness: 108873
Lateral stiffness     :  29964

Further information about the estimated Volvo V70 vehicle model is obtained through PRESENT. It is
here interesting to note that the uncertainty related to the estimated lateral tire stiffness is quite high
(and significantly higher than for the longitudinal tire stiffness). This uncertainty originates partly
from that the lateral acceleration is varied so little during the test drive.
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present(nlgr3);

                                                                                                 
nlgr3 =                                                                                          
Continuous-time nonlinear grey-box model defined by 'vehicle_c' (MEX-file):                      
                                                                                                 
   dx/dt = F(t, u(t), x(t), p1, ..., p6)                                                         
    y(t) = H(t, u(t), x(t), p1, ..., p6) + e(t)                                                  
                                                                                                 
 with 5 input(s), 3 state(s), 3 output(s), and 2 free parameter(s) (out of 6).                   
                                                                                                 
 Inputs:                                                                                         
    u(1)  Slip on front left tire(t) [ratio]                                                     
    u(2)  Slip on front right tire(t) [ratio]                                                    
    u(3)  Slip on rear left tire(t) [ratio]                                                      
    u(4)  Slip on rear right tire(t) [ratio]                                                     
    u(5)  Steering angle(t) [rad]                                                                
 States:                                         Initial value                                   
    x(1)  Longitudinal vehicle velocity(t) [m/s]   xinit@exp1   17.6049   (estimated) in ]0, Inf]
    x(2)  Lateral vehicle velocity(t) [m/s]        xinit@exp1         0   (fixed) in [-Inf, Inf] 
    x(3)  Yaw rate(t) [rad/s]                      xinit@exp1         0   (fixed) in [-Inf, Inf] 
 Outputs:                                                                                        
    y(1)  Long. velocity(t) [m/s]                                                                
    y(2)  Lat. accel.(t) [m/s^2]                                                                 
    y(3)  Yaw rate(t) [rad/s]                                                                    
 Parameters:                                    ValueStandard Deviation                          
    p1   Vehicle mass [kg]                          1700            0   (fixed) in ]0, Inf]      
    p2   Distance from front axle to COG [m]         1.5            0   (fixed) in ]0, Inf]      
    p3   Distance from rear axle to COG [m]          1.5            0   (fixed) in ]0, Inf]      
    p4   Longitudinal tire stiffness [N]          108873      26.8501   (estimated) in ]0, Inf]  
    p5   Lateral tire stiffness [N/rad]          29963.5      217.877   (estimated) in ]0, Inf]  
    p6   Air resistance coefficient [1/m]            0.7            0   (fixed) in ]0, Inf]      
                                                                                                 
Name: Volvo V70 vehicle model                                                                    
                                                                                                 
Status:                                                                                          
Termination condition: Maximum number of iterations reached..                                    
Number of iterations: 20, Number of function evaluations: 41                                     
                                                                                                 
Estimated using Solver: ode45; Search: lm on time domain data "Volvo V70 data".                  
Fit to estimation data: [-374.2;29.74;34.46]%                                                    
FPE: 2.362e-07, MSE: 0.3106                                                                      
More information in model's "Report" property.                                                   

Concluding Remarks

Estimating the tire stiffness parameters is in practice a rather intricate problem. First, the
approximations introduced in the model structure above are valid for a rather narrow operation
region, and data during high accelerations, braking, etc., cannot be used. The stiffness also varies
with the environmental condition, e.g., the surrounding temperature, the temperature in the tires and
the road surface conditions, which are not accounted for in the used model structure. Secondly, the
estimation of the stiffness parameters relies heavily on the driving style. When mostly going straight
ahead as in the third identification experiment, it becomes hard to estimate the stiffness parameters
(especially the lateral one), or put another way, the parameter uncertainties become rather high.
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Modeling an Aerodynamic Body
This example shows the grey-box modeling of a large and complex nonlinear system. The purpose is
to show the ability to use the IDNLGREY model to estimate a large number of parameters (16) in a
system having many inputs (10) and outputs (5). The system is an aerodynamic body. We create a
model that predicts the acceleration and velocity of the body using the measurements of its velocities
(translational and angular) and various angles related to its control surfaces.

Input-Output Data

We load the measured velocities, angles and dynamic pressure from a data file named aerodata.mat:

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'aerodata'));

This file contains a uniformly sampled data set with 501 samples in the variables u and y. The sample
time is 0.02 seconds. This data set was generated from another more elaborate model of the
aerodynamic body.

Next, we create an IDDATA object to represent and store the data:

z = iddata(y, u, 0.02, 'Name', 'Data');
z.InputName = {'Aileron angle' 'Elevator angle'          ...
                     'Rudder angle' 'Dynamic pressure'         ...
                     'Velocity'                        ...
                     'Measured angular velocity around x-axis' ...
                     'Measured angular velocity around y-axis' ...
                     'Measured angular velocity around z-axis' ...
                     'Measured angle of attack'                ...
                     'Measured angle of sideslip'};
z.InputUnit = {'rad' 'rad' 'rad' 'kg/(m*s^2)' 'm/s'      ...
   'rad/s' 'rad/s' 'rad/s' 'rad' 'rad'};
z.OutputName = {'V(x)'         ... % Angular velocity around x-axis
                      'V(y)'         ... % Angular velocity around y-axis
                      'V(z)'         ... % Angular velocity around z-axis
                      'Accel.(y)'    ... % Acceleration in y-direction
                      'Accel.(z)'    ... % Acceleration in z-direction
                      };
z.OutputUnit = {'rad/s' 'rad/s' 'rad/s' 'm/s^2' 'm/s^2'};
z.Tstart =  0;
z.TimeUnit = 's';

View the input data:

figure('Name', [z.Name ': input data'],...
   'DefaultAxesTitleFontSizeMultiplier',1,...
   'DefaultAxesTitleFontWeight','normal',...
   'Position',[50, 50, 850, 620]);
for i = 1:z.Nu
   subplot(z.Nu/2, 2, i);
   plot(z.SamplingInstants, z.InputData(:,i));
   title(['Input #' num2str(i) ': ' z.InputName{i}],'FontWeight','normal');
   xlabel('');
   axis tight;
   if (i > z.Nu-2)
       xlabel([z.Domain ' (' z.TimeUnit ')']);
   end
end
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Figure 1: Input signals.

View the output data:

figure('Name', [z.Name ': output data']);
h_gcf = gcf;
Pos = h_gcf.Position;
h_gcf.Position = [Pos(1), Pos(2)-Pos(4)/2, Pos(3), Pos(4)*1.5];
for i = 1:z.Ny
   subplot(z.Ny, 1, i);
   plot(z.SamplingInstants, z.OutputData(:,i));
   title(['Output #' num2str(i) ': ' z.OutputName{i}]);
   xlabel('');
   axis tight;
end
xlabel([z.Domain ' (' z.TimeUnit ')']);
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Figure 2: Output signals.

At a first glance, it might look strange to have measured variants of some of the outputs in the input
vector. However, the model used for generating the data contains several integrators, which often
result in an unstable simulation behavior. To avoid this, the measurements of some of the output
signals are fed back via a nonlinear observer. These are the input 6 to 8 in the dataset z. Thus, this is
a system operating in closed loop and the goal of the modeling exercise is to predict "future" values
of those outputs using measurements of current and past behavior.
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Modeling the System

To model the dynamics of interest, we use an IDNLGREY model object to represent a state space
structure of the system. A reasonable structure is obtained by using Newton's basic force and
momentum laws (balance equations). To completely describe the model structure, basic aerodynamic
relations (constitutive relations) are also used.

The C MEX-file, aero_c.c, describes the system using the state and output equations and initial
conditions, as described next. Omitting the derivation details for the equations of motion, we only
display the final state and output equations, and observe that the structure is quite complex as well
as nonlinear.

/* State equations. */

void compute_dx(double *dx, double *x, double *u, double **p)

{

/* Retrieve model parameters. */

double *F, *M, *C, *d, *A, *I, *m, *K;

F = p[0]; /* Aerodynamic force coefficient. */

M = p[1]; /* Aerodynamic momentum coefficient. */

C = p[2]; /* Aerodynamic compensation factor. */

d = p[3]; /* Body diameter. */

A = p[4]; /* Body reference area. */

I = p[5]; /* Moment of inertia, x-y-z. */

m = p[6]; /* Mass. */

K = p[7]; /* Feedback gain. */

/* x[0]: Angular velocity around x-axis. */

/* x[1]: Angular velocity around y-axis. */

/* x[2]: Angular velocity around z-axis. */

/* x[3]: Angle of attack. */

/* x[4]: Angle of sideslip. */

dx[0] = 1/I[0]*(d[0]*A[0]*(M[0]*x[4]+0.5*M[1]*d[0]*x[0]/u[4]+M[2]*u[0])*u[3]-
(I[2]-I[1])*x[1]*x[2])+K[0]*(u[5]-x[0]);

dx[1] = 1/I[1]*(d[0]*A[0]*(M[3]*x[3]+0.5*M[4]*d[0]*x[1]/u[4]+M[5]*u[1])*u[3]-
(I[0]-I[2])*x[0]*x[2])+K[0]*(u[6]-x[1]);

dx[2] = 1/I[2]*(d[0]*A[0]*(M[6]*x[4]+M[7]*x[3]*x[4]+0.5*M[8]*d[0]*x[2]/
u[4]+M[9]*u[0]+M[10]*u[2])*u[3]-(I[1]-I[0])*x[0]*x[1])+K[0]*(u[7]-x[2]);
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dx[3] = (-A[0]*u[3]*(F[2]*x[3]+F[3]*u[1]))/(m[0]*u[4])-
x[0]*x[4]+x[1]+K[0]*(u[8]/u[4]-x[3])+C[0]*pow(x[4],2);

dx[4] = (-A[0]*u[3]*(F[0]*x[4]+F[1]*u[2]))/(m[0]*u[4])-
x[2]+x[0]*x[3]+K[0]*(u[9]/u[4]-x[4]);

}

/* Output equations. */

void compute_y(double *y, double *x, double *u, double **p)

{

/* Retrieve model parameters. */

double *F, *A, *m;

F = p[0]; /* Aerodynamic force coefficient. */

A = p[4]; /* Body reference area. */

m = p[6]; /* Mass. */

/* y[0]: Angular velocity around x-axis. */

/* y[1]: Angular velocity around y-axis. */

/* y[2]: Angular velocity around z-axis. */

/* y[3]: Acceleration in y-direction. */

/* y[4]: Acceleration in z-direction. */

y[0] = x[0];

y[1] = x[1];

y[2] = x[2];

y[3] = -A[0]*u[3]*(F[0]*x[4]+F[1]*u[2])/m[0];

y[4] = -A[0]*u[3]*(F[2]*x[3]+F[3]*u[1])/m[0];

}

We must also provide initial values of the 23 parameters. We specify some of the parameters
(aerodynamic force coefficients, aerodynamic momentum coefficients, and moment of inertia factors)
as vectors in 8 different parameter objects. The initial parameter values are obtained partly by
physical reasoning and partly by quantitative guessing. The last 4 parameters (A, I, m and K) are
more or less constants, so by fixing these parameters we get a model structure with 16 free
parameters, distributed among parameter objects F, M, C and d.

Parameters = struct('Name', ...
   {'Aerodynamic force coefficient'       ... % F, 4-by-1 vector.
   'Aerodynamic momentum coefficient'    ...  % M, 11-by-1 vector.
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   'Aerodynamic compensation factor'     ...  % C, scalar.
   'Body diameter'                    ...     % d, scalar.
   'Body reference area'              ...     % A, scalar.
   'Moment of inertia, x-y-z'            ...  % I, 3-by-1 vector.
   'Mass'                        ...          % m, scalar.
   'Feedback gain'},                     ...  % K, scalar.
   'Unit', ...
   {'1/(rad*m^2), 1/(rad*m^2), 1/(rad*m^2), 1/(rad*m^2)' ...
   ['1/rad, 1/(s*rad), 1/rad, 1/rad, '   ...
    '1/(s*rad), 1/rad, 1/rad, 1/rad^2, ' ...
    '1/(s*rad), 1/rad, 1/rad']           ...
    '1/(s*rad)' 'm' 'm^2'                ...
    'kg*m^2, kg*m^2,kg*m^2' 'kg' '-'},   ...
    'Value', ...
    {[20.0; -6.0; 35.0; 13.0]           ...
     [-1.0; 15; 3.0; -16.0; -1800; -50; 23.0; -200; -2000; -17.0; -50.0] ...
      -5.0, 0.17, 0.0227                 ...
     [0.5; 110; 110] 107 6},             ...
     'Minimum',...
     {-Inf(4, 1) -Inf(11, 1) -Inf -Inf -Inf -Inf(3, 1) -Inf -Inf}, ... % Ignore constraints.
     'Maximum', ...
     {Inf(4, 1) Inf(11, 1) Inf Inf Inf Inf(3, 1) Inf Inf}, ... % Ignore constraints.
     'Fixed', ...
     {false(4, 1) false(11, 1) false true true true(3, 1) true true});

We also define the 5 states of the model structure in the same manner:

InitialStates = struct('Name', {'Angular velocity around x-axis'        ...
                                'Angular velocity around y-axis'        ...
                                'Angular velocity around z-axis'        ...
                                'Angle of attack' 'Angle of sideslip'}, ...
                 'Unit',    {'rad/s' 'rad/s' 'rad/s' 'rad' 'rad'},   ...
                 'Value',   {0 0 0 0 0},                             ...
                 'Minimum', {-Inf -Inf -Inf -Inf -Inf},... % Ignore constraints.
                 'Maximum', {Inf Inf Inf Inf Inf},... % Ignore constraints.
                 'Fixed',   {true true true true true});

The model file along with order, parameter and initial states data are now used to create an
IDNLGREY object describing the system:

FileName     = 'aero_c';             % File describing the model structure.
Order        = [5 10 5];             % Model orders [ny nu nx].
Ts           = 0;                    % Time-continuous system.
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts, ...
                'Name', 'Model', 'TimeUnit', 's');

Next, we use data from the IDDATA object to specify the input and output signals of the system:

nlgr.InputName = z.InputName;
nlgr.InputUnit = z.InputUnit;
nlgr.OutputName = z.OutputName;
nlgr.OutputUnit = z.OutputUnit;

Thus, we have an IDNLGREY object with 10 input signals, 5 states, and 5 output signals. As
mentioned previously, the model also contains 23 parameters, 7 of which are fixed and 16 of which
are free:

nlgr
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nlgr =
Continuous-time nonlinear grey-box model defined by 'aero_c' (MEX-file):

   dx/dt = F(t, u(t), x(t), p1, ..., p8)
    y(t) = H(t, u(t), x(t), p1, ..., p8) + e(t)

 with 10 input(s), 5 state(s), 5 output(s), and 16 free parameter(s) (out of 23).

Name: Model

Status:                                                         
Created by direct construction or transformation. Not estimated.

Performance of the Initial Model

Before estimating the 16 free parameters, we simulate the system using the initial parameter vector.
Simulation provides useful information about the quality of the initial model:

clf
compare(z, nlgr); % simulate the model and compare the response to measured values
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Figure 3: Comparison between measured outputs and the simulated outputs of the initial model.

From the plot, we see that the measured and simulated signals match each other closely except for
the time span 4 to 6 seconds. This fact is clearly revealed in a plot of the prediction errors:

figure;
h_gcf = gcf;
Pos = h_gcf.Position;
h_gcf.Position = [Pos(1), Pos(2)-Pos(4)/2, Pos(3), Pos(4)*1.5];
pe(z, nlgr);
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Figure 4: Prediction errors of the initial model.

Parameter Estimation

The initial model as defined above is a plausible starting point for parameter estimation. Next, we
compute the prediction error estimate of the 16 free parameters. This computation will take some
time.

duration = clock;
nlgr = nlgreyest(z, nlgr, nlgreyestOptions('Display', 'on')); 
duration = etime(clock, duration);
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Performance of the Estimated Aerodynamic Body Model

On the computer used, estimation of the parameters took the following amount of time to complete:

disp(['Estimation time   : ' num2str(duration, 4) ' seconds']);

Estimation time   : 16.97 seconds

disp(['Time per iteration: ' num2str(duration/nlgr.Report.Termination.Iterations, 4) ' seconds.']);

Time per iteration: 0.8082 seconds.

To evaluate the quality of the estimated model and to illustrate the improvement compared to the
initial model, we simulate the estimated model and compare the measured and simulated outputs:

clf
compare(z, nlgr);
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Figure 5: Comparison between measured outputs and the simulated outputs of the estimated model.

The figure clearly indicates the improvement compared to the simulation result obtained with the
initial model. The system dynamics in the time span 4 to 6 seconds is now captured with much higher
accuracy than before. This is best displayed by looking at the prediction errors:

figure;
h_gcf = gcf;
Pos = h_gcf.Position;
h_gcf.Position = [Pos(1), Pos(2)-Pos(4)/2, Pos(3), Pos(4)*1.5];
pe(z, nlgr);
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Figure 6: Prediction errors of the estimated model.

Let us conclude the case study by displaying the model and the estimated uncertainty:

present(nlgr);

                                                                                                                     
nlgr =                                                                                                               
Continuous-time nonlinear grey-box model defined by 'aero_c' (MEX-file):                                             
                                                                                                                     
   dx/dt = F(t, u(t), x(t), p1, ..., p8)                                                                             
    y(t) = H(t, u(t), x(t), p1, ..., p8) + e(t)                                                                      
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 with 10 input(s), 5 state(s), 5 output(s), and 16 free parameter(s) (out of 23).                                    
                                                                                                                     
 Inputs:                                                                                                             
    u(1)   Aileron angle(t) [rad]                                                                                    
    u(2)   Elevator angle(t) [rad]                                                                                   
    u(3)   Rudder angle(t) [rad]                                                                                     
    u(4)   Dynamic pressure(t) [kg/(m*s^2)]                                                                          
    u(5)   Velocity(t) [m/s]                                                                                         
    u(6)   Measured angular velocity around x-axis(t) [rad/s]                                                        
    u(7)   Measured angular velocity around y-axis(t) [rad/s]                                                        
    u(8)   Measured angular velocity around z-axis(t) [rad/s]                                                        
    u(9)   Measured angle of attack(t) [rad]                                                                         
    u(10)  Measured angle of sideslip(t) [rad]                                                                       
 States:                                             Initial value                                                   
    x(1)   Angular velocity around x-axis(t) [rad/s]   xinit@exp1   0   (fixed) in [-Inf, Inf]                       
    x(2)   Angular velocity around y-axis(t) [rad/s]   xinit@exp1   0   (fixed) in [-Inf, Inf]                       
    x(3)   Angular velocity around z-axis(t) [rad/s]   xinit@exp1   0   (fixed) in [-Inf, Inf]                       
    x(4)   Angle of attack(t) [rad]                    xinit@exp1   0   (fixed) in [-Inf, Inf]                       
    x(5)   Angle of sideslip(t) [rad]                  xinit@exp1   0   (fixed) in [-Inf, Inf]                       
 Outputs:                                                                                                            
    y(1)   V(x)(t) [rad/s]                                                                                           
    y(2)   V(y)(t) [rad/s]                                                                                           
    y(3)   V(z)(t) [rad/s]                                                                                           
    y(4)   Accel.(y)(t) [m/s^2]                                                                                      
    y(5)   Accel.(z)(t) [m/s^2]                                                                                      
 Parameters:                                                   Value  Standard Deviation                             
   p1(1)    Aerodynamic force coefficient [1/(rad*m^2..]          21.2863       0.339394   (estimated) in [-Inf, Inf]
   p1(2)                                                         -7.62502       0.180264   (estimated) in [-Inf, Inf]
   p1(3)                                                          35.0799       0.657227   (estimated) in [-Inf, Inf]
   p1(4)                                                          8.58246        1.08611   (estimated) in [-Inf, Inf]
   p2(1)    Aerodynamic momentum coefficient [1/rad, 1/(..]       -1.0476      0.0733533   (estimated) in [-Inf, Inf]
   p2(2)                                                          15.6854       0.883102   (estimated) in [-Inf, Inf]
   p2(3)                                                          3.00613       0.199227   (estimated) in [-Inf, Inf]
   p2(4)                                                         -17.7963       0.324639   (estimated) in [-Inf, Inf]
   p2(5)                                                         -1060.91        224.269   (estimated) in [-Inf, Inf]
   p2(6)                                                         -53.5594        1.25436   (estimated) in [-Inf, Inf]
   p2(7)                                                          34.6095        1.37299   (estimated) in [-Inf, Inf]
   p2(8)                                                         -210.237        7.95211   (estimated) in [-Inf, Inf]
   p2(9)                                                         -2641.55        273.034   (estimated) in [-Inf, Inf]
   p2(10)                                                        -33.6327        3.05742   (estimated) in [-Inf, Inf]
   p2(11)                                                        -50.9269        1.64086   (estimated) in [-Inf, Inf]
    p3      Aerodynamic compensation factor [1/(s*rad)]         -0.640669       0.706338   (estimated) in [-Inf, Inf]
    p4      Body diameter [m]                                        0.17              0   (fixed) in [-Inf, Inf]    
    p5      Body reference area [m^2]                              0.0227              0   (fixed) in [-Inf, Inf]    
   p6(1)    Moment of inertia, x-y-z [kg*m^2, kg..]                   0.5              0   (fixed) in [-Inf, Inf]    
   p6(2)                                                              110              0   (fixed) in [-Inf, Inf]    
   p6(3)                                                              110              0   (fixed) in [-Inf, Inf]    
    p7      Mass [kg]                                                 107              0   (fixed) in [-Inf, Inf]    
    p8      Feedback gain [-]                                           6              0   (fixed) in [-Inf, Inf]    
                                                                                                                     
Name: Model                                                                                                          
                                                                                                                     
Status:                                                                                                              
Termination condition: Maximum number of iterations or number of function evaluations reached..                      
Number of iterations: 21, Number of function evaluations: 22                                                         
                                                                                                                     
Estimated using Solver: ode45; Search: lsqnonlin on time domain data "Data".                                         
Fit to estimation data: [52.93;94.91;91.4;96.07;98.84]%                                                              
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FPE: 4.627e-10, MSE: 1.672                                                                                           
More information in model's "Report" property.                                                                       

Concluding Remarks

The estimated model is a good starting point for investigating the fundamental performance of
different control strategies. High-fidelity models that preferably have a physical interpretation are,
for example, vital components of so-called "model predictive control systems".

Additional Information

For more information on identifying dynamic systems with System Identification Toolbox™, see the
System Identification Toolbox product page.
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Modeling an Industrial Robot Arm
This example shows grey-box modeling of the dynamics of an industrial robot arm. The robot arm is
described by a nonlinear three-mass flexible model according to Figure 1. This model is idealized in
the sense that the movements are assumed to be around an axis not affected by gravity. For
simplicity, the modeling is also performed with gear ratio r = 1 and the true physical parameters are
afterwards obtained through a straightforward scaling with the true gear ratio. The modeling and
identification experiments detailed below is based on the work published in

  E. Wernholt and S. Gunnarsson. Nonlinear Identification of a
  Physically Parameterized Robot Model. In preprints of the 14th IFAC
  Symposium on System Identification, pages 143-148, Newcastle,
  Australia, March 2006.

Figure 1: Schematic diagram of an industrial robot arm.

Modeling the Robot Arm

The input to the robot is the applied torque u(t)=tau(t) generated by the electrical motor, and the
resulting angular velocity of the motor y(t) = d/dt q_m(t) is the measured output. The angular
positions of the masses after the gear-box and at the end of the arm structure, q_g(t) and q_a(t), are
non-measurable. Flexibilities within the gear-box is modeled by a nonlinear spring, described by the
spring torque tau_s(t), which is located between the motor and the second mass, while the "linear"
spring between the last two masses models flexibilities in the arm structure. The friction of the
system acts mainly on the first mass and is here modeled by a nonlinear friction torque tau_f(t).

Introducing the states:

         ( x1(t) )   ( q_m(t) - q_g(t) )
         ( x2(t) )   ( q_g(t) - q_a(t) )
  x(t) = ( x3(t) ) = (   d/dt q_m(t)   )
         ( x4(t) )   (   d/dt q_g(t)   )
         ( x5(t) )   (   d/dt q_a(t)   )

and applying torque balances for the three masses result in the following nonlinear state-space model
structure:

  d/dt x1(t) = x3(t) - x4(t)
  d/dt x2(t) = x4(t) - x5(t)
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  d/dt x3(t) = 1/J_m*(-tau_s(t) - d_g*(x3(t)-x4(t)) - tau_f(t) + u(t))
  d/dt x4(t) = 1/J_g*(tau_s(t) + d_g*(x3(t)-x4(t)) - k_a*x2(t) - d_a*(x4(t)-x5(t)))
  d/dt x5(t) = 1/J_a*(k_a*x2(t) + d_a*(x4(t)-x5(t)))

        y(t) = x3(t)

where J_m, J_g, and J_a are the moments of inertia of the motor, the gear-box and the arm structure,
respectively, d_g and d_a are damping parameters, and k_a is the stiffness of the arm structure.

The gear-box friction torque, tau_f(t), is modeled to include many of the friction phenomena
encountered in practice, among other things so-called Coulomb friction and the Stribeck effect:

  tau_f(t) = Fv*x3(t) + (Fc+Fcs*sech(alpha*x3(t)))*tanh(beta*x3(t))

where Fv and Fc are the viscous and the Coulomb friction coefficients, Fcs and alpha are coefficients
for reflecting the Stribeck effect, and beta a parameter used to obtain a smooth transition from
negative to positive velocities of x3(t). (A similar approach, but based on a slightly different model
structure, for describing the static relationship between the velocity and the friction torque/force is
further discussed in the tutorial named idnlgreydemo5: "Static Modeling of Friction".)

The torque of the spring, tau_s(t), is assumed to be described by a cubic polynomial without a square
term in x1(t):

  tau_s(t) = k_g1*x1(t) + k_g3*x1(t)^3

where k_g1 and k_g3 are two stiffness parameters of the gear-box spring.

In other types of identification experiments discussed in the paper by Wernholt and Gunnarsson, it is
possible to identify the overall moment of inertia J = J_m+J_g+J_a. With this we can introduce the
unknown scaling factors a_m and a_g, and perform the following reparameterizations:

  J_m = J*a_m
  J_g = J*a_g
  J_a = J*(1-a_m-a_g)

where (if J is known) only a_m and a_g need to be estimated.

All in all, this gives the following state space structure, involving 13 different parameters: Fv, Fc, Fcs,
alpha, beta, J, a_m, a_g, k_g1, k_g3, d_g, k_a and d_a. (By definition we have also used the fact that
sech(x) = 1/cosh(x).)

    tau_f(t) = Fv*x3(t) + (Fc+Fcs/cosh(alpha*x3(t)))*tanh(beta*x3(t))
    tau_s(t) = k_g1*x1(t) + k_g3*x1(t)^3

  d/dt x1(t) = x3(t) - x4(t)
  d/dt x2(t) = x4(t) - x5(t)
  d/dt x3(t) = 1/(J*a_m)*(-tau_s(t) - d_g*(x3(t)-x4(t)) - tau_f(t) + u(t))
  d/dt x4(t) = 1/(J*a_g)*(tau_s(t) + d_g*(x3(t)-x4(t)) - k_a*x2(t) - d_a*(x4(t)-x5(t)))
  d/dt x5(t) = 1/(J(1-a_m-a_g))*(k_a*x2(t) + d_a*(x4(t)-x5(t)))

        y(t) = x3(t)

IDNLGREY Robot Arm Model Object

The above model structure is entered into a C MEX-file named robotarm_c.c, with state and output
update functions as follows (the whole file can be viewed by the command "type robotarm_c.c"). In
the state update function, notice that we have here used two intermediate double variables, on one
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hand to enhance the readability of the equations and on the other hand to improve the execution
speed (taus appears twice in the equations, but is only computed once).

  /* State equations. */
  void compute_dx(double *dx, double *x, double *u, double **p)
  {
      /* Declaration of model parameters and intermediate variables. */
      double *Fv, *Fc, *Fcs, *alpha, *beta, *J, *am, *ag, *kg1, *kg3, *dg, *ka, *da;
      double tauf, taus;   /* Intermediate variables. */

      /* Retrieve model parameters. */
      Fv    = p[0];    /* Viscous friction coefficient.            */
      Fc    = p[1];    /* Coulomb friction coefficient.            */
      Fcs   = p[2];    /* Striebeck friction coefficient.          */
      alpha = p[3];    /* Striebeck smoothness coefficient.        */
      beta  = p[4];    /* Friction smoothness coefficient.         */
      J     = p[5];    /* Total moment of inertia.                 */
      am    = p[6];    /* Motor moment of inertia scale factor.    */
      ag    = p[7];    /* Gear-box moment of inertia scale factor. */
      kg1   = p[8];    /* Gear-box stiffness parameter 1.          */
      kg3   = p[9];    /* Gear-box stiffness parameter 3.          */
      dg    = p[10];   /* Gear-box damping parameter.              */
      ka    = p[11];   /* Arm structure stiffness parameter.       */
      da    = p[12];   /* Arm structure damping parameter.         */

      /* Determine intermediate variables. */
      /* tauf: Gear friction torque. (sech(x) = 1/cosh(x)! */
      /* taus: Spring torque. */
      tauf = Fv[0]*x[2]+(Fc[0]+Fcs[0]/(cosh(alpha[0]*x[2])))*tanh(beta[0]*x[2]);
      taus = kg1[0]*x[0]+kg3[0]*pow(x[0],3);

      /* x[0]: Rotational velocity difference between the motor and the gear-box. */
      /* x[1]: Rotational velocity difference between the gear-box and the arm. */
      /* x[2]: Rotational velocity of the motor. */
      /* x[3]: Rotational velocity after the gear-box. */
      /* x[4]: Rotational velocity of the robot arm. */
      dx[0] = x[2]-x[3];
      dx[1] = x[3]-x[4];
      dx[2] = 1/(J[0]*am[0])*(-taus-dg[0]*(x[2]-x[3])-tauf+u[0]);
      dx[3] = 1/(J[0]*ag[0])*(taus+dg[0]*(x[2]-x[3])-ka[0]*x[1]-da[0]*(x[3]-x[4]));
      dx[4] = 1/(J[0]*(1.0-am[0]-ag[0]))*(ka[0]*x[1]+da[0]*(x[3]-x[4]));
  }

  /* Output equation. */
  void compute_y(double y[], double x[])
  {
      /* y[0]: Rotational velocity of the motor. */
      y[0] = x[2];
  }

The next step is to create an IDNLGREY object reflecting the modeling situation. It should here be
noted that finding proper initial parameter values for the robot arm requires some additional effort.
In the paper by Wernholt and Gunnarsson, this was carried out in two preceding steps, where other
model structures and identification techniques were employed. The initial parameter values used
below are the results of those identification experiments.

FileName      = 'robotarm_c';               % File describing the model structure.
Order         = [1 1 5];                    % Model orders [ny nu nx].
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Parameters    = [ 0.00986346744839  0.74302635727901 ...
                  3.98628540790595  3.24015074090438 ...
                  0.79943497008153  0.03291699877416 ...
                  0.17910964111956  0.61206166914114 ...
                 20.59269827430799  0.00000000000000 ...
                  0.06241814047290 20.23072060978318 ...
                  0.00987527995798]';       % Initial parameter vector.
InitialStates = zeros(5, 1);                % Initial states.
Ts            = 0;                          % Time-continuous system.
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts, ...
                'Name', 'Robot arm',                            ...
                'InputName', 'Applied motor torque',            ...
                'InputUnit', 'Nm',                              ...
                'OutputName', 'Angular velocity of motor',      ...
                'OutputUnit', 'rad/s',                          ...
                'TimeUnit', 's');

The names and the units of the states are provided for better bookkeeping:

nlgr = setinit(nlgr, 'Name', {'Angular position difference between the motor and the gear-box' ...
                       'Angular position difference between the gear-box and the arm'   ...
                       'Angular velocity of motor'                                      ...
                       'Angular velocity of gear-box'                                   ...
                       'Angular velocity of robot arm'}');
nlgr = setinit(nlgr, 'Unit', {'rad' 'rad' 'rad/s' 'rad/s' 'rad/s'});

The parameter names are also specified in detail. Furthermore, the modeling was done is such a way
that all parameters ought to be positive, i.e., the minimum of each parameter should be set to 0 (and
hence constrained estimation will later on be performed). As in the paper by Wernholt and
Gunnarsson, we also consider the first 6 parameters, i.e., Fv, Fc, Fcs, alpha, beta, and J, to be so good
that they do not need to be estimated.

nlgr = setpar(nlgr, 'Name', {'Fv   : Viscous friction coefficient'            ... % 1.
                      'Fc   : Coulomb friction coefficient'            ... % 2.
                      'Fcs  : Striebeck friction coefficient'          ... % 3.
                      'alpha: Striebeck smoothness coefficient'        ... % 4.
                      'beta : Friction smoothness coefficient'         ... % 5.
                      'J    : Total moment of inertia'                 ... % 6.
                      'a_m  : Motor moment of inertia scale factor'    ... % 7.
                      'a_g  : Gear-box moment of inertia scale factor' ... % 8.
                      'k_g1 : Gear-box stiffness parameter 1'          ... % 9.
                      'k_g3 : Gear-box stiffness parameter 3'          ... % 10.
                      'd_g  : Gear-box damping parameter'              ... % 11.
                      'k_a  : Arm structure stiffness parameter'       ... % 12.
                      'd_a  : Arm structure damping parameter'         ... % 13.
                     });
nlgr = setpar(nlgr, 'Minimum', num2cell(zeros(size(nlgr, 'np'), 1)));   % All parameters >= 0!
for parno = 1:6   % Fix the first six parameters.
    nlgr.Parameters(parno).Fixed = true;
end

The modeling steps carried out so far have left us with an initial robot arm model with properties as
follows:

present(nlgr);

                                                                                                                            
nlgr =                                                                                                                      
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Continuous-time nonlinear grey-box model defined by 'robotarm_c' (MEX-file):                                                
                                                                                                                            
   dx/dt = F(t, u(t), x(t), p1, ..., p13)                                                                                   
    y(t) = H(t, u(t), x(t), p1, ..., p13) + e(t)                                                                            
                                                                                                                            
 with 1 input(s), 5 state(s), 1 output(s), and 7 free parameter(s) (out of 13).                                             
                                                                                                                            
 Inputs:                                                                                                                    
    u(1)   Applied motor torque(t) [Nm]                                                                                     
 States:                                                                           Initial value                            
    x(1)   Angular position difference between the motor and the gear-box(t) [rad]   xinit@exp1   0   (fixed) in [-Inf, Inf]
    x(2)   Angular position difference between the gear-box and the arm(t) [rad]     xinit@exp1   0   (fixed) in [-Inf, Inf]
    x(3)   Angular velocity of motor(t) [rad/s]                                      xinit@exp1   0   (fixed) in [-Inf, Inf]
    x(4)   Angular velocity of gear-box(t) [rad/s]                                   xinit@exp1   0   (fixed) in [-Inf, Inf]
    x(5)   Angular velocity of robot arm(t) [rad/s]                                  xinit@exp1   0   (fixed) in [-Inf, Inf]
 Outputs:                                                                                                                   
    y(1)   Angular velocity of motor(t) [rad/s]                                                                             
 Parameters:                                             Value                                                              
    p1    Fv   : Viscous friction coefficient                0.00986347      (fixed) in [0, Inf]                            
    p2    Fc   : Coulomb friction coefficient                  0.743026      (fixed) in [0, Inf]                            
    p3    Fcs  : Striebeck friction coefficient                 3.98629      (fixed) in [0, Inf]                            
    p4    alpha: Striebeck smoothness coefficient               3.24015      (fixed) in [0, Inf]                            
    p5    beta : Friction smoothness coefficient               0.799435      (fixed) in [0, Inf]                            
    p6    J    : Total moment of inertia                       0.032917      (fixed) in [0, Inf]                            
    p7    a_m  : Motor moment of inertia scale factor           0.17911      (estimated) in [0, Inf]                        
    p8    a_g  : Gear-box moment of inertia scale factor       0.612062      (estimated) in [0, Inf]                        
    p9    k_g1 : Gear-box stiffness parameter 1                 20.5927      (estimated) in [0, Inf]                        
    p10   k_g3 : Gear-box stiffness parameter 3                       0      (estimated) in [0, Inf]                        
    p11   d_g  : Gear-box damping parameter                   0.0624181      (estimated) in [0, Inf]                        
    p12   k_a  : Arm structure stiffness parameter              20.2307      (estimated) in [0, Inf]                        
    p13   d_a  : Arm structure damping parameter             0.00987528      (estimated) in [0, Inf]                        
                                                                                                                            
Name: Robot arm                                                                                                             
                                                                                                                            
Status:                                                                                                                     
Created by direct construction or transformation. Not estimated.                                                            
More information in model's "Report" property.                                                                              

Input-Output Data

A large number of real-world data sets were collected from the experimental robot. In order to keep
the robot around its operating point, but also for safety reasons, the data was collected using an
experimental feedback control arrangement, which subsequently allows off-line computations of the
reference signals for the joint controllers.

In this case study we will limit the onward discussion to four different data sets, one for estimation
and the remaining ones for validation purposes. In each case, a periodic excitation signal with
approximately 10 seconds duration was employed to generate a reference speed for the controller.
The chosen sampling frequency was 2 kHz (sample time, Ts, = 0.0005 seconds). For the data sets,
three different types of input signals were used: (ue: input signal of the estimation data set; uv1, uv2,
uv3: input signals of the three validation data sets)

  ue, uv1: Multisine signals with a flat amplitude spectrum in the
           frequency interval 1-40 Hz with a peak value of 16 rad/s. The
           multisine signal is superimposed on a filtered square wave
           with amplitude 20 rad/s and cut-off frequency 1 Hz.

      uv2: Similar to ue and uv1, but without the square wave.
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      uv3: Multisine signal (sum of sinusoids) with frequencies 0.1,
           0.3, and 0.5 Hz, with peak value 40 rad/s.

Let us load the available data and put all four data sets into one single IDDATA object z:

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'robotarmdata'));
z = iddata({ye yv1 yv2 yv3}, {ue uv1 uv2 uv3}, 0.5e-3, 'Name', 'Robot arm');
z.InputName = 'Applied motor torque';
z.InputUnit = 'Nm';
z.OutputName = 'Angular velocity of motor';
z.OutputUnit = 'rad/s';
z.ExperimentName = {'Estimation' 'Validation 1'  'Validation 2' 'Validation 3'};
z.Tstart = 0;
z.TimeUnit = 's';
present(z);

th =
Time domain data set containing 4 experiments.
         
Experiment                      Samples      Sample Time
   Estimation                    19838            0.0005
   Validation 1                  19838            0.0005
   Validation 2                  19838            0.0005
   Validation 3                  19838            0.0005
                                                        
Name: Robot arm                                         
                                                        
Outputs                         Unit (if specified)     
   Angular velocity of motor       rad/s                
                                                        
Inputs                          Unit (if specified)     
   Applied motor torque            Nm                   
                                                        

The following figure shows the input-output data used in the four experiments.

figure('Name', [z.Name ': input-output data'],...
   'DefaultAxesTitleFontSizeMultiplier',1,...
   'DefaultAxesTitleFontWeight','normal',...
   'Position',[100 100 900 600]);
for i = 1:z.Ne
    zi = getexp(z, i);
    subplot(z.Ne, 2, 2*i-1);   % Input.
    plot(zi.u);
    title([z.ExperimentName{i} ': ' zi.InputName{1}],'FontWeight','normal');
    if (i < z.Ne)
        xlabel('');
    else
        xlabel([z.Domain ' (' zi.TimeUnit ')']);
    end
    subplot(z.Ne, 2, 2*i);     % Output.
    plot(zi.y);
    title([z.ExperimentName{i} ': ' zi.OutputName{1}],'FontWeight','normal');
    if (i < z.Ne)
        xlabel('');
    else
        xlabel([z.Domain ' (' zi.TimeUnit ')']);
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    end
end

Figure 2: Measured input-output data of an experimental robot arm.

Performance of the Initial Robot Arm Model

How good is the initial robot arm model? Let us use COMPARE to simulate the model outputs (for all
four experiments) and compare the result with the corresponding measured outputs. For all four
experiments, we know that the values of the first two states are 0 (fixed), while the values of the
remaining three states are initially set to the measured output at the starting time (non-fixed).
However, by default COMPARE estimates all initial states, and with z holding four different
experiments this would mean 4*5 = 20 initial states to estimate. Even after fixing the first two states,
4*3 = 12 initial states would remain to estimate (in case the internal model initial state strategy is
followed). Because the data set is rather large, this would result in lengthy computations, and to
avoid this we estimate the 4*3 free components of the initial states using PREDICT (possible if the
initial state is passed as an initial state structure), but restrict the estimation to the first 10:th of the
available data. We then instruct COMPARE to use the resulting 5-by-4 initial state matrix X0init
without performing any initial state estimation.

zred = z(1:round(zi.N/10));
nlgr = setinit(nlgr, 'Fixed', {true true false false false});
X0 = nlgr.InitialStates;
[X0.Value] = deal(zeros(1, 4), zeros(1, 4), [ye(1) yv1(1) yv2(1) yv3(1)], ...
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    [ye(1) yv1(1) yv2(1) yv3(1)], [ye(1) yv1(1) yv2(1) yv3(1)]);
[~, X0init] = predict(zred, nlgr, [], X0);
nlgr = setinit(nlgr, 'Value', num2cell(X0init(:, 1)));
clf
compare(z, nlgr, [], compareOptions('InitialCondition', X0init));

Figure 3: Comparison between measured outputs and the simulated outputs of the initial robot arm
model.

As can be seen, the performance of the initial robot arm model is decent or quite good. The fit for the
three types of data sets are around 79% for ye and yv1, 37% for yv2, and 95% for yv3. Notice that the
higher fit for ye/yv1 as compared to yv2 is in large due to the initial model's ability to capture the
square wave, while the multisine part is not captured equally well. We can also look at the prediction
errors for the four experiments:

pe(z, nlgr, peOptions('InitialCondition',X0init));
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Figure 4: Prediction errors of the initial robot arm model.

Parameter Estimation

Let us now try to improve the performance of the initial robot arm model by estimating the 7 free
model parameters and the 3 free initial states of the first experiment of z (the estimation data set).
This estimation will take some time (typically a couple of minutes).

nlgr = nlgreyest(nlgr, getexp(z, 1), nlgreyestOptions('Display', 'on'));
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Performance of the Estimated Robot Arm Model

COMPARE is again used to assess the performance of the estimated robot arm model. We also here
instruct COMPARE to not perform any initial state estimation. For the first experiment we replace the
guessed initial state with the one estimated by NLGREYEST and for the remaining three experiments
we employ PREDICT to estimate the initial state based on the reduced IDDATA object zred.

X0init(:, 1) = cell2mat(getinit(nlgr, 'Value'));
X0 = nlgr.InitialStates;
[X0.Value] = deal(zeros(1, 3), zeros(1, 3), [yv1(1) yv2(1) yv3(1)], ...
    [yv1(1) yv2(1) yv3(1)], [yv1(1) yv2(1) yv3(1)]);
[yp, X0init(:, 2:4)] = predict(getexp(zred, 2:4), nlgr, [], X0);
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clf
compare(z, nlgr, [], compareOptions('InitialCondition', X0init));

Figure 5: Comparison between measured outputs and the simulated outputs of the estimated robot
arm model.

The comparison plot shows an improvement in terms of better fits. For ye and yv1 the fit is now
around 85% (before: 79%), for yv2 around 63% (before: 37%), and for yv3 somewhat less than 95.5%
(before: also little less than 95.5%). The improvement is most pronounced for the second validation
data set, where a multisine signal without any square wave was applied as the input. However, the
estimated model's ability to follow the multisine part of ye and yv1 has also been improved
considerably (yet this is not reflected by the fit figures, as these are more influenced by the fit to the
square wave). A plot of the prediction errors also reveals that the residuals are now in general
smaller than with the initial robot arm model:

figure;
pe(z, nlgr, peOptions('InitialCondition',X0init));
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Figure 6: Prediction errors of the estimated robot arm model.

We conclude the case study by textually summarizing various properties of the estimated robot arm
model.

present(nlgr);

                                                                                                                                       
nlgr =                                                                                                                                 
Continuous-time nonlinear grey-box model defined by 'robotarm_c' (MEX-file):                                                           
                                                                                                                                       
   dx/dt = F(t, u(t), x(t), p1, ..., p13)                                                                                              
    y(t) = H(t, u(t), x(t), p1, ..., p13) + e(t)                                                                                       
                                                                                                                                       
 with 1 input(s), 5 state(s), 1 output(s), and 7 free parameter(s) (out of 13).                                                        
                                                                                                                                       
 Inputs:                                                                                                                               
    u(1)   Applied motor torque(t) [Nm]                                                                                                
 States:                                                                           Initial value                                       
    x(1)   Angular position difference between the motor and the gear-box(t) [rad]   xinit@exp1          0   (fixed) in [-Inf, Inf]    
    x(2)   Angular position difference between the gear-box and the arm(t) [rad]     xinit@exp1          0   (fixed) in [-Inf, Inf]    
    x(3)   Angular velocity of motor(t) [rad/s]                                      xinit@exp1   -19.0626   (estimated) in [-Inf, Inf]
    x(4)   Angular velocity of gear-box(t) [rad/s]                                   xinit@exp1   -22.2385   (estimated) in [-Inf, Inf]
    x(5)   Angular velocity of robot arm(t) [rad/s]                                  xinit@exp1   -23.4153   (estimated) in [-Inf, Inf]
 Outputs:                                                                                                                              
    y(1)   Angular velocity of motor(t) [rad/s]                                                                                        
 Parameters:                                                Value   Standard Deviation                                                 
    p1    Fv   : Viscous friction coefficient                0.00986347                0   (fixed) in [0, Inf]                         
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    p2    Fc   : Coulomb friction coefficient                  0.743026                0   (fixed) in [0, Inf]                         
    p3    Fcs  : Striebeck friction coefficient                 3.98629                0   (fixed) in [0, Inf]                         
    p4    alpha: Striebeck smoothness coefficient               3.24015                0   (fixed) in [0, Inf]                         
    p5    beta : Friction smoothness coefficient               0.799435                0   (fixed) in [0, Inf]                         
    p6    J    : Total moment of inertia                       0.032917                0   (fixed) in [0, Inf]                         
    p7    a_m  : Motor moment of inertia scale factor          0.266504      0.000286959   (estimated) in [0, Inf]                     
    p8    a_g  : Gear-box moment of inertia scale factor        0.64757      0.000190551   (estimated) in [0, Inf]                     
    p9    k_g1 : Gear-box stiffness parameter 1                 20.0779        0.0263496   (estimated) in [0, Inf]                     
    p10   k_g3 : Gear-box stiffness parameter 3                 24.1821         0.332387   (estimated) in [0, Inf]                     
    p11   d_g  : Gear-box damping parameter                   0.0305071      0.000282662   (estimated) in [0, Inf]                     
    p12   k_a  : Arm structure stiffness parameter              11.7487        0.0310942   (estimated) in [0, Inf]                     
    p13   d_a  : Arm structure damping parameter             0.00283208      8.05141e-05   (estimated) in [0, Inf]                     
                                                                                                                                       
Name: Robot arm                                                                                                                        
                                                                                                                                       
Status:                                                                                                                                
Termination condition: Change in parameters was less than the specified tolerance..                                                    
Number of iterations: 19, Number of function evaluations: 20                                                                           
                                                                                                                                       
Estimated using Solver: ode45; Search: lsqnonlin on time domain data "Robot arm".                                                      
Fit to estimation data: 85.21%                                                                                                         
FPE: 9.503, MSE: 9.494                                                                                                                 
More information in model's "Report" property.                                                                                         

Concluding Remarks

System identification techniques are widely used in robotics. "Good" robot models are vital for
modern robot control concepts, and are often considered as a necessity for meeting the continuously
increasing demand in speed and precision. The models are also crucial components in various robot
diagnosis applications, where the models are used for predicting problems related to wear and for
detecting the actual cause of a robot malfunction.
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Two Tank System: C MEX-File Modeling of Time-Continuous
SISO System

This example shows how to perform IDNLGREY modeling based on C MEX model files. It uses a
simple system where nonlinear state space modeling really pays off.

A Two Tank System

The objective is to model the liquid level of the lower tank of a laboratory scale two tank system,
schematically shown in Figure 1.

Figure 1: Schematic view of a two tank system.

Input-Output Data

We start the modeling job by loading the available input-output data, which was simulated using the
below IDNLGREY model structure, with noise added to the output. The twotankdata.mat file contains
one data set with 3000 input-output samples, generated using a sampling rate (Ts) of 0.2 seconds.
The input u(t) is the voltage [V] applied to a pump, which generates an inflow to the upper tank. A
rather small hole at the bottom of this upper tank yields an outflow that goes into the lower tank, and
the output y(t) of the two tank system is then the liquid level [m] of the lower tank. We create an
IDDATA object z to hold the tank data. For bookkeeping and documentation purposes we also specify
channel names and units. This step is optional.

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'twotankdata'));
z = iddata(y, u, 0.2, 'Name', 'Two tanks');
set(z, 'InputName', 'Pump voltage', 'InputUnit', 'V',             ...
       'OutputName', 'Lower tank water level', 'OutputUnit', 'm', ...
       'Tstart', 0, 'TimeUnit', 's');
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The input-output data that will be used for estimation are shown in a plot window.

figure('Name', [z.Name ': input-output data']);
plot(z);

Figure 2: Input-output data from a two tank system.

Modeling the Two Tank System

The next step is to specify a model structure describing the two tank system. To do this, let x1(t) and
x2(t) denote the water level in the upper and the lower tank, respectively. For each tank, fundamental
physics (mass balance) states that the change of water volume depends on the difference between in-
and outflow as (i = 1, 2):

  d/dt (Ai*xi(t)) = Qini(t) - Qouti(t)

where Ai [m^2] is the cross-sectional area of tank i and Qini(t) and Qouti(t) [m^3/s] are the inflow to
and the outflow from tank i at time t.

For the upper tank, the inflow is assumed to be proportional to the voltage applied to the pump, i.e.,
Qin1(t) = k*u(t). Since the outlet hole of the upper tank is small, Bernoulli's law can be applied,
stating that the outflow is proportional to the square root of the water level, or more precisely that:

  Qout1(t) = a1*sqrt(2*g*x1(t))

where a1 is the cross-sectional area of the outlet hole and g is the gravity constant. For the lower
tank, the inflow equals the outflow from the upper tank, i.e., Qin2(t) = Qout1(t), and the outflow is
given by Bernoulli's law:
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  Qout2(t) = a2*sqrt(2*g*x2(t))

where a2 is the cross-sectional area of the outlet hole.

Put altogether these facts lead to the following state-space structure:

  d/dt x1(t) = 1/A1*(k*u(t) - a1*sqrt(2*g*x1(t)))
  d/dt x2(t) = 1/A2*(a1*sqrt(2*g*x1(t)) - a2*sqrt(2*g*x2(t)))
        y(t) = x2(t)

Two Tank C MEX Model File

These equations are next put into a C MEX-file with 6 parameters (or constants), A1, k, a1, g, A2 and
a2. The C MEX-file is normally a bit more involved than the corresponding file written using MATLAB
language, but C MEX modeling generally gives a distinct advantage in terms of execution speed,
especially for more complex models. A template C MEX-file is provided (see below) to help the user to
structure the code. For most applications, it suffices to define the number of outputs and to enter the
code lines that describe dx and y into this template. An IDNLGREY C MEX-file should always be
structured to return two outputs:

  dx: the right-hand side(s) of the state-space equation(s)
   y: the right-hand side(s) of the output equation(s)

and it should take 3+Npo(+1) input arguments specified as follows:

   t: the current time
   x: the state vector at time t ([] for static models)
   u: the input vector at time t ([] for time-series models)
   p1, p2, ..., pNpo: the individual parameters (which can be real
      scalars, column vectors or 2-dimensional matrices); Npo is here
      the number of parameter objects, which for models with scalar
      parameters coincide with the number of parameters Np
   FileArgument: optional inputs to the model file

In our two tank system there are 6 scalar parameters and hence the number of input arguments to
the C MEX modeling file should be 3+Npo = 3+6 = 9. The trailing 10:th argument can here be
omitted as no optional FileArgument is employed in this application.

Writing a C MEX modeling file is normally done in four steps:

  1. Inclusion of C-libraries and definitions of the number of outputs.
  2. Writing the function computing the right-hand side(s) of the state
     equation(s), compute_dx.
  3. Writing the function computing the right-hand side(s) of the output
     equation(s), compute_y.
  4. Writing the main interface function, which includes basic error
     checking functionality, code for creating and handling input and
     output arguments, and calls to compute_dx and compute_y.

Let us view the C MEX source file (except for some comments) for the two
tank system and based on this discuss these four items in some more
detail.
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Figure 3: C MEX source code for the two tank system.

1. Two C-libraries mex.h and math.h are normally included to provide access to a number of MEX-
related as well as mathematical functions. The number of outputs is also declared per modeling file
using a standard C-define:

  /* Include libraries. */
  #include "mex.h"
  #include "math.h"

  /* Specify the number of outputs here. */
  #define NY 1

2-3. Next in the file we find the functions for updating the states, compute_dx, and the output,
compute_y. Both these functions hold argument lists, with the output to be computed (dx or y) at
position 1, after which follows all variables and parameters required to compute the right-hand
side(s) of the state and the output equations, respectively.

The first step in these functions is to unpack the model parameters that will be used in the
subsequent equations. Any valid variable name (except for those used in the input argument list) can
be used to provide physically meaningful names of the individual parameters.
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As is the case in C, the first element of an array is stored at position 0. Hence, dx[0] in C corresponds
to dx(1) in MATLAB® (or just dx in case it is a scalar), the input u[0] corresponds to u (or u(1)), the
parameter A1[0] corresponds to A1, and so on.

The two tank model file involves square root computations. This is enabled through the inclusion of
the mathematical C library math.h. The math library realizes the most common trigonometric
functions (sin, cos, tan, asin, acos, atan, etc.), exponential (exp) and logarithms (log, log10), square
root (sqrt) and power of functions (pow), and absolute value computations (fabs). The math.h library
must be included whenever any math.h function is used; otherwise it can be omitted. See "Tutorials
on Nonlinear Grey Box Model Identification: Creating IDNLGREY Model Files" for further details
about the C math library.

4. The main interface function should almost always have the same content and for most applications
no modification whatsoever is needed. In principle, the only part that might be considered for
changes is where the calls to compute_dx and compute_y are made. For static systems, one can leave
out the call to compute_dx. In other situations, it might be desired to only pass the variables and
parameters referred in the state and output equations. For example, in the output equation of the two
tank system, where only one state is used, one could very well shorten the input argument list to:

  void compute_y(double *y, double *x)

and call compute_y as:

  compute_y(y, x);

The input argument lists of compute_dx and compute_y might also be extended to include further
variables inferred in the interface function, like the number of states and the number of parameters.

Once the model source file has been completed it must be compiled, which can be done from the
MATLAB command prompt using the mex command; see "help mex". (This step is omitted here.)

When developing model specific C MEX-files it is often useful to start the work by copying the
IDNLGREY C MEX template file. This template contains skeleton source code as well as detailed
instructions on how to customize the code for a particular application. The location of the template
file is displayed by typing the following at the MATLAB command prompt.

  fullfile(matlabroot, 'toolbox', 'ident', 'nlident', 'IDNLGREY_MODEL_TEMPLATE.c')

Also see "Creating IDNLGREY Model Files" example for more details on IDNLGREY C MEX model
files.

Creating a Two Tank IDNLGREY Model Object

The next step is to create an IDNLGREY object describing the two tank system. For convenience we
also set some bookkeeping information about the inputs and outputs (name and units).

FileName      = 'twotanks_c';          % File describing the model structure.
Order         = [1 1 2];               % Model orders [ny nu nx].
Parameters    = {0.5; 0.0035; 0.019; ...
                 9.81; 0.25; 0.016};   % Initial parameters.
InitialStates = [0; 0.1];              % Initial value of initial states.
Ts            = 0;                     % Time-continuous system.
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts, ...
                'Name', 'Two tanks');
set(nlgr, 'InputName', 'Pump voltage', 'InputUnit', 'V',             ...
          'OutputName', 'Lower tank water level', 'OutputUnit', 'm', ...                          ...
          'TimeUnit', 's');
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We continue to add information about the names and the units of the states and the model
parameters via the commands SETINIT and SETPAR. Furthermore, both states x1(t) and x2(t) are
tank levels that cannot be negative, and thus we also specify that x1(0) and x2(0) >= 0 via the
'Minimum' property. In fact, we also know that all model parameters ought to be strictly positive. We
therefore set the 'Minimum' property of all parameters to some small positive value (eps(0)). These
settings imply that constraint estimation will be carried out in the upcoming estimation step (i.e., the
estimated model will be a model such that all entered constraints are honored).

nlgr = setinit(nlgr, 'Name', {'Upper tank water level' 'Lower tank water level'});
nlgr = setinit(nlgr, 'Unit', {'m' 'm'});
nlgr = setinit(nlgr, 'Minimum', {0 0});   % Positive levels!
nlgr = setpar(nlgr, 'Name', {'Upper tank area'        ...
                      'Pump constant'          ...
                      'Upper tank outlet area' ...
                      'Gravity constant'       ...
                      'Lower tank area'        ...
                      'Lower tank outlet area'});
nlgr = setpar(nlgr, 'Unit', {'m^2' 'm^3/(s*V)' 'm^2'  'm/(s^2)' 'm^2' 'm^2'});
nlgr = setpar(nlgr, 'Minimum', num2cell(eps(0)*ones(6,1)));   % All parameters > 0!

The cross-sectional areas (A1 and A2) of the two tanks can rather accurately be determined. We
therefore treat these and g as constants and verify that the 'Fixed' field is properly set for all 6
parameters through the command GETPAR. All in all, this means that 3 of the model parameters will
be estimated.

nlgr.Parameters(1).Fixed = true;
nlgr.Parameters(4).Fixed = true;
nlgr.Parameters(5).Fixed = true;
getpar(nlgr, 'Fixed')

ans =

  6x1 cell array

    {[1]}
    {[0]}
    {[0]}
    {[1]}
    {[1]}
    {[0]}

Performance of the Initial Two Tank Model

Before estimating the free parameters k, a1 and a2 we simulate the system using the initial
parameter values. We use the default differential equation solver (a Runge-Kutta 45 solver with
adaptive step length adjustment) and set the absolute and relative error tolerances to rather small
values (1e-6 and 1e-5, respectively). Notice that the COMPARE command, when called with two input
arguments, as default will estimate all initial state(s) regardless of whether any initial state has been
defined to be 'Fixed'. In order to only estimate the free initial state(s), call COMPARE with a third and
a fourth input argument as follows: compare(z, nlgr, 'init', 'm'); as both initial states of the tank model
by default are 'Fixed', no initial state estimation will be performed by this command.

nlgr.SimulationOptions.AbsTol = 1e-6;
nlgr.SimulationOptions.RelTol = 1e-5;

13 ODE Parameter Estimation (Grey-Box Modeling)

13-148



compare(z, nlgr);

Figure 4: Comparison between true output and the simulated output of the initial two tank model.

The simulated and true outputs are shown in a plot window, and as can be seen the fit is not so
impressive.

Parameter Estimation

In order to improve the fit, the 3 free parameters are next estimated using NLGREYEST. (Since, by
default, the 'Fixed' fields of all initial states are false, no estimation of the initial states will be done in
this call to the estimator.)

nlgr = nlgreyest(z, nlgr, nlgreyestOptions('Display', 'on'));
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Performance of the Estimated Two Tank Model

To investigate the performance of the estimated model, a simulation of it is performed (the initial
states are here reestimated).

compare(z, nlgr);
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Figure 5: Comparison between true output and the simulated output of the estimated two tank
model.

The agreement between the true and the simulated outputs is quite good. A remaining question is,
however, if the two tank system can be accurately described using a simpler and linear model
structure. To answer this, let us try to fit the data to some standard linear model structures, and then
use COMPARE to see how well these models capture the dynamics of the tanks.

nk = delayest(z);
arx22 = arx(z, [2 2 nk]);   % Second order linear ARX model.
arx33 = arx(z, [3 3 nk]);   % Third order linear ARX model.
arx44 = arx(z, [4 4 nk]);   % Fourth order linear ARX model.
oe22  = oe(z,  [2 2 nk]);   % Second order linear OE model.
oe33  = oe(z,  [3 3 nk]);   % Third order linear OE model.
oe44  = oe(z,  [4 4 nk]);   % Fourth order linear OE model.
sslin = ssest(z);           % State-space model (order determined automatically)
compare(z, nlgr, 'b', arx22, 'm-', arx33, 'm:', arx44, 'm--', ...
        oe22, 'g-', oe33, 'g:', oe44, 'g--', sslin, 'r-');
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Figure 6: Comparison between true output and the simulated outputs of a number of estimated two
tank models.

The comparison plot clearly reveals that the linear models cannot pick up all dynamics of the two
tank system. The estimated nonlinear IDNLGREY model on the other hand shows an excellent fit to
the true output. In addition, the IDNLGREY model parameters are also well in line with those used to
generate the true output. In the following display computations, we are using the command
GETPVEC, which returns a parameter vector created from the structure array holding the model
parameters of an IDNLGREY object.

disp('   True      Estimated parameter vector');
ptrue = [0.5; 0.005; 0.02; 9.81; 0.25; 0.015];
fprintf('   %1.4f    %1.4f\n', [ptrue'; getpvec(nlgr)']);

   True      Estimated parameter vector
   0.5000    0.5000
   0.0050    0.0049
   0.0200    0.0200
   9.8100    9.8100
   0.2500    0.2500
   0.0150    0.0147

The prediction errors obtained using PE are small and look very much like random noise.

figure;
pe(z, nlgr);
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Figure 7: Prediction errors obtained for the estimated IDNLGREY two tank model.

Let us also investigate what happens if the input voltage is increased from 5 to 6, 7, 8, 9 and 10 V in a
step-wise manner. We do this by calling STEP with different specified step amplitudes starting from a
fixed offset of 5 Volts. The step response configuration is facilitated by a dedicated option-set created
by stepDataOptions:

figure('Name', [nlgr.Name ': step responses']);
t = (-20:0.1:80)';
Opt = stepDataOptions('InputOffset',5,'StepAmplitude',6);
step(nlgr, t, 'b', Opt);
hold on

Opt.StepAmplitude = 7;  step(nlgr, t, 'g', Opt);
Opt.StepAmplitude = 8;  step(nlgr, t, 'r', Opt);
Opt.StepAmplitude = 9;  step(nlgr, t, 'm', Opt);
Opt.StepAmplitude = 10; step(nlgr, t, 'k', Opt);

grid on;
legend('5 -> 6 V', '5 -> 7 V', '5 -> 8 V', '5 -> 9 V', '5 -> 10 V', ...
       'Location', 'Best');
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Figure 8: Step responses obtained for the estimated IDNLGREY two tank model.

By finally using the PRESENT command, we get summary information about the estimated model:

present(nlgr);

                                                                                             
nlgr =                                                                                       
Continuous-time nonlinear grey-box model defined by 'twotanks_c' (MEX-file):                 
                                                                                             
   dx/dt = F(t, u(t), x(t), p1, ..., p6)                                                     
    y(t) = H(t, u(t), x(t), p1, ..., p6) + e(t)                                              
                                                                                             
 with 1 input(s), 2 state(s), 1 output(s), and 3 free parameter(s) (out of 6).               
                                                                                             
 Inputs:                                                                                     
    u(1)  Pump voltage(t) [V]                                                                
 States:                                Initial value                                        
    x(1)  Upper tank water level(t) [m]   xinit@exp1     0   (fixed) in [0, Inf]             
    x(2)  Lower tank water level(t) [m]   xinit@exp1   0.1   (fixed) in [0, Inf]             
 Outputs:                                                                                    
    y(1)  Lower tank water level(t) [m]                                                      
 Parameters:                             Value   Standard Deviation                          
    p1   Upper tank area [m^2]                   0.5              0   (fixed) in ]0, Inf]    
    p2   Pump constant [m^3/(s*V)]        0.00488584      0.0259032   (estimated) in ]0, Inf]
    p3   Upper tank outlet area [m^2]      0.0199719      0.0064682   (estimated) in ]0, Inf]
    p4   Gravity constant [m/(s^2)]             9.81              0   (fixed) in ]0, Inf]    
    p5   Lower tank area [m^2]                  0.25              0   (fixed) in ]0, Inf]    
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    p6   Lower tank outlet area [m^2]      0.0146546      0.0776058   (estimated) in ]0, Inf]
                                                                                             
Name: Two tanks                                                                              
                                                                                             
Status:                                                                                      
Termination condition: Change in cost was less than the specified tolerance..                
Number of iterations: 8, Number of function evaluations: 9                                   
                                                                                             
Estimated using Solver: ode45; Search: lsqnonlin on time domain data "Two tanks".            
Fit to estimation data: 97.35%                                                               
FPE: 2.419e-05, MSE: 2.414e-05                                                               
More information in model's "Report" property.                                               

Conclusions

In this example we have shown:

  1. how to use C MEX-files for IDNLGREY modeling, and
  2. provided a rather simple example where nonlinear state-space
     modeling shows good potential

Additional Information

For more information on identification of dynamic systems with System Identification Toolbox™ visit
the System Identification Toolbox product information page.
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Three Ecological Population Systems: MATLAB and C MEX-File
Modeling of Time-Series

This example shows how to create nonlinear grey box time series models. Time series models are
models not using any measured inputs. Three idealized ecological systems are studied where two
species either:

• compete for the same food, or:
• are in a predator-prey situation

The example shows modeling based on both MATLAB and C MEX-files.

Ecological Population Systems

In all three population systems investigated we are interesting in how the population of two species
vary with time. To model this, let x1(t) and x2(t) denote the number of individuals of the respective
species at time t. Let l1 and l2 denote the birth-rate associated with x1(t) and x2(t), respectively, both
assumed to be constants over time. The death-rates of the species depend both on the availability of
food and, if predators are present, on the risk of being eaten. Quite often (and in general), the death-
rate for species i (i = 1 or 2) can be written a ui(x1(t), x2(t)), where ui(.) is some appropriate function.
In practice, this means that ui(x1(t), x2(t))*xi(t) animals of species i dies every time unit. The net
effect of these statements can be summarized in a state space type of model structure: (a time-
series):

d

-- x1(t) = l1*x1(t) - u1(x1(t), x2(t))*x1(t)

dt

d

-- x2(t) = l2*x2(t) - u2(x1(t), x2(t))*x2(t)

dt

It is here natural to choose the two states as outputs, i.e., we let y1(t) = x1(t) and y2(t) = x2(t).

A.1. Two Species that Compete for the Same Food

In case two species compete for the same food, then it is the overall population of the species that
controls the availability of food, and in turn of their death-rates. A simple yet common approach is to
assume that the death-rate can be written as:

ui(x1(t), x2(t)) = gi + di*(x1(t) + x2(t))

for both species (i = 1 or 2), where gi and di are unknown parameters. Altogether this gives the state
space structure:

d

-- x1(t) = (l1-g1)*x1(t) - d1*(x1(t)+x2(t))*x1(t)

dt
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d

-- x2(t) = (l2-g2)*x2(t) - d2*(x1(t)+x2(t))*x2(t)

dt

An immediate problem with this structure is that l1, g1, l2, and g2 cannot be identified separately. We
can only hope to identify p1 = l1-g1 and p3 = l2-g2. By also letting p2 = d1 and p4 = d2, one gets the
reparameterized model structure:

d

-- x1(t) = p1*x1(t) - p2*(x1(t)+x2(t))*x1(t)

dt

d

-- x2(t) = p3*x2(t) - p4*(x1(t)+x2(t))*x2(t)

dt

y1(t) = x1(t)

y2(t) = x2(t)

In this first population example we resort to MATLAB file modeling. The equations above are then
entered into a MATLAB file, preys_m.m, with the following content.

function [dx, y] = preys_m(t, x, u, p1, p2, p3, p4, varargin)

%PREYS_M Two species that compete for the same food.

% Output equations.

y = [x(1); ... % Prey species 1.

x(2) ... % Prey species 2.

];

% State equations.

dx = [p1*x(1)-p2*(x(1)+x(2))*x(1); ... % Prey species 1.

p3*x(2)-p4*(x(1)+x(2))*x(2) ... % Prey species 2.

];

The MATLAB file, along with an initial parameter vector, an adequate initial state, and some
administrative information are next fed as inputs to the IDNLGREY object constructor. Notice that the
initial values of both the parameters and the initial states are specified as structure arrays with Npo
(number of parameter objects = number of parameters if all parameters are scalars) and Nx (number
of states) elements, respectively. Through these structure arrays it is possible to completely assign
non-default property values (of 'Name', 'Unit', 'Value, 'Minimum', 'Maximum', and 'Fixed') to each
parameter and initial state. Here we have assigned the 'Minimum' value of each initial state to zero
(populations are positive!), and also specified that both initial states are to be estimated by default.
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FileName      = 'preys_m';              % File describing the model structure.
Order         = [2 0 2];                % Model orders [ny nu nx].
Parameters    = struct('Name',    {'Survival factor, species 1' 'Death factor, species 1'   ...
   'Survival factor, species 2' 'Death factor, species 2'}, ...
   'Unit',    {'1/year' '1/year' '1/year' '1/year'},                    ...
   'Value',   {1.8 0.8 1.2 0.8},                                        ...
   'Minimum', {-Inf -Inf -Inf -Inf},                                    ...
   'Maximum', {Inf Inf Inf Inf},                                        ...
   'Fixed',   {false false false false});   % Estimate all 4 parameters.
InitialStates = struct('Name',    {'Population, species 1' 'Population, species 2'}, ...
   'Unit',    {'Size (in thousands)' 'Size (in thousands)'},     ...
   'Value',   {0.2 1.8},                                         ...
   'Minimum', {0 0},                                             ...
   'Maximum', {Inf Inf},                                         ...
   'Fixed',   {false false});   % Estimate both initial states.
Ts            = 0;                      % Time-continuous system.
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts,                  ...
   'Name', 'Two species competing for the same food',               ...
   'OutputName', {'Population, species 1' 'Population, species 2'}, ...
   'OutputUnit', {'Size (in thousands)' 'Size (in thousands)'},     ...
   'TimeUnit', 'year');

The PRESENT command can be used to view information about the initial model:

present(nlgr);

                                                                                              
nlgr =                                                                                        
Continuous-time nonlinear grey-box model defined by 'preys_m' (MATLAB file):                  
                                                                                              
   dx/dt = F(t, x(t), p1, ..., p4)                                                            
    y(t) = H(t, x(t), p1, ..., p4) + e(t)                                                     
                                                                                              
 with 0 input(s), 2 state(s), 2 output(s), and 4 free parameter(s) (out of 4).                
                                                                                              
 States:                                          Initial value                               
    x(1)  Population, species 1(t) [Size (in t..]   xinit@exp1   0.2   (estimated) in [0, Inf]
    x(2)  Population, species 2(t) [Size (in t..]   xinit@exp1   1.8   (estimated) in [0, Inf]
 Outputs:                                                                                     
    y(1)  Population, species 1(t) [Size (in thousands)]                                      
    y(2)  Population, species 2(t) [Size (in thousands)]                                      
 Parameters:                                 Value                                            
    p1   Survival factor, species 1 [1/year]     1.8      (estimated) in [-Inf, Inf]          
    p2   Death factor, species 1 [1/year]        0.8      (estimated) in [-Inf, Inf]          
    p3   Survival factor, species 2 [1/year]     1.2      (estimated) in [-Inf, Inf]          
    p4   Death factor, species 2 [1/year]        0.8      (estimated) in [-Inf, Inf]          
                                                                                              
Name: Two species competing for the same food                                                 
                                                                                              
Status:                                                                                       
Created by direct construction or transformation. Not estimated.                              
More information in model's "Report" property.                                                

A.2. Input-Output Data

We next load (simulated, though noise corrupted) data and create an IDDATA object describing one
particular situation where two species compete for the same food. This data set contains 201 data
samples covering 20 years of evolution.
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load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'preydata'));
z = iddata(y, [], 0.1, 'Name', 'Two species competing for the same food');
set(z, 'OutputName', {'Population, species 1', 'Population, species 2'}, ...
   'Tstart', 0, 'TimeUnit', 'Year');

A.3. Performance of the Initial Two Species Model

A simulation with the initial model clearly reveals that it cannot cope with the true population
dynamics. See the plot figure. For a time-series type of IDNLGREY model notice that the model
output is determined by the initial state.

compare(z, nlgr, 1);

Figure 1: Comparison between true outputs and the simulated outputs of the initial two species
model.

A.4. Parameter Estimation

In order to overcome the rather poor performance of the initial model we proceed to estimate the 4
unknown parameters and the 2 initial states using NLGREYEST. Specify estimation options using
NLGREYESTOPTIONS; in this case 'Display' is set to 'on', which means that estimation progress
information is displayed in the progress window. You can use NLGREYESTOPTIONS to specify the
basic algorithm properties such as 'GradientOptions', 'SearchMethod', 'MaxIterations', 'Tolerance',
'Display'.

opt = nlgreyestOptions;
opt.Display = 'on';
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opt.SearchOptions.MaxIterations = 50;
nlgr = nlgreyest(z, nlgr, opt);

A.5. Performance of the Estimated Two Species Model

The estimated values of the parameters and the initial states are well in line with those used to
generate the true output data:

disp('   True      Estimated parameter vector');

   True      Estimated parameter vector

ptrue = [2; 1; 1; 1];
fprintf('   %6.3f    %6.3f\n', [ptrue'; getpvec(nlgr)']);

    2.000     2.004
    1.000     1.002
    1.000     1.018
    1.000     1.010

disp(' ');

 

disp('   True      Estimated initial states');

   True      Estimated initial states

x0true = [0.1; 2];
fprintf('   %6.3f    %6.3f\n', [x0true'; cell2mat(getinit(nlgr, 'Value'))']);

    0.100     0.101
    2.000     1.989

To further evaluate the quality of the model (and to illustrate the improvement compared to the initial
model) we also simulate the estimated model. The simulated outputs are compared to the true
outputs in a plot window. As can be seen, the estimated model is quite good.

compare(z, nlgr, 1);
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Figure 2: Comparison between true outputs and the simulated outputs of the estimated two species
model.

PRESENT provides further information about the estimated model, e.g., about parameter
uncertainties, and other estimation related quantities, like the loss function and Akaike's FPE (Final
Prediction Error) measure.

present(nlgr);

                                                                                                               
nlgr =                                                                                                         
Continuous-time nonlinear grey-box model defined by 'preys_m' (MATLAB file):                                   
                                                                                                               
   dx/dt = F(t, x(t), p1, ..., p4)                                                                             
    y(t) = H(t, x(t), p1, ..., p4) + e(t)                                                                      
                                                                                                               
 with 0 input(s), 2 state(s), 2 output(s), and 4 free parameter(s) (out of 4).                                 
                                                                                                               
 States:                                          Initial value                                                
    x(1)  Population, species 1(t) [Size (in t..]   xinit@exp1   0.100729   (estimated) in [0, Inf]            
    x(2)  Population, species 2(t) [Size (in t..]   xinit@exp1    1.98855   (estimated) in [0, Inf]            
 Outputs:                                                                                                      
    y(1)  Population, species 1(t) [Size (in thousands)]                                                       
    y(2)  Population, species 2(t) [Size (in thousands)]                                                       
 Parameters:                                    ValueStandard Deviation                                        
    p1   Survival factor, species 1 [1/year]     2.00429      0.00971109   (estimated) in [-Inf, Inf]          
    p2   Death factor, species 1 [1/year]        1.00235      0.00501783   (estimated) in [-Inf, Inf]          
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    p3   Survival factor, species 2 [1/year]     1.01779       0.0229598   (estimated) in [-Inf, Inf]          
    p4   Death factor, species 2 [1/year]         1.0102       0.0163506   (estimated) in [-Inf, Inf]          
                                                                                                               
Name: Two species competing for the same food                                                                  
                                                                                                               
Status:                                                                                                        
Termination condition: Near (local) minimum, (norm(g) < tol)..                                                 
Number of iterations: 5, Number of function evaluations: 6                                                     
                                                                                                               
Estimated using Solver: ode45; Search: lsqnonlin on time domain data "Two species competing for the same food".
Fit to estimation data: [98.42;97.92]%                                                                         
FPE: 7.747e-09, MSE: 0.0001743                                                                                 
More information in model's "Report" property.                                                                 

B.1. A Classical Predator-Prey System

Assume now that the first species lives on the second one. The availability of food for species 1 is then
proportional to x2(t) (the number of individuals of species 2), which means that the death-rate of
species 1 decreases when x2(t) increases. This fact is captured by the simple expression:

u1(x1(t), x2(t)) = g1 - a1*x2(t)

where g1 and a1 are unknown parameters. Similarly, the death-rate of species 2 will increase when
the number of individuals of the first species increases, e.g., according to:

u2(x1(t), x2(t)) = g2 + a2*x1(t)

where g2 and a2 are two more unknown parameters. Using the linear birth-rate assumed above one
gets the state space structure:

d

-- x1(t) = (l1-g1)*x1(t) + a1*x2(t)*x1(t)

dt

d

-- x2(t) = (l2-g2)*x2(t) - a2*x1(t)*x2(t)

dt

As in the previous population example, it is also here impossible to uniquely identify the six individual
parameters. With the same kind of reparameterization as in the above case, i.e., p1 = l1-g1, p2 = a1,
p3 = l2-g2, and p4 = a2, the following model structure is obtained:

d

-- x1(t) = p1*x1(t) + p2*x2(t)*x1(t)

dt

d

-- x2(t) = p3*x2(t) - p4*x1(t)*x2(t)

dt
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y1(t) = x1(t)

y2(t) = x2(t)

which is better suited from an estimation point of view.

This time we enter this information into a C MEX-file named predprey1_c.c. The model file is
structured as the standard IDNLGREY C MEX-file (see example titled "Creating IDNLGREY Model
Files" or idnlgreydemo2.m), with the state and output update functions, compute_dx and compute_y,
as follows.

void compute_dx(double *dx, double t, double *x, double **p,

const mxArray *auxvar)

{

/* Retrieve model parameters. */

double *p1, *p2, *p3, *p4;

p1 = p[0]; /* Survival factor, predators. */

p2 = p[1]; /* Death factor, predators. */

p3 = p[2]; /* Survival factor, preys. */

p4 = p[3]; /* Death factor, preys. */

/* x[0]: Predator species. */

/* x[1]: Prey species. */

dx[0] = p1[0]*x[0]+p2[0]*x[1]*x[0];

dx[1] = p3[0]*x[1]-p4[0]*x[0]*x[1];

}

/* Output equations. */

void compute_y(double *y, double t, double *x, double **p,

const mxArray *auxvar)

{

/* y[0]: Predator species. */

/* y[1]: Prey species. */

y[0] = x[0];

y[1] = x[1];

}
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Since the model is of time-series type, neither compute_dx nor compute_y include u in the input
argument list. In fact, the main interface function of predprey1_c.c, does not even declare u even
though an empty u ([]) is always passed to predprey1_c by the IDNLGREY methods.

The compiled C MEX-file, along with an initial parameter vector, an adequate initial state, and some
administrative information are next fed as input arguments to the IDNLGREY object constructor:

FileName      = 'predprey1_c';          % File describing the model structure.
Order         = [2 0 2];                % Model orders [ny nu nx].
Parameters    = struct('Name',    {'Survival factor, predators' 'Death factor, predators' ...
   'Survival factor, preys' 'Death factor, preys'},       ...
   'Unit',    {'1/year' '1/year' '1/year' '1/year'},                  ...
   'Value',   {-1.1 0.9 1.1 0.9},                                     ...
   'Minimum', {-Inf -Inf -Inf -Inf},                                  ...
   'Maximum', {Inf Inf Inf Inf},                                      ...
   'Fixed',   {false false false false});   % Estimate all 4 parameters.
InitialStates = struct('Name',    {'Population, predators' 'Population, preys'}, ...
   'Unit',    {'Size (in thousands)' 'Size (in thousands)'}, ...
   'Value',   {1.8 1.8},                                     ...
   'Minimum', {0 0},                                         ...
   'Maximum', {Inf Inf},                                     ...
   'Fixed',   {false false});   % Estimate both initial states.
Ts            = 0;                      % Time-continuous system.
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts,               ...
   'Name', 'Classical 1 predator - 1 prey system',               ...
   'OutputName', {'Population, predators', 'Population, preys'}, ...
   'OutputUnit', {'Size (in thousands)' 'Size (in thousands)'},  ...
   'TimeUnit', 'year');

The predator prey model is next textually viewed via the PRESENT command.

present(nlgr);

                                                                                              
nlgr =                                                                                        
Continuous-time nonlinear grey-box model defined by 'predprey1_c' (MEX-file):                 
                                                                                              
   dx/dt = F(t, x(t), p1, ..., p4)                                                            
    y(t) = H(t, x(t), p1, ..., p4) + e(t)                                                     
                                                                                              
 with 0 input(s), 2 state(s), 2 output(s), and 4 free parameter(s) (out of 4).                
                                                                                              
 States:                                          Initial value                               
    x(1)  Population, predators(t) [Size (in t..]   xinit@exp1   1.8   (estimated) in [0, Inf]
    x(2)  Population, preys(t) [Size (in t..]       xinit@exp1   1.8   (estimated) in [0, Inf]
 Outputs:                                                                                     
    y(1)  Population, predators(t) [Size (in thousands)]                                      
    y(2)  Population, preys(t) [Size (in thousands)]                                          
 Parameters:                                 Value                                            
    p1   Survival factor, predators [1/year]     -1.1      (estimated) in [-Inf, Inf]         
    p2   Death factor, predators [1/year]         0.9      (estimated) in [-Inf, Inf]         
    p3   Survival factor, preys [1/year]          1.1      (estimated) in [-Inf, Inf]         
    p4   Death factor, preys [1/year]             0.9      (estimated) in [-Inf, Inf]         
                                                                                              
Name: Classical 1 predator - 1 prey system                                                    
                                                                                              
Status:                                                                                       
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Created by direct construction or transformation. Not estimated.                              
More information in model's "Report" property.                                                

B.2. Input-Output Data

Our next step is to load (simulated, though noise corrupted) data and create an IDDATA object
describing this particular predator-prey situation. This data set also contains 201 data samples
covering 20 years of evolution.

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'predprey1data'));
z = iddata(y, [], 0.1, 'Name', 'Classical 1 predator - 1 prey system');
set(z, 'OutputName', {'Population, predators', 'Population, preys'}, ...
   'Tstart', 0, 'TimeUnit', 'Year');

B.3. Performance of the Initial Classical Predator-Prey Model

A simulation with the initial model indicates that it cannot accurately cope with the true population
dynamics. See the plot window.

compare(z, nlgr, 1);

Figure 3: Comparison between true outputs and the simulated outputs of the initial classical
predator-prey model.

B.4. Parameter Estimation

To improve the performance of the initial model we continue to estimate the 4 unknown parameters
and the 2 initial states using NLGREYEST.
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nlgr = nlgreyest(z, nlgr, nlgreyestOptions('Display', 'on'));

B.5. Performance of the Estimated Classical Predator-Prey Model

The estimated values of the parameters and initial states are very close to those that were used to
generate the true output data:

disp('   True      Estimated parameter vector');

   True      Estimated parameter vector

ptrue = [-1; 1; 1; 1];
fprintf('   %6.3f    %6.3f\n', [ptrue'; getpvec(nlgr)']);

   -1.000    -1.000
    1.000     1.000
    1.000     1.000
    1.000     0.999

disp(' ');

 

disp('   True      Estimated initial states');

   True      Estimated initial states

x0true = [2; 2];
fprintf('   %6.3f    %6.3f\n', [x0true'; cell2mat(getinit(nlgr, 'Value'))']);

    2.000     2.002
    2.000     2.000

To further evaluate the model's quality (and to illustrate the improvement compared to the initial
model) we also simulate the estimated model. The simulated outputs are compared to the true
outputs in a plot window. As can be seen again, the estimated model is quite good.

compare(z, nlgr, 1);
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Figure 4: Comparison between true outputs and the simulated outputs of the estimated classical
predator-prey model.

As expected, the prediction errors returned by PE are small and of a random nature.

pe(z, nlgr);
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Figure 5: Prediction errors obtained with the estimated IDNLGREY classical predator-prey model.

C.1. A Predator-Prey System with Prey Crowding

The last population study is also devoted to a 1 predator and 1 prey system, with the difference being
that we here introduce a term -p5*x2(t)^2 representing retardation of prey growth due to crowding.
The reparameterized model structure from the previous example is then just complemented with this
crowding term:

d

-- x1(t) = p1*x1(t) + p2*x2(t)*x1(t)

dt

d

-- x2(t) = p3*x2(t) - p4*x1(t)*x2(t) - p5*x2(t)^2

dt

y1(t) = x1(t)

y2(t) = x2(t)

The interpretation of these equations is essentially the same as above, except that in the absence of
predators the growth of the prey population will be kept at bay.
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The new modeling situation is reflected by a C MEX-file called predprey2_c.c, which is almost the
same as predprey1_c.c. Aside from changes related to the number of model parameters (5 instead of
4), the main difference lies in the state update function compute_dx:

/* State equations. */

void compute_dx(double *dx, double t, double *x, double **p,

const mxArray *auxvar)

{

/* Retrieve model parameters. */

double *p1, *p2, *p3, *p4, *p5;

p1 = p[0]; /* Survival factor, predators. */

p2 = p[1]; /* Death factor, predators. */

p3 = p[2]; /* Survival factor, preys. */

p4 = p[3]; /* Death factor, preys. */

p5 = p[4]; /* Crowding factor, preys. */

/* x[0]: Predator species. */

/* x[1]: Prey species. */

dx[0] = p1[0]*x[0]+p2[0]*x[1]*x[0];

dx[1] = p3[0]*x[1]-p4[0]*x[0]*x[1]-p5[0]*pow(x[1],2);

}

Notice that the added retardation term is computed as p5[0]*pow(x[1],2). The power of function
pow(., .) is defined in the C library math.h, which must be included at the top of the model file
through the statement #include "math.h" (this is not necessary in predprey1_c.c as it only holds
standard C mathematics).

The compiled C MEX-file, along with an initial parameter vector, an adequate initial state, and some
administrative information are next fed as input arguments to the IDNLGREY object constructor:

FileName      = 'predprey2_c';          % File describing the model structure.
Order         = [2 0 2];                % Model orders [ny nu nx].
Parameters    = struct('Name',    {'Survival factor, predators' 'Death factor, predators' ...
   'Survival factor, preys' 'Death factor, preys'         ...
   'Crowding factor, preys'},                             ...
   'Unit',    {'1/year' '1/year' '1/year' '1/year' '1/year'},         ...
   'Value',   {-1.1 0.9 1.1 0.9 0.2},                                 ...
   'Minimum', {-Inf -Inf -Inf -Inf -Inf},                             ...
   'Maximum', {Inf Inf Inf Inf Inf},                                  ...
   'Fixed',   {false false false false false});   % Estimate all 5 parameters.
InitialStates = struct('Name',    {'Population, predators' 'Population, preys'}, ...
   'Unit',    {'Size (in thousands)' 'Size (in thousands)'}, ...
   'Value',   {1.8 1.8},                                     ...
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   'Minimum', {0 0},                                         ...
   'Maximum', {Inf Inf},                                     ...
   'Fixed',   {false false});   % Estimate both initial states.
Ts            = 0;                      % Time-continuous system.
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts,               ...
   'Name', '1 predator - 1 prey system exhibiting crowding',     ...
   'OutputName', {'Population, predators', 'Population, preys'}, ...
   'OutputUnit', {'Size (in thousands)' 'Size (in thousands)'},  ...
   'TimeUnit', 'year');

By typing the name of the model object (nlgr) basic information about the model is displayed in the
command window. Note that, as before, present(nlgr) provides a more comprehensive summary of the
model.

nlgr

nlgr =
Continuous-time nonlinear grey-box model defined by 'predprey2_c' (MEX-file):

   dx/dt = F(t, x(t), p1, ..., p5)
    y(t) = H(t, x(t), p1, ..., p5) + e(t)

 with 0 input(s), 2 state(s), 2 output(s), and 5 free parameter(s) (out of 5).

Name: 1 predator - 1 prey system exhibiting crowding

Status:                                                         
Created by direct construction or transformation. Not estimated.

C.2. Input-Output Data

Next we load (simulated, though noise corrupted) data and create an IDDATA object describing this
crowding type of predator-prey situation. This data set contains 201 data samples covering 20 years
of evolution.

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'predprey2data'));
z = iddata(y, [], 0.1, 'Name', '1 predator - 1 prey system exhibiting crowding');
set(z, 'OutputName', {'Population, predators', 'Population, preys'}, ...
   'Tstart', 0, 'TimeUnit', 'Year');

C.3. Performance of the Initial Predator-Prey Model with Prey Crowding

A simulation with the initial model clearly shows that it cannot cope with the true population
dynamics. See the figure.

clf
compare(z, nlgr, 1);
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Figure 6: Comparison between true outputs and the simulated outputs of the initial predator-prey
model with prey crowding.

C.4. Parameter Estimation

To improve the performance of the initial model we proceed to estimate the 5 unknown parameters
and the 2 initial states.

nlgr = nlgreyest(z, nlgr, nlgreyestOptions('Display', 'on'));

C.5. Performance of the Estimated Predator-Prey Model with Prey Crowding

The estimated values of the parameters and the initial states are again quite close to those that were
used to generate the true output data:

disp('   True      Estimated parameter vector');

   True      Estimated parameter vector

ptrue = [-1; 1; 1; 1; 0.1];
fprintf('   %6.3f    %6.3f\n', [ptrue'; getpvec(nlgr)']);

   -1.000    -1.000
    1.000     1.001
    1.000     1.002
    1.000     1.002
    0.100     0.101

disp(' ');
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disp('   True      Estimated initial states');

   True      Estimated initial states

x0true = [2; 2];
fprintf('   %6.3f    %6.3f\n', [x0true'; cell2mat(getinit(nlgr, 'Value'))']);

    2.000     2.003
    2.000     2.002

To further evaluate the quality of the model (and to illustrate the improvement compared to the initial
model) we also simulate the estimated model. The simulated outputs are compared to the true
outputs in a plot window. As can be seen again, the estimated model is quite good.

compare(z, nlgr, 1);

Figure 7: Comparison between true outputs and the simulated outputs of the estimated predator-
prey model with prey crowding.

We conclude the third population example by presenting the model information returned by
PRESENT.

present(nlgr);

                                                                                                                      
nlgr =                                                                                                                
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Continuous-time nonlinear grey-box model defined by 'predprey2_c' (MEX-file):                                         
                                                                                                                      
   dx/dt = F(t, x(t), p1, ..., p5)                                                                                    
    y(t) = H(t, x(t), p1, ..., p5) + e(t)                                                                             
                                                                                                                      
 with 0 input(s), 2 state(s), 2 output(s), and 5 free parameter(s) (out of 5).                                        
                                                                                                                      
 States:                                          Initial value                                                       
    x(1)  Population, predators(t) [Size (in t..]   xinit@exp1   2.00281   (estimated) in [0, Inf]                    
    x(2)  Population, preys(t) [Size (in t..]       xinit@exp1   2.00224   (estimated) in [0, Inf]                    
 Outputs:                                                                                                             
    y(1)  Population, predators(t) [Size (in thousands)]                                                              
    y(2)  Population, preys(t) [Size (in thousands)]                                                                  
 Parameters:                                    Value  Standard Deviation                                             
    p1   Survival factor, predators [1/year]     -0.999914      0.00280581   (estimated) in [-Inf, Inf]               
    p2   Death factor, predators [1/year]          1.00058      0.00276684   (estimated) in [-Inf, Inf]               
    p3   Survival factor, preys [1/year]            1.0019      0.00272154   (estimated) in [-Inf, Inf]               
    p4   Death factor, preys [1/year]              1.00224      0.00268423   (estimated) in [-Inf, Inf]               
    p5   Crowding factor, preys [1/year]          0.101331       0.0005023   (estimated) in [-Inf, Inf]               
                                                                                                                      
Name: 1 predator - 1 prey system exhibiting crowding                                                                  
                                                                                                                      
Status:                                                                                                               
Termination condition: Change in cost was less than the specified tolerance..                                         
Number of iterations: 8, Number of function evaluations: 9                                                            
                                                                                                                      
Estimated using Solver: ode45; Search: lsqnonlin on time domain data "1 predator - 1 prey system exhibiting crowding".
Fit to estimation data: [97.53;97.36]%                                                                                
FPE: 4.327e-08, MSE: 0.0004023                                                                                        
More information in model's "Report" property.                                                                        

Conclusions

This example showed how to perform IDNLGREY time-series modeling based on MATLAB and MEX
model files.
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Narendra-Li Benchmark System: Nonlinear Grey Box Modeling
of a Discrete-Time System

This example shows how to identify the parameters of a complex yet artificial nonlinear discrete-time
system with one input and one output. The system was originally proposed and discussed by
Narendra and Li in the article

  K. S. Narendra and S.-M. Li. "Neural networks in control systems". In
  Mathematical Perspectives on Neural Networks (P. Smolensky,
  M. C. Mozer, and D. E. Rumelhard, eds.), Chapter 11, pages 347-394,
  Lawrence Erlbaum Associates, Hillsdale, NJ, USA, 1996.

and has been considered in numerous discrete-time identification examples.

Discrete-Time Narendra-Li Benchmark System

The discrete-time equations of the Narendra-Li system are:

  x1(t+Ts) = (x1(t)/(1+x1(t)^2)+p(1))*sin(x2(t))
  x2(t+Ts) = x2(t)*cos(x2(t)) + x1(t)*exp(-(x1(t)^2+x2(t)^2)/p(2))
             + u(t)^3/(1+u(t)^2+p(3)*cos(x1(t)+x2(t))

      y(t) = x1(t)/(1+p(4)*sin(x2(t))+p(5)*sin(x1(t)))

where x1(t) and x2(t) are the states, u(t) the input signal, y(t) the output signal and p a parameter
vector with 5 elements.

IDNLGREY Discrete-Time Narendra-Li Model

From an IDNLGREY model file point of view, there is no difference between a continuous- and a
discrete-time system. The Narendra-Li model file must therefore return the state update vector dx
and the output y, and should take t (time), x (state vector), u (input), p (parameter(s)) and varargin as
input arguments:

  function [dx, y] = narendrali_m(t, x, u, p, varargin)
  %NARENDRALI_M  A discrete-time Narendra-Li benchmark system.

  % Output equation.
  y = x(1)/(1+p(4)*sin(x(2)))+x(2)/(1+p(5)*sin(x(1)));

  % State equations.
  dx = [(x(1)/(1+x(1)^2)+p(1))*sin(x(2));              ... % State 1.
        x(2)*cos(x(2))+x(1)*exp(-(x(1)^2+x(2)^2)/p(2)) ... % State 2.
           + u(1)^3/(1+u(1)^2+p(3)*cos(x(1)+x(2)))     ...
       ];

Notice that we have here chosen to condense all 5 parameters into one parameter vector, where the
i:th element is referenced in the usual MATLAB way, i.e., through p(i).

With this model file as a basis, we next create an IDNLGREY object reflecting the modeling situation.
Worth stressing here is that the discreteness of the model is specified through a positive value of Ts
(= 1 second). Notice also that Parameters only holds one element, a 5-by-1 parameter vector, and that
SETPAR are used to specify that all the components of this vector are strictly positive.

FileName      = 'narendrali_m';                    % File describing the model structure.
Order         = [1 1 2];                           % Model orders [ny nu nx].
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Parameters    = {[1.05; 7.00; 0.52; 0.52; 0.48]};  % True initial parameters (a vector).
InitialStates = zeros(2, 1);                       % Initial value of initial states.
Ts            = 1;                                 % Time-discrete system with Ts = 1s.
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts, 'Name', ...
                'Discrete-time Narendra-Li benchmark system',  ...
                'TimeUnit', 's');
nlgr = setpar(nlgr, 'Minimum', {eps(0)*ones(5, 1)});

A summary of the entered Narendra-Li model structure is obtained through the PRESENT command:

present(nlgr);

                                                                               
nlgr =                                                                         
Discrete-time nonlinear grey-box model defined by 'narendrali_m' (MATLAB file):
                                                                               
   x(t+Ts) = F(t, u(t), x(t), p1)                                              
      y(t) = H(t, u(t), x(t), p1) + e(t)                                       
                                                                               
 with 1 input(s), 2 state(s), 1 output(s), and 5 free parameter(s) (out of 5). 
                                                                               
 Inputs:                                                                       
    u(1)  (t)                                                                  
 States:        Initial value                                                  
    x(1)  x1(t)   xinit@exp1   0   (fixed) in [-Inf, Inf]                      
    x(2)  x2(t)   xinit@exp1   0   (fixed) in [-Inf, Inf]                      
 Outputs:                                                                      
    y(1)  (t)                                                                  
 Parameters:    Value                                                          
   p1(1)   p1     1.05      (estimated) in ]0, Inf]                            
   p1(2)             7      (estimated) in ]0, Inf]                            
   p1(3)          0.52      (estimated) in ]0, Inf]                            
   p1(4)          0.52      (estimated) in ]0, Inf]                            
   p1(5)          0.48      (estimated) in ]0, Inf]                            
                                                                               
Name: Discrete-time Narendra-Li benchmark system                               
Sample time: 1 seconds                                                         
                                                                               
Status:                                                                        
Created by direct construction or transformation. Not estimated.               
More information in model's "Report" property.                                 

Input-Output Data

Two input-output data records with 300 samples each, one for estimation and one for validation
purposes, are available. The input vector used for both these records is the same, and was chosen as
a sum of two sinusoids:

u(t) = sin(2*pi*t/10) + sin(2*pi*t/25)

for t = 0, 1, ..., 299 seconds. We create two different IDDATA objects to hold the two data records, ze
for estimation and zv for validation purposes.

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'narendralidata'));
ze = iddata(y1, u, Ts, 'Tstart', 0, 'Name', 'Narendra-Li estimation data', ...
            'ExperimentName', 'ze');
zv = iddata(y2, u, Ts, 'Tstart', 0, 'Name', 'Narendra-Li validation data', ...
            'ExperimentName', 'zv');
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The input-output data that will be used for estimation are shown in a plot window.

figure('Name', ze.Name);
plot(ze);

Figure 1: Input-output data from a Narendra-Li benchmark system.

Performance of the Initial Narendra-Li Model

Let us now use COMPARE to investigate the performance of the initial Narendra-Li model. The
simulated and measured outputs for ze and zv are generated, and fit to ze is shown by default. Use
the plot context menu to switch the data experiment to zv. The fit is not that bad for either dataset
(around 74 %). Here we should point out that COMPARE by default estimates the initial state vector,
in this case one initial state vector for ze and another one for zv.

compare(merge(ze, zv), nlgr);
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Figure 2: Comparison between true outputs and the simulated outputs of the initial Narendra-Li
model.

%%4
% By looking at the prediction errors obtained via PE, we realize that the
% initial Narendra-Li model shows some systematic and periodic differences
% as compared to the true outputs.
pe(merge(ze, zv), nlgr);
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Figure 3: Prediction errors obtained with the initial Narendra-Li model. Use context menu to switch
between experiments.

Parameter Estimation

In order to reduce the systematic discrepancies we estimate all 5 parameters of the Narendra-Li
model structure using NLGREYEST. The estimation is carried out based on the estimation data set ze
only.

opt = nlgreyestOptions('Display', 'on');
nlgr = nlgreyest(ze, nlgr, opt);
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Performance of the Estimated Narendra-Li Model

COMPARE is once again employed to investigate the performance of the estimated model, but this
time we use the model's internally stored initial state vector ([0; 0] for both experiments) without any
initial state vector estimation.

clf
opt = compareOptions('InitialCondition','m');
compare(merge(ze, zv), nlgr, opt);
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Figure 4: Comparison between true outputs and the simulated outputs of the estimated Narendra-Li
model.

The improvement after estimation is significant, which perhaps is best illustrated through a plot of
the prediction errors:

figure;
pe(merge(ze, zv), nlgr);
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Figure 5: Prediction errors obtained with the estimated Narendra-Li model.

The modeling power of the estimated Narendra-Li model is also confirmed through the correlation
analysis provided through RESID:

figure('Name', [nlgr.Name ': residuals of estimated model']);
resid(zv, nlgr);
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Figure 6: Residuals obtained with the estimated Narendra-Li model.

In fact, the obtained model parameters are also quite close to the ones that were used to generate the
true model outputs:

disp('   True      Estimated parameter vector');
ptrue = [1; 8; 0.5; 0.5; 0.5];
fprintf('   %1.4f    %1.4f\n', [ptrue'; getpvec(nlgr)']);

   True      Estimated parameter vector
   1.0000    1.0000
   8.0000    8.0082
   0.5000    0.5003
   0.5000    0.4988
   0.5000    0.5018

Some additional model quality results (loss function, Akaike's FPE, and the estimated standard
deviations of the model parameters) are next provided via the PRESENT command:

present(nlgr);

                                                                                                               
nlgr =                                                                                                         
Discrete-time nonlinear grey-box model defined by 'narendrali_m' (MATLAB file):                                
                                                                                                               
   x(t+Ts) = F(t, u(t), x(t), p1)                                                                              
      y(t) = H(t, u(t), x(t), p1) + e(t)                                                                       
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 with 1 input(s), 2 state(s), 1 output(s), and 5 free parameter(s) (out of 5).                                 
                                                                                                               
 Inputs:                                                                                                       
    u(1)  u1(t)                                                                                                
 States:        Initial value                                                                                  
    x(1)  x1(t)   xinit@exp1   0   (fixed) in [-Inf, Inf]                                                      
    x(2)  x2(t)   xinit@exp1   0   (fixed) in [-Inf, Inf]                                                      
 Outputs:                                                                                                      
    y(1)  y1(t)                                                                                                
 Parameters:       Value Standard Deviation                                                                    
   p1(1)   p1     0.999993      0.0117615   (estimated) in ]0, Inf]                                            
   p1(2)           8.00821       0.885988   (estimated) in ]0, Inf]                                            
   p1(3)          0.500319      0.0313092   (estimated) in ]0, Inf]                                            
   p1(4)          0.498842       0.264806   (estimated) in ]0, Inf]                                            
   p1(5)          0.501761        0.30998   (estimated) in ]0, Inf]                                            
                                                                                                               
Name: Discrete-time Narendra-Li benchmark system                                                               
Sample time: 1 seconds                                                                                         
                                                                                                               
Status:                                                                                                        
Termination condition: Change in parameters was less than the specified tolerance..                            
Number of iterations: 16, Number of function evaluations: 17                                                   
                                                                                                               
Estimated using Solver: FixedStepDiscrete; Search: lsqnonlin on time domain data "Narendra-Li estimation data".
Fit to estimation data: 99.44%                                                                                 
FPE: 9.23e-05, MSE: 8.927e-05                                                                                  
More information in model's "Report" property.                                                                 

As for continuous-time input-output systems, it is also possible to use STEP for discrete-time input-
output systems. Let us do this for two different step levels, 1 and 2:

figure('Name', [nlgr.Name ': step responses of estimated model']);
t = (-5:50)';
step(nlgr, 'b', t, stepDataOptions('StepAmplitude',1));
line(t, step(nlgr, t, stepDataOptions('StepAmplitude',2)), 'color', 'g');
grid on;
legend('0 -> 1', '0 -> 2', 'Location', 'NorthWest');
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Figure 7: Step responses obtained with the estimated Narendra-Li model.

We conclude this example by comparing the performance of the estimated IDNLGREY Narendra-Li
model with some basic linear models. The fit obtained for the latter models are considerably lower
than what is returned for the estimated IDNLGREY model.

nk = delayest(ze);
arx22 = arx(ze, [2 2 nk]);   % Second order linear ARX model.
arx33 = arx(ze, [3 3 nk]);   % Third order linear ARX model.
arx44 = arx(ze, [4 4 nk]);   % Fourth order linear ARX model.
oe22  = oe(ze, [2 2 nk]);    % Second order linear OE model.
oe33  = oe(ze, [3 3 nk]);    % Third order linear OE model.
oe44  = oe(ze, [4 4 nk]);    % Fourth order linear OE model.
clf
fig = gcf;
Pos = fig.Position; fig.Position = [Pos(1:2)*0.7, Pos(3)*1.3, Pos(4)*1.3];
compare(zv, nlgr, 'b', arx22, 'm-', arx33, 'm:', arx44, 'm--', ...
        oe22, 'g-', oe33, 'g:', oe44, 'g--');
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Figure 8: Comparison between true output and the simulated outputs of a number of estimated
Narendra-Li models.

Conclusions

In this example we have used a fictive discrete-time Narendra-Li benchmark system to illustrate the
basics for performing discrete-time IDNLGREY modeling.
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Friction Modeling: MATLAB File Modeling of Static SISO System
This example shows grey-box modeling of a static single-input, single-output system using a MATLAB
function as the ODE file.

System identification normally deals with identifying parameters of dynamic models. However, static
models are also of interest, sometimes on their own and sometimes as sub-models of larger more
involved models. An example of the latter is discussed in the case study "An Industrial Robot Arm"
(idnlgreydemo13.m), where a static friction model is employed as a fixed (pre-estimated) component
of a robot arm model.

We discuss how to represent static friction phenomenon as an IDNLGREY model and estimate the
corresponding coefficients.

A Continuously Differentiable Friction Model

Discontinuous and piecewise continuous friction models are often problematic for high-performance
continuous controllers. This very fact motivated Makkar, Dixon, Sawyer and Hu to suggest a new
continuously and differentiable friction model that captures the most common friction phenomena
encountered in practice. The new friction model structure was reported in

C. Makkar, W. E. Dixon, W. G. Sawyer, and G.Hu "A New Continuously

Differentiable Friction Model for Control Systems Design", IEEE(R)/ASME

International Conference on Advanced Intelligent Mechatronics,

Monterey, CA, 2005, pages 600-605.

and will serve as a basis for our static identification experiments.

The friction model proposed by Makkar, et al, links the slip speed v(t) of a body in contact with
another body to the friction force f(t) via the static relationship

f(t) = g(1)*(tanh(g(2)*v(t) - tanh(g(3)*v(t))

+ g(4)*tanh(g(5)*v(t)) + g(6)*v(t)

where g(1), ..., g(6) are 6 unknown positive parameters. This model structure displays a number of
nice properties arising in real-world applications:

1 The friction model is symmetric around the origin
2 The static friction coefficient is approximated by g(1)+g(4)
3 The first term of the equation, tanh(g(2)*v(t) - tanh(g(3)*v(t), captures the so called Striebeck

effect, where the friction term shows a rather sudden drop with increasing slip speed near the
origin.

4 The Coulombic friction effect is modeled by the term g(4)*tanh(g(5)*v(t))
5 The viscous friction dissipation is reflected by the last term, g(6)*v(t)

Consult the above mentioned paper for many more details about friction in general and the proposed
model structure in particular.
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IDNLGREY Friction Modeling

Let us now create an IDNLGREY model object describing static friction. As usual, the starting point is
to write an IDNLGREY modeling file, and here we construct a MATLAB file, friction_m.m, with
contents as follows.

function [dx, f] = friction_m(t, x, v, g, varargin)

%FRICTION_M Nonlinear friction model with Stribeck, Coulomb and viscous

% dissipation effects.

% Output equation.

f = g(1)*(tanh(g(2)*v(1))-tanh(g(3)*v(1))) ... % Stribeck effect.

+ g(4)*tanh(g(5)*v(1)) ... % Coulomb effect.

+ g(6)*v(1); % Viscous dissipation term.

% Static system; no states.

dx = [];

Notice that a state update dx always must be returned by the model file and that it should be empty
([]) in static modeling cases.

Our next step is to pass the model file, information about model order, guessed parameter vector and
so forth as input arguments to the IDNLGREY constructor. We also specify names and units of the
input and output and state that all model parameters must be positive.

FileName      = 'friction_m';          % File describing the model structure.
Order         = [1 1 0];               % Model orders [ny nu nx].
Parameters    = {[0.20; 90; 11; ...
                  0.12; 110; 0.015]};  % Initial parameters.
InitialStates = [];                    % Initial initial states.
Ts            = 0;                     % Time-continuous system.
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts,    ...
                'Name', 'Static friction model',                   ...
                'InputName', 'Slip speed', 'InputUnit', 'm/s',     ...
                'OutputName', 'Friction force', 'OutputUnit', 'N', ...
                'TimeUnit', 's');
nlgr = setpar(nlgr, 'Minimum', {zeros(5, 1)});   % All parameters must be >= 0.

After these actions we have an initial friction model with properties as follows.

present(nlgr);

                                                                              
nlgr =                                                                        
Continuous-time nonlinear static model defined by 'friction_m' (MATLAB file): 
                                                                              
    y(t) = H(t, u(t), p1) + e(t)                                              
                                                                              
 with 1 input(s), 0 state(s), 1 output(s), and 6 free parameter(s) (out of 6).
                                                                              
 Inputs:                                                                      
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    u(1)  Slip speed(t) [m/s]                                                 
 Outputs:                                                                     
    y(1)  Friction force(t) [N]                                               
 Parameters:    Value                                                         
   p1(1)   p1       0.2      (estimated) in [0, Inf]                          
   p1(2)             90      (estimated) in [0, Inf]                          
   p1(3)             11      (estimated) in [0, Inf]                          
   p1(4)           0.12      (estimated) in [0, Inf]                          
   p1(5)            110      (estimated) in [0, Inf]                          
   p1(6)          0.015      (estimated) in [0, Inf]                          
                                                                              
Name: Static friction model                                                   
                                                                              
Status:                                                                       
Created by direct construction or transformation. Not estimated.              
More information in model's "Report" property.                                

In our identification experiments we are not only interested in the full friction model, but also in
examining how a reduced friction model would perform. By reduced we here mean a friction model
that contains two of the three terms of the full model. To investigate this, three copies of the full
model structure are created and in each copy we fix the parameter vector so that only two of the
terms will contribute:

nlgr1 = nlgr;
nlgr1.Name = 'No Striebeck term';
nlgr1 = setpar(nlgr1, 'Value', {[zeros(3, 1); Parameters{1}(4:6)]});
nlgr1 = setpar(nlgr1, 'Fixed', {[true(3, 1); false(3, 1)]});
nlgr2 = nlgr;
nlgr2.Name = 'No Coulombic term';
nlgr2 = setpar(nlgr2, 'Value', {[Parameters{1}(1:3); 0; 0; Parameters{1}(6)]});
nlgr2 = setpar(nlgr2, 'Fixed', {[false(3, 1); true(2, 1); false]});
nlgr3 = nlgr;
nlgr3.Name = 'No dissipation term';
nlgr3 = setpar(nlgr3, 'Value', {[Parameters{1}(1:5); 0]});
nlgr3 = setpar(nlgr3, 'Fixed', {[false(5, 1); true]});

Input-Output Data

At our disposal are 2 different (simulated) data sets where the input slip speed was swept from -10
m/s to 10 m/s in a ramp-type manner. We load the data and create two IDDATA objects for our
identification experiments, ze for estimation and zv for validation purposes.

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'frictiondata'));
ze = iddata(f1, v, 1, 'Name', 'Static friction system');
set(ze, 'InputName', 'Slip speed', 'InputUnit', 'm/s',  ...
        'OutputName', 'Friction force', 'OutputUnit', 'N', ...
        'Tstart', 0, 'TimeUnit', 's');
zv = iddata(f2, v, 1, 'Name', 'Static friction system');
set(zv, 'InputName', 'Slip speed', 'InputUnit', 'm/s',  ...
        'OutputName', 'Friction force', 'OutputUnit', 'N', ...
        'Tstart', 0, 'TimeUnit', 's');

The input-output data that will be used for estimation are shown in a plot window.

figure('Name', ze.Name);
plot(ze);
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Figure 1: Input-output data from a system exhibiting friction.

Performance of the Initial Friction Models

With access to input-output data and four different initial friction models the obvious question now is
how good these models are? Let us investigate this for the estimation data set through simulations
carried out by COMPARE:

set(gcf,'DefaultLegendLocation','southeast');
compare(ze, nlgr, nlgr1, nlgr2, nlgr3);
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Figure 2: Comparison between true output and the simulated outputs of the four initial friction
models.

Parameter Estimation

None of the initial models are able to properly describe the true output. To overcome this we estimate
the model parameters of all four model structures. We configure all estimations to perform at most 30
iterations and to stop the iterations only in case the tolerance is almost zero (which it in practice
never will be for real-world data). These computations will take some time.

opt = nlgreyestOptions('Display', 'on');
opt.SearchOptions.MaxIterations = 30;
opt.SearchOptions.FunctionTolerance = eps;
opt.EstimateCovariance = false; 

nlgr  = nlgreyest(nlgr,  ze, opt);
nlgr1 = nlgreyest(nlgr1, ze, opt);
nlgr2 = nlgreyest(nlgr2, ze, opt);
nlgr3 = nlgreyest(nlgr3, ze, opt);

Performance of the Estimated Friction Models

The performance of the models are once again investigated by comparing the true output with the
simulated outputs of the four models as obtained using COMPARE, but this time the comparison is
based on the validation data set zv.

compare(zv, nlgr, nlgr1, nlgr2, nlgr3);

13 ODE Parameter Estimation (Grey-Box Modeling)

13-190



Figure 3: Comparison between true output and the simulated outputs of the four estimated friction
models.

For this system we clearly see that the full model outperforms the reduced ones. Nevertheless, the
reduced models seem to be able to capture the effects they model rather well, and in each case
estimation results in a much better fit. The worst fit is obtained for the model where the viscous
dissipation term has been left out. The impressive fit of the full model comes as no big surprise as its
model structure coincide with that used to generate the true output data. The parameters of the full
model are also close to the ones that were used to generate the true model output:

disp('   True       Estimated parameter vector');

   True       Estimated parameter vector

ptrue = [0.25; 100; 10; 0.1; 100; 0.01];
fprintf('   %7.3f    %7.3f\n', [ptrue'; getpvec(nlgr)']);

     0.250      0.249
   100.000    106.637
    10.000      9.978
     0.100      0.100
   100.000     87.699
     0.010      0.010

The Final Prediction Error (FPE) criterion (low values are good) applied to all four friction models
confirms the superiority of the full friction model:

fpe(nlgr, nlgr1, nlgr2, nlgr3);
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   1.0e-03 *

    0.0002    0.1665    0.1584    0.7931

As for dynamic systems, we can also examine the prediction errors of a static model using PE. We do
this for the full friction model and conclude that the residuals seem to have a random nature:

pe(zv, nlgr);

Figure 4: Prediction errors obtained with the estimated full friction model.

We further verify the randomness by looking at the residuals ("leftovers") of the full friction model:

figure('Name', [nlgr.Name ': residuals of estimated IDNLGREY model']);
resid(zv, nlgr);
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Figure 5: Residuals obtained with the estimated full friction model.

The step response of static models can also be computed and plotted. Let us apply a unit step and do
this for all four estimated friction models:

figure('Name', [nlgr.Name ': step responses of estimated models']);
step(nlgr, nlgr1, nlgr2, nlgr3);
legend(nlgr.Name, nlgr1.Name, nlgr2.Name, nlgr3.Name, 'location', 'SouthEast');
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Figure 6: Unit step responses of the four estimated friction models.

We finally display a number of properties, like the estimated standard deviations of the parameters,
the loss function, etc., of the full friction model.

present(nlgr);

                                                                                                          
nlgr =                                                                                                    
Continuous-time nonlinear static model defined by 'friction_m' (MATLAB file):                             
                                                                                                          
    y(t) = H(t, u(t), p1) + e(t)                                                                          
                                                                                                          
 with 1 input(s), 0 state(s), 1 output(s), and 6 free parameter(s) (out of 6).                            
                                                                                                          
 Inputs:                                                                                                  
    u(1)  Slip speed(t) [m/s]                                                                             
 Outputs:                                                                                                 
    y(1)  Friction force(t) [N]                                                                           
 Parameters:    Value                                                                                     
   p1(1)   p1      0.249402      (estimated) in [0, Inf]                                                  
   p1(2)            106.637      (estimated) in [0, Inf]                                                  
   p1(3)            9.97835      (estimated) in [0, Inf]                                                  
   p1(4)          0.0999916      (estimated) in [0, Inf]                                                  
   p1(5)            87.6992      (estimated) in [0, Inf]                                                  
   p1(6)          0.0100019      (estimated) in [0, Inf]                                                  
                                                                                                          
Name: Static friction model                                                                               
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Status:                                                                                                   
Termination condition: Change in parameters was less than the specified tolerance..                       
Number of iterations: 9, Number of function evaluations: 10                                               
                                                                                                          
Estimated using Solver: FixedStepDiscrete; Search: lsqnonlin on time domain data "Static friction system".
Fit to estimation data: 99.68%                                                                            
FPE: 2.428e-07, MSE: 2.414e-07                                                                            
More information in model's "Report" property.                                                            

Conclusions

This example showed how to perform IDNLGREY modeling of a static system. The procedure for
doing this is basically the same as for dynamic systems' modeling.
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Signal Transmission System: C MEX-File Modeling Using
Optional Input Arguments

This example shows how to provide optional input arguments to IDNLGREY models. The discussion
concentrates on how to do this for C-MEX types of model files, yet to some minor extent we will also
address the most relevant parallels to MATLAB file modeling.

The basis for our discussion will be the signal transmission system (a telegraph wire) schematically
depicted in the following figure.

Figure 1: Schematic view of a signal transmission system.

Signal Transmission Modeling

At a distance x (counted from where an input voltage is applied) in a telegraph wire flows at time t
the current i(t, x). The corresponding voltage is u(t, x) and the relationship between current and
voltage can be described by two coupled Partial Differential Equations (PDEs):

The equations above are often referred to as (a variant of) the so-called "Telegraph equation", with L
and C being inductance and capacitance per unit length, respectively.
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The telegraph equation can be approximated by a system of ordinary differential equations by only
considering the current and the voltage at discrete distance points 0, h, 2h, ..., Nh, where h is the
discretization distance and N the total number of such distances. After this approximation, the wire
can be thought of as being composed of a number of structurally equal segments connected to each
other in a chain. In the literature this type of approximation is commonly referred to as aggregation.

Let the voltage and the current at distance x = kh, for k = 0, 1, ..., N, at time t be denoted u_k(t) and
i_k(t), respectively. Approximate d/dx u(t, x) and d/dx i(t, x) through the following simple difference
approximations:

  d u(t, x)   u_{k+1}(t) - u_k(t)
  --------- ~ -------------------           Forward approximation.
     dx               h

  d i(t, x)   i_k(t) - i_{k-1}(t)
  --------- ~ -------------------           Backward approximation.
     dx               h

for x = kh.

The reason for using the forward approximation for d/dx u(t, x) is that i_N(t) = 0 (open wire), so that
the remaining N discretized currents can be modeled by the following N differential equations:

   d i_k(t)     1
   -------- = - -- (u_{k+1}(t) - u_k(t)) for k = 0, 1, 2, ..., N-1
      dt        Lh

Similarly, as u_0(t) is a known input signal and no differential equation is needed to describe it, it is
convenient to use the backward approximation scheme to model d/dx i(t, x) at the points h, 2h, ..., N:

   d u_k(t)     1
   -------- = - -- (i_k(t) - i_{k-1}(t)) for k = 1, 2, ..., N-1
      dt        Ch

   d u_N(t)     1                         1
   -------- = - -- (i_N(t) - i_{N-1}(t) = -- i_{N-1}(t)
      dt        Ch                        Ch

By this we have now arrived at the model approximation shown in Figure 1, in which the equations
have been expressed in terms of a number of interconnected coils and capacitors.

Let us now introduce the 2*N states x1(t) = i_0(t), x2(t) = u_1(t), x3(t) = i_1(t), x4(t) = u_2(t), ...,
x2N-1(t) = i_{N-1}(t), x2N(t) = u_N(t). Also, denote the input u(t) = u_0(t) and let the output be the
voltage at the end of the wire, i.e., y(t) = x2N(t) = u_N(t). Apparent substitutions finally lead to the
following state space model structure.

     x1(t) = -1/(Lh)*(x2(t) - u(t))
     x2(t) = -1/(Ch)*(x3(t) - x1(t))
     x3(t) = -1/(Lh)*(x4(t) - x2(t))
     x4(t) = -1/(Ch)*(x5(t) - x3(t))
          ...
  x2N-1(t) = -1/(Lh)*(x2N(t) - x2N-2(t))
    x2N(t) =  1/(Ch)*x2N-1(t)

      y(t) = x2N(t)

All in all, the above mathematical manipulations have taken us to a standard linear state space model
structure, which very well can be handled by IDGREY - the linear counterpart of IDNLGREY. We will
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not perform any IDGREY modeling here, but instead show how optional input arguments may be used
by IDNLGREY to enhance its modeling flexibility.

IDNLGREY Signal Transmission Model Object

To gain flexibility it is here desirable to have an IDNLGREY model object that immediately is able to
deal with a wire of any length L. For modeling quality purposes, it should also be straightforward to
vary the number of aggregated blocks N so that a good enough system approximation can be
obtained. These requirements can be handled through the passing of N and L in the FileArgument
property of an IDNLGREY object. The FileArgument property must be a cell array, but this array may
hold any kind of data. In this application, we choose to provide N and L in a structure, and for a wire
of length 1000 m we will try three different values of N: 10, 30 and 100. The following three
FileArguments will subsequently be used when performing IDNLGREY modeling:

FileArgument10  = {struct('N', 10, 'L', 1000)};   % N = 10  --> 20 states.
FileArgument30  = {struct('N', 30, 'L', 1000)};   % N = 30  --> 60 states.
FileArgument100 = {struct('N', 100, 'L', 1000)};  % N = 100 --> 200 states.

The parsing and checking of the data contained in FileArgument must be carried out in the
IDNLGREY model file, where it is up to the model file designer to implement this functionality. In
order to obtain h and N in the function without any error checking the following commands can be
used:

  N = varargin{1}{1}.N;
  h = varargin{1}{1}.L/N;

Notice that FileArgument here corresponds to varargin{1}, which is the last argument passed to the
model file. The file signaltransmission_m.m implements the signal transmission model. Type "type
signaltransmission_m.m" to see the whole file.

The situation is a bit more involved when using C-MEX model files as will be done further on. In this
case we do not beforehand know the number of states Nx, but it is computed in the main interface
function and can thus be passed as an input argument to compute_dx and compute_y. The declaration
of these functions become:

void compute_dx(double *dx, int nx, double *x, double *u, double **p,
             const mxArray *auxvar)
void compute_y(double *y, int nx, double *x)

where we have taken away the t-variable (not used in the equations) and instead included an integer
nx as a second argument to both these functions. In addition, we have also removed the standard
three trailing arguments of compute_y as these are not used to compute the output. With these
changes, compute_dx and compute_y are called from the main interface function as follows.

  /* Call function for state derivative update. */
  compute_dx(dx, nx, x, u, p, auxvar);

  /* Call function for output update. */
  compute_y(y, nx, x);

The first part of compute_dx is shown below. ("type signaltransmission_c.c" displays the whole file in
the MATLAB® command window.)

  /* State equations. */
  void compute_dx(double *dx, int nx, double *x, double *u, double **p,
                  const mxArray *auxvar)
  {
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     /* Declaration of model parameters and intermediate variables. */
     double *L, *C;      /* Model parameters.                  */
     double h, Lh, Ch;   /* Intermediate variables/parameters. */
     int    j;           /* Equation counter.                  */

     /* Retrieve model parameters. */
     L = p[0];   /* Inductance per unit length.  */
     C = p[1];   /* Capacitance per unit length. */

     /* Get and check FileArgument (auxvar). */
     if (mxGetNumberOfElements(auxvar) < 1) {
         mexErrMsgIdAndTxt("IDNLGREY:ODE_FILE:InvalidFileArgument",
                           "FileArgument should at least hold one element.");
     } else if (mxIsStruct(mxGetCell(auxvar, 0)) == false) {
         mexErrMsgIdAndTxt("IDNLGREY:ODE_FILE:InvalidFileArgument",
                           "FileArgument should contain a structure.");
     } else if (   (mxGetFieldNumber(mxGetCell(auxvar, 0), "N") < 0)
                || (mxGetFieldNumber(mxGetCell(auxvar, 0), "L") < 0)) {
         mexErrMsgIdAndTxt("IDNLGREY:ODE_FILE:InvalidFileArgument",
                           "FileArgument should contain a structure with fields 'N' and 'L'.");
     } else {
         /* Skip further error checking to obtain execution speed. */
         h = *mxGetPr(mxGetFieldByNumber(mxGetCell(auxvar, 0), 0,
                      mxGetFieldNumber(mxGetCell(auxvar, 0), "L"))) / (0.5*((double) nx));
     }
     Lh = -1.0/(L[0]*h);
     Ch = -1.0/(C[0]*h);
     ...

Worth stressing here is that FileArgument is passed to compute_dx in the variable auxvar. After
declaring and retrieving model parameters (and also declaring intermediate variables, like h, auxvar
is checked for consistency through a number of external interface routines (so-called mx-routines).
These MATLAB routines allow you to create, access, manipulate, and destroy mxArray variables.
Consult the MATLAB documentation on External Interfaces for more information about this. The final
else-clause is executed if all checks are passed, in which case the value of the auxvar field N is used
to determine the value of h. It and the model parameters L and C are finally used to compute the
required parameter quantities Lh = -1/(L*h) and Ch = -1/(C*h). See "Tutorials on Nonlinear Grey Box
Model Identification: Creating IDNLGREY Model Files" for complimentary information about
FileArgument.

With Lh and Ch computed, the second part of compute_dx is as follows. Notice in particular how nx is
used in the for-loop of compute_dx to define the number of states of the present model.

      ...
      /* x[0]   : Current i_0(t).    */
      /* x[1]   : Voltage u_1(t).    */
      /* x[2]   : Current i_1(t).    */
      /* x[3]   : Voltage u_1(t).    */
      /* ...                         */
      /* x[Nx-2]: Current i_Nx-1(t). */
      /* x[Nx-1]: Voltage u_Nx(t).   */
      for (j = 0; j < nx; j = j+2) {
          if (j == 0) {
              /* First transmitter section. */
              dx[j]   = Lh*(x[j+1]-u[0]);
              dx[j+1] = Ch*(x[j+2]-x[j]);
          } else if (j < nx-3) {
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              /* Intermediate transmitter sections. */
              dx[j]   = Lh*(x[j+1]-x[j-1]);
              dx[j+1] = Ch*(x[j+2]-x[j]);
          } else {
              /* Last transmitter section. */
              dx[j]   = Lh*(x[j+1]-x[j-1]);
              dx[j+1] = -Ch*x[j];
          }
      }
  }

The output update function compute_dy is much simpler than the state update function:

  /* Output equation. */
  void compute_y(double *y, int nx, double *x)
  {
      /* y[0]: Voltage at the end of the transmitter. */
      y[0] = x[nx-1];
  }

We are now in a position where we straightforwardly can enter the above information into three
different IDNLGREY objects, one for N = 10, one for N = 30 and one for N = 100. Notice that the
differences when creating these models are the order, the initial state vector and the used optional
input argument, but that is it.

FileName        = 'signaltransmission_c';            % File describing the model structure.
Parameters      = struct('Name',    {'Inductance per unit length'    ... % Initial parameters.
                                     'Capacitance per unit length'}, ...
                         'Unit',    {'H/m' 'F/m'},                   ...
                         'Value',   {0.99e-3 0.99e-3},               ...
                         'Minimum', {eps(0) eps(0)},                 ... % L, C > 0!
                         'Maximum', {Inf Inf},                       ...
                         'Fixed',   {false false});

% A. Signal transmission model with N = 10;
Order10         = [1 1 2*FileArgument10{1}.N];       % Model orders [ny nu nx].
InitialStates10 = zeros(2*FileArgument10{1}.N, 1);   % Initial intitial states.
nlgr10 = idnlgrey(FileName, Order10, Parameters, InitialStates10, 0, ...
                'FileArgument', FileArgument10,                      ...
                'Name', '10 blocks', 'TimeUnit', 's');

% B. Signal transmission model with N = 30;
Order30         = [1 1 2*FileArgument30{1}.N];       % Model orders [ny nu nx].
InitialStates30 = zeros(2*FileArgument30{1}.N, 1);   % Initial value of intitial states.
nlgr30 = idnlgrey(FileName, Order30, Parameters, InitialStates30, 0, ...
                'FileArgument', FileArgument30,                      ...
                'Name', '30 blocks', 'TimeUnit', 's');

% C. Signal transmission model with N = 100;
Order100         = [1 1 2*FileArgument100{1}.N];     % Model orders [ny nu nx].
InitialStates100 = zeros(2*FileArgument100{1}.N, 1); % Initial value of intitial states.
nlgr100 = idnlgrey(FileName, Order100, Parameters, InitialStates100, 0, ...
                'FileArgument', FileArgument100,                        ...
                'Name', '100 blocks', 'TimeUnit', 's');

The names and units of the three signal transmission models are also set, whereupon the sizes of the
models are textually confirmed. Input is the voltage applied to the wire and the output is the voltage
at the end of the wire.
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set(nlgr10, 'InputName', 'Vin', 'InputUnit', 'V', ...
            'OutputName', 'Vout', 'OutputUnit', 'V');
set(nlgr30, 'InputName', nlgr10.InputName, 'InputUnit', nlgr10.InputUnit, ...
            'OutputName', nlgr10.OutputName, 'OutputUnit', nlgr10.OutputUnit);
set(nlgr100, 'InputName', nlgr10.InputName, 'InputUnit', nlgr10.InputUnit, ...
             'OutputName', nlgr10.OutputName, 'OutputUnit', nlgr10.OutputUnit);
nlgr10
nlgr30
nlgr100

nlgr10 =
Continuous-time nonlinear grey-box model defined by 'signaltransmission_c' (MEX-file):

   dx/dt = F(t, u(t), x(t), p1, p2, FileArgument)
    y(t) = H(t, u(t), x(t), p1, p2, FileArgument) + e(t)

 with 1 input(s), 20 state(s), 1 output(s), and 2 free parameter(s) (out of 2).

Name: 10 blocks

Status:                                                         
Created by direct construction or transformation. Not estimated.

nlgr30 =
Continuous-time nonlinear grey-box model defined by 'signaltransmission_c' (MEX-file):

   dx/dt = F(t, u(t), x(t), p1, p2, FileArgument)
    y(t) = H(t, u(t), x(t), p1, p2, FileArgument) + e(t)

 with 1 input(s), 60 state(s), 1 output(s), and 2 free parameter(s) (out of 2).

Name: 30 blocks

Status:                                                         
Created by direct construction or transformation. Not estimated.

nlgr100 =
Continuous-time nonlinear grey-box model defined by 'signaltransmission_c' (MEX-file):

   dx/dt = F(t, u(t), x(t), p1, p2, FileArgument)
    y(t) = H(t, u(t), x(t), p1, p2, FileArgument) + e(t)

 with 1 input(s), 200 state(s), 1 output(s), and 2 free parameter(s) (out of 2).

Name: 100 blocks

Status:                                                         
Created by direct construction or transformation. Not estimated.

Input-Output Data

At hand is simulated input-output data from a signal transmission wire of length 1000 m. This data
was simulated using the above aggregated model structure, but a much larger N (1500) was
employed. The simulation was performed during 20 seconds, using a sampling rate of 0.1 seconds.
The model parameters used were L = C = 1e-3 and the starting point was a zero voltage wire (all
initial states are thus zero). Both model parameters are admittedly much higher than for a typical
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signal transmission wire, but were so chosen to better illustrate the transport delay involved for this
type of systems. We load this data and put it into an IDDATA object z:

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'signaltransmissiondata'));
z = iddata(vout, vin, 0.1, 'Name', 'Signal transmission',                ...
           'InputName', 'Vin', 'InputUnit', 'V', ...
           'OutputName', 'Vout',               ...
           'OutputUnit', 'V', 'Tstart', 0, 'TimeUnit', 's');

A plot of the input-output data clearly unveils the transport delay from applied voltage to the output
voltage at the end of the wire. The first input voltage pulse at around 1.4 seconds shows up in the
output roughly a second later.

figure('Name', [z.Name ': input-output data']);
plot(z);

Figure 2: Input-output data from a signal transmission system.

Performance of the Initial Signal Transmission Models

How well do these three initial models perform? Let us investigate this by conducting model
simulations using COMPARE. From an execution point of view, it is here vital that the initial states are
not estimated, thus the choice of zero initial state vectors. The reason for this is that the number of
states is very high, especially for nlgr100 (= 200), and that the estimation of the initial state vectors
would then result in really lengthy computations.

compare(z, nlgr100, nlgr30, nlgr10, compareOptions('InitialCondition', 'zero'));
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Figure 3: Comparison between true output and the simulated outputs of three initial signal
transmission models.

In terms of fit, there is a significant difference between the three models and, as expected, the most
complex model outperforms the other two. The difference in modeling power is perhaps best viewed
by looking at the prediction errors of each model.

peOpt = peOptions('InitialCondition','zero');
e = {pe(z, nlgr100, peOpt) pe(z, nlgr30, peOpt) pe(z, nlgr10, peOpt)};
figtitle = {'nlgr100 : e@' 'nlgr30 : e@' 'nlgr10 : e@'};
figure('Name', [z.Name ': prediction errors']);
for i = 1:3
    subplot(3, 1, i);
    plot(e{i}.SamplingInstants, e{i}.OutputData, 'r');
    title(['Initial ' figtitle{i} z.OutputName{1}]);
    axis('tight');
end
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Figure 4: Prediction errors obtained with the three initial IDNLGREY signal transmission models.

Parameter Estimation

Although we have here started off with almost the correct parameter values of the true system, this
does not necessarily mean that these values are the ones producing the best model fit. Let us
investigate this by estimating the two model parameters of the three signal transmission models
using NLGREYEST. These computations may take some time.

opt = nlgreyestOptions('Display', 'on', 'EstimateCovariance', false);

nlgr100 = nlgreyest(z, nlgr100, opt);
nlgr30  = nlgreyest(z, nlgr30, opt);
nlgr10  = nlgreyest(z, nlgr10, opt);
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Performance of the Estimated Signal Transmission Models

The Final Prediction Error (FPE) criterion applied to the estimated models continues to indicate that
the most complex model is superior:

fpe(nlgr100, nlgr30, nlgr10)

    0.5228    0.6771    4.7749

The estimated parameter values are not changed that much as compared to the initial values. As can
be seen below, an interesting point is that the parameter values of the two least involved models
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actually move further away from the true parameter values, whereas the opposite occurs for the most
complex model. There are several reasons for why this might happen, e.g., a too coarse aggregation
or that the minimization procedure ended up with parameter values corresponding to a local
minimum.

disp('   True        nlgr100     nlgr30      nlgr10');
ptrue = [1e-3; 1e-3];
fprintf('   %1.7f   %1.7f   %1.7f   %1.7f\n', ...
       [ptrue'; getpvec(nlgr100)'; getpvec(nlgr30)'; getpvec(nlgr10)']);

   True        nlgr100     nlgr30      nlgr10
   0.0010000   0.0009952   0.0009759   0.0009879
   0.0010000   0.0009952   0.0009759   0.0009879

Next, we again utilize COMPARE to perform simulations of the three estimated signal transmission
models.

figure
compare(z, nlgr100, nlgr30, nlgr10, compareOptions('InitialCondition', 'zero'));

Figure 5: Comparison between true output and the simulated outputs of three estimated signal
transmission models.

In all three cases we get a slightly improved fit. Although small, the improvement can be recognized
by comparing the prediction errors obtained after and before parameter estimation.

peOpt = peOptions('InitialCondition','zero');
e = {pe(z, nlgr100, peOpt) pe(z, nlgr30, peOpt) pe(z, nlgr10, peOpt)};
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figtitle = {'nlgr100 : e@' 'nlgr30 : e@' 'nlgr10 : e@'};
figure('Name', [z.Name ': prediction errors']);
for i = 1:3
    subplot(3, 1, i);
    plot(e{i}.SamplingInstants, e{i}.OutputData, 'r');
    title(['Estimated ' figtitle{i} z.OutputName{1}]);
    axis('tight');
end

Figure 6: Prediction errors obtained with the three estimated IDNLGREY signal transmission
models.

We conclude this tutorial by looking at the unit step responses of the estimated signal transmission
models. As can be seen, all these models seem to be able to pick up the transport delay. However, the
poles of these linear models are all located on the imaginary axes, i.e., on the stability boundary. It is
well-known that simulations of such models are delicate to perform and might result in oscillating
step responses of the kind shown in this figure.

The main problem here is that this variant of the telegraph equation does not model any losses; such
effects can be included by adding "resistors" (in series with the coils) and "resistors of conductance"
(in parallel with the capacitors) to each Lh-Ch sub-block of Figure 1. By this, the models will become
more "stable" and simulations will be "easier".

figure('Name', [z.Name ': step responses']);
step(nlgr100, nlgr30, nlgr10);
grid on;
legend('nlgr100', 'nlgr30', 'nlgr10', 'Location', 'NorthWest');
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Figure 7: Step responses of three estimated IDNLGREY signal transmission models.

Conclusions

This tutorial has first and foremost addressed how to use optional input file arguments when doing
IDNLGREY modeling. We focused on C-MEX type of modeling, but indicated how to do this with
MATLAB files too. For certain kinds of systems, it turns out to be beneficial (model reuse) to design a
model file with more flexibility than normal, e.g., in terms of the number of states to use. The signal
transmission system treated in this tutorial is one example in this category.
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Dry Friction Between Two Bodies: Parameter Estimation Using
Multiple Experiment Data

This example shows how to estimate parameters of a nonlinear grey box model using multiple
experiment data. A system exhibiting dry friction between two solid bodies will be used as the basis
for the discussion. In this system, one body is fixed, while the other body moves forward and
backward over the fixed body due to an exogenous force according to Figure 1.

Figure 1: Schematic view of a two body system.

Modeling Dry Friction Between Two Bodies

Using Newton's third law of motion, the movement of the moving body is described by:

  F_tot(t) = m*a(t) = m*d/dt v(t) = m*d^2/dt^2 s(t)

where F_tot(t) equals the exogenous force F(t) minus the friction force caused by the contact between
the two bodies. The friction force is assumed to be the sum of a sliding friction force F_s(t) and a dry
friction force F_d(t). The former is normally modeled as a linear function of the velocity, i.e., F_s(t) =
k*v(t), where k is an unknown sliding friction parameter. Dry friction, on the other hand, is a rather
complex phenomenon. In the paper:

A. Clavel, M. Sorine and Q. Zhang. "Modeling and identification of a leaf spring system". In third IFAC
Workshop on Advances in Automotive Control, 2001.

it is modeled by an ordinary differential equation:

  d/dt F_d(t) = -1/e*|v(t)|*F_d(t) + f/e*v(t)

where e and f are two unknown parameters with dimensions distance and force, respectively.

Denoting the input signal u(t) = F(t) [N], introducing states as:

  x1(t) = s(t)    Position of the moving body [m].
  x2(t) = v(t)    Velocity of the moving body [m/s].
  x3(t) = F_d(t)  Dry friction force between the bodies [N].
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and model parameters as:

  m       Mass of the moving body [m].
  k       Sliding friction force coefficient [kg/s].
  e       Distance-related dry friction parameter [m].
  f       Force-related dry friction parameter [N].

we arrive at the following state space model structure:

  d/dt x1(t) = x2(t)
  d/dt x2(t) = 1/m*(u(t) - k*x2(t) - x3(t))
  d/dt x3(t) = 1/e*(-|x2(t)|*x3(t) + f*x2(t))

        y(t) = x1(t)

These equations are entered into a C-MEX model file, twobodies_c.c. Its state and output update
equations, compute_dx and compute_y, are as follows:

  /* State equations. */
  void compute_dx(double *dx, double t, double *x, double *u, double **p,
                  const mxArray *auxvar)
  {
      /* Retrieve model parameters. */
      double *m, *k, *e, *f;
      m = p[0];   /* Mass of the moving body.                 */
      k = p[1];   /* Sliding friction force coefficient.      */
      e = p[2];   /* Distance-related dry friction parameter. */
      f = p[3];   /* Force-related dry friction parameter.    */

      /* x[0]: Position. */
      /* x[1]: Velocity. */
      /* x[2]: Dry friction force. */
      dx[0] = x[1];
      dx[1] = (u[0]-k[0]*x[1]-x[2])/m[0];
      dx[2] = (-fabs(x[1])*x[2]+f[0]*x[1])/e[0];
  }

  /* Output equation. */
  void compute_y(double *y, double t, double *x, double *u, double **p,
                 const mxArray *auxvar)
  {
      /* y[0]: Position. */
      y[0] = x[0];
  }

Having written the file describing the model structure, the next step is to create an IDNLGREY object
reflecting the modeling situation. We also add information about the names and units of the inputs,
outputs, states and model parameters of the model structure. Notice that the Parameters and
InitialStates are here specified as vectors, which by default means that all model parameters and no
initial state vector will be estimated when NLGREYEST is called.

FileName      = 'twobodies_c';              % File describing the model structure.
Order         = [1 1 3];                    % Model orders [ny nu nx].
Parameters    = [380; 2200; 0.00012; 1900]; % Initial parameter vector.
InitialStates = [0; 0; 0];                  % Initial states.
Ts            = 0;                          % Time-continuous system.
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts, ...
                'Name', 'Two body system',                      ...
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                'InputName', 'Exogenous force',                 ...
                'InputUnit', 'N',                               ...
                'OutputName', 'Position of moving body',        ...
                'OutputUnit', 'm',                              ...
                'TimeUnit', 's');
nlgr = setinit(nlgr, 'Name', {'Position of moving body' ...
                       'Velocity of moving body' ...
                       'Dry friction force between the bodies'});
nlgr = setinit(nlgr, 'Unit', {'m' 'm/s' 'N'});
nlgr = setpar(nlgr, 'Name', {'Mass of the moving body'                 ...
                      'Sliding friction force coefficient',     ...
                      'Distance-related dry friction parameter' ...
                      'Force-related dry friction parameter'});
nlgr = setpar(nlgr, 'Unit', {'m' 'kg/s' 'm' 'N'});

Input-Output Data

At this point, we load the available (simulated) input-output data. The file contains data from three
different (simulated) test runs each holding 1000 noise-corrupted input-output samples generated
using a sampling rate (Ts) of 0.005 seconds. The input u(t) is the exogenous force [N] acting upon the
moving body. In the experiments, the input was a symmetric saw-tooth formed signal, where the
waveform repetition frequency was the same for all experiments, but where the maximum signal
amplitude varied between the test runs. The output y(t) is the position [m] of the moving body
(relative to the fixed one). For our modeling purposes, we create one IDDATA object holding three
different experiments:

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'twobodiesdata'));
z = merge(iddata(y1, u1, 0.005), iddata(y2, u2, 0.005), iddata(y3, u3, 0.005));
z.Name = 'Two body system';
z.InputName = nlgr.InputName;
z.InputUnit = nlgr.InputUnit;
z.OutputName = nlgr.OutputName;
z.OutputUnit = nlgr.OutputUnit;
z.Tstart = 0;
z.TimeUnit = nlgr.TimeUnit;

The input-output data used for the onward identification experiments are shown in a plot window.

figure('Name', [z.Name ': input-output data']);
for i = 1:z.Ne
    zi = getexp(z, i);
    subplot(z.Ne, 2, 2*i-1);   % Input.
    plot(zi.SamplingInstants, zi.InputData);
    title([z.ExperimentName{i} ': ' zi.InputName{1}]);
    if (i < z.Ne)
        xlabel('');
    else
        xlabel([z.Domain ' (' zi.TimeUnit ')']);
    end
    axis('tight');
    subplot(z.Ne, 2, 2*i);     % Output.
    plot(zi.SamplingInstants, zi.OutputData);
    title([z.ExperimentName{i} ': ' zi.OutputName{1}]);
    if (i < z.Ne)
        xlabel('');
    else
        xlabel([z.Domain ' (' zi.TimeUnit ')']);
    end
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    axis('tight');
end

Figure 2: Input-output data from a two body system.

Performance of the Initial Two Body Model

Before estimating the four unknown parameters we simulate the system using the initial parameter
values. We use the default differential equation solver (ode45) with the default solver options. When
called with only two input arguments, COMPARE will estimate the full initial state vectors, in this
case one per experiment, i.e., 3 experiments each with a 3-by-1 state vector implies 9 estimated
initial states in total. The simulated and true outputs are shown in a plot window, and as can be seen
the fit is decent but not as good as desired.

clf
compare(z, nlgr);
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Figure 3: Comparison between true outputs and the simulated outputs of the initial two body model.

Parameter Estimation

In order to improve the fit, the four parameters are next estimated. We use data from the first and
last experiments in the estimation phase and keep the data from the second experiment for pure
validation purposes.

opt  = nlgreyestOptions('Display', 'on');
nlgr = nlgreyest(getexp(z, [1 3]), nlgr, opt);

Performance of the Estimated Two Body Model

In order to investigate the performance of the estimated model, a simulation of it is finally performed.
By tailoring the initial state structure array of nlgr it is possible to fully specify which states to
estimate per experiment in, e.g., COMPARE. Let us here define and use a structure where initial
states x1(0) and x2(0) are estimated for experiment 1, x2(0) for experiment 2, and x3(0) for
experiment 3. With this modification, a comparison between measured and model outputs is shown in
a plot window.

nlgr.InitialStates = struct('Name', getinit(nlgr, 'Name'),                ...
                            'Unit', getinit(nlgr, 'Unit'),                ...
                            'Value' , zeros(1, 3), 'Minimum', -Inf(1, 3), ...
                            'Maximum', Inf(1, 3), 'Fixed',                ...
                            {[false false true]; [true false true]; [true true false]});
compare(z, nlgr, compareOptions('InitialCondition', 'model'));
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Figure 4: Comparison between true outputs and the simulated outputs of the estimated two body
model.

Of special interest is the result with data from the second experiment, which were not used for the
parameter estimation. The dynamics of the true system is clearly modeled quite well for all
experiments. The estimated parameters are also rather close to the ones used to generate the
experimental data:

disp('   True          Estimated parameter vector');

   True          Estimated parameter vector

ptrue = [400; 2e3; 0.0001; 1700];
fprintf('   %10.5f    %10.5f\n', [ptrue'; getpvec(nlgr)']);

    400.00000     402.11783
   2000.00000    1986.02824
      0.00010       0.00011
   1700.00000    1705.29327

By finally using the PRESENT command, we can get additional information about the estimated
model:

present(nlgr);

                                                                                                    
nlgr =                                                                                              
Continuous-time nonlinear grey-box model defined by 'twobodies_c' (MEX-file):                       
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   dx/dt = F(t, u(t), x(t), p1, ..., p4)                                                            
    y(t) = H(t, u(t), x(t), p1, ..., p4) + e(t)                                                     
                                                                                                    
 with 1 input(s), 3 state(s), 1 output(s), and 4 free parameter(s) (out of 4).                      
                                                                                                    
 Inputs:                                                                                            
    u(1)  Exogenous force(t) [N]                                                                    
 States:                                               Initial value                                
    x(1)  Position of moving body(t) [m]                 xinit@exp1   0   (estimated) in [-Inf, Inf]
                                                         xinit@exp2   0   (estimated) in [-Inf, Inf]
                                                         xinit@exp3   0   (fixed) in [-Inf, Inf]    
    x(2)  Velocity of moving body(t) [m/s]               xinit@exp1   0   (fixed) in [-Inf, Inf]    
                                                         xinit@exp2   0   (estimated) in [-Inf, Inf]
                                                         xinit@exp3   0   (fixed) in [-Inf, Inf]    
    x(3)  Dry friction force between the bodies(t) [N]   xinit@exp1   0   (fixed) in [-Inf, Inf]    
                                                         xinit@exp2   0   (fixed) in [-Inf, Inf]    
                                                         xinit@exp3   0   (estimated) in [-Inf, Inf]
 Outputs:                                                                                           
    y(1)  Position of moving body(t) [m]                                                            
 Parameters:                                         Value                                          
    p1   Mass of the moving body [m]                         402.118      (estimated) in [-Inf, Inf]
    p2   Sliding friction force coefficient [kg/s]           1986.03      (estimated) in [-Inf, Inf]
    p3   Distance-related dry friction parameter [m]     0.000105164      (estimated) in [-Inf, Inf]
    p4   Force-related dry friction parameter [N]            1705.29      (estimated) in [-Inf, Inf]
                                                                                                    
Name: Two body system                                                                               
                                                                                                    
Status:                                                                                             
Model modified after estimation.                                                                    
More information in model's "Report" property.                                                      

Conclusions

This example described how to use multiple experiment data when performing IDNLGREY modeling.
Any number of experiments can be employed, and for each such experiment it is possible to fully
specify which initial state or states to estimate in NLGREYEST, COMPARE, PREDICT, and so on.

Additional Information

For more information on identification of dynamic systems with System Identification Toolbox™ visit
the System Identification Toolbox product information page.
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Industrial Three-Degrees-of-Freedom Robot: C MEX-File
Modeling of MIMO System Using Vector/Matrix Parameters

This example shows how to design C-MEX model files that involve scalar, vector as well as matrix
parameters. As a modeling basis, we will use a somewhat idealized industrial robot, where the left-
hand sides of the derived state space equations are not explicitly given. To make it a little bit more
illustrative, we will also employ multiple experiment data in the identification part.

Modeling of the Manutec R3 Robot

The considered robot, the Manutec r3, was originally manufactured by Manutec, a Siemens
subsidiary company. In reality, the robot comprises six different links, three for positioning a tool
center and three for orienting the tool itself. Here we will just consider the modeling of a robot with
the three degrees of freedom related to the movement of the tool center. The components of the robot
will be modeled as rigid bodies connected by rotational joints with one degree of freedom. Friction
and other complex phenomena in the gear-boxes as well as the dynamics of the motors and the
sensors are neglected. Even with these simplifications, the resulting model structure is, as we shall
see, rather intricate.

The model structure used for the identification experiments conducted below was described in detail
in the document:

M. Otter and S. Turk. The DFVLR Models 1 and 2 of the Manutec r3 Robot. Institute for Robotics and
System Dynamics, German Aerospace Research Establishment (DLR), Oberpfaffenhofen, May 1988.

and parameter estimation based on the simplified Manutec r3 robot has earlier been considered in
the book:

K. Schittkowski. Numerical Data Fitting in Dynamical Systems. Kluwer Academic Publishers, pages
239-242, 2002.

Figure 1 shows a schematic picture of the Manutec r3 robot.
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Figure 1: Schematic view of a Manutec r3 robot.

The dynamics of the simplified Manutec r3 robot is given by the vector equation

          d^2                               d
  M(q(t)) ---- q(t) = F(u(t)) + G(q(t)) + H(-- q(t), q(t))
          dt^2                              dt

where the column vector q(t) = [q_1(t), q_2(t), q_3(t)]' describes the relative angle between arm i-1
and arm i for i = 1, 2, 3, with arm 0 corresponding to the coordinate of the fundament. The torque
controls u(t) = [u_1(t) u_2(t) u_3(t)]^T applied to the three motors represent the exogenous force
moving the robot. These signals are individually scaled (via the force coefficients Fc(1), Fc(2) and
Fc(3))) to provide the driving force:

F(u(t)) = [Fc(1)*u_1(t) Fc(2)*u_2(t) Fc(3)*u_3(t)]'

The mass matrix M(q(t)) is a rather complex symmetric and positive definite 3-by-3 matrix with
elements as follows.

  M(1, 1) = c_1(p) + c_2(p)*cos(q_2(t))^2 + c_3(p)*sin(q_2(t))^2 +
            c_4(p)*cos(q_2(t)+q_3(t)) + c_5(p)*sin(q_2(t)+q_3(t)) +
            c_6(p)*sin(q_2(t))*sin(q_2(t)+q_3(t))
  M(1, 2) = c_7(p)*cos(q_2(t)) + c_8(p)*cos(q_2(t)+q_3(t))
  M(1, 3) = c_9(p)*cos(q_2(t)+q_3(t))
  M(2, 1) = M(1, 2)
  M(2, 2) = c_10(p) + c_11(p)*cos(q_3(t))
  M(2, 3) = c_12(p) + c_13(p)*cos(q_3(t))
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  M(3, 1) = M(1, 3)
  M(3, 2) = M(2, 3)
  M(3, 3) = c_14(p)

where c_1(p), ..., c_14(p) are 14 functions of the robot parameters p.

The robot is also affected by two additional forces. The first one, G(q(t)), is caused by gravity and has
elements

         G_1(p) = 0
  G(p) = G_2(p) = b_1(p)*sin(q_2(t)) + b_2(p)*sin(q_2(t)+q_3(t))
         G_3(p) = b_3(p)*sin(q_2(t)+q_3(t))

where b_1(p), ..., b_3(p) are three functions of the parameters p. The second force, h(d/dt q(t), q(t)), is
caused by coriolis and centrifugal forces, which are computed via the so-called Christoffel symbols

                   d                  d                  d
  g_ijk = -0.5*(-------- M(i, j) + -------- M(i, k) - -------- M(j, k))
                d q_k(t)           d q_j(t)           d q_k(t)

as

      d                 3   3        d          d
  H_i(-- q(t), q(t)) = sum(sum(g_ijk*-- q_k(t))*-- q_j(t))
      dt               j=1 k=1       dt         dt

for i = 1, 2, 3.

The mass matrix M(q(t)) is invertible (for physically interesting angles), which means that the
dynamics of the robot can be written

  d^2                -1                       d
  ---- q(t) = M(q(t))  (F(u(t)) + G(q(t)) + H(-- q(t), q(t)))
  dt^2                                        dt

By introducing the states

x_1(t) = q_1(t), relative angle between fundament and arm 1.

x_2(t) = q_2(t), relative angle between arm 1 and arm 2.

x_3(t) = q_3(t), relative angle between arm 2 and arm 3.

x_4(t) = d/dt q_1(t), relative velocity between fundament and arm 1.

x_5(t) = d/dt q_2(t), relative velocity between arm 1 and arm 2.

x_6(t) = d/dt q_3(t), relative velocity between arm 2 and arm 3.

we end up with a state space model structure suitable for IDNLGREY modeling. In summary, this
model involves 3 inputs, 6 states, 3 outputs, and 28 different model parameters or constants.

IDNLGREY Manutec R3 Robot Model Object

The C-MEX model file developed for this application is quite intricate. We will leave out many of its
details and only provide an outline of it; the interested reader is referred to robot_c.c for the
complete picture. The above equations result in a robot model with 28 (= Np) different parameters or
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constants, that for logical reasons are put into 10 (= Npo) unique parameter objects: 3 scalar ones, 5
vectors, and 2 matrices. The state update function, compute_dx, has the following reduced input
argument list:

  void compute_dx(double *dx, double *x, double *u, double **p)

where p holds the 10 parameter objects:

• g = p[0], pl = p[5] and Ia1 = p[8] are scalars.
• Fc = p[1], r = p[2], Im = p[3], m = p[4] and L = p[6] are column vectors with two or three entries.
• com = p[7] is a 2-by-2 matrix and Ia = p[9] a 4-by-2 matrix.

The scalars are as usual referenced as p[0] (p(1) in a MATLAB file) and the i:th vector element as
p[i-1] (p(i) in a MATLAB file). The matrices passed to a C-MEX model file are different in the sense
that the columns are stacked upon each other in the obvious order. Hence com(1, 1) is referred as
com[0], com(2, 1) as com[1], com(1, 2) as com[3], and com(2, 2) as com[3]. Similarly, the eight
elements of Ia are obtained via Ia[i] for i = 0, 1, ..., 7.

With this, compute_dx involves the following computational steps (note that many assignments are
left out here). The purpose of steps A-E is to restructure the equations so that the states can be
explicitly computed.

  void compute_dx(double *dx, double *x, double *u, double **p)
  {
      /* Declaration of model parameters and intermediate variables. */
      double *g, *Fc, *r, *Im, *m, *pl, *L, *com, *Ia1, *Ia;
      double M[3][3];      /* Mass matrix.                                */
      ...

      /* Retrieve model parameters. */
      ...

      /* A. Components of the symmetric and positive definite mass matrix M(x, p), a 3x3 matrix. */
      M[0][0] = Ia1[0] + r[0]*r[0]*Im[0] + com[2]*com[2]*m[1] ...
      ...
      M[2][2] = Ia[4] + r[2]*r[2]*Im[2] + com[3]*com[3]*m[1] + L[1]*L[1]*pl[0];

      /* B. Inputs. */
      F[0] = Fc[0]*u[0]; ...

      /* C. Gravitational forces G. */
      G[0] = 0; ...

      /* D. Coriolis and centrifugal force components Gamma and forces H. */
      Gamma[1] = (Ia[6] - Ia[5] - com[3]*com[3]*m[1] ...

      /* E. Compute inverse of M. */
      Det = M[0][0]*M[1][1]*M[2][2] + 2*M[0][1]*M[1][2]*M[0][2] ...

      /* State equations. */
      /* x[0]: Relative angle between fundament and arm 1. */
      /* x[1]: Relative angle between arm 1 and arm 2. */
      /* x[2]: Relative angle between arm 2 and arm 3. */
      /* x[3]: Relative velocity between fundament and arm 1. */
      /* x[4]: Relative velocity between arm 1 and arm 2. */
      /* x[5]: Relative velocity between arm 2 and arm 3. */
      dx[0] = x[3];
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      dx[1] = x[4];
      dx[2] = x[5];
      dx[3] = Minv[0][0]*(F[0]+G[0]+H[0]) + Minv[0][1]*(F[1]+G[1]+H[1]) + Minv[0][2]*(F[2]+G[2]+H[2]);
      dx[4] = Minv[0][1]*(F[0]+G[0]+H[0]) + Minv[1][1]*(F[1]+G[1]+H[1]) + Minv[1][2]*(F[2]+G[2]+H[2]);
      dx[5] = Minv[0][2]*(F[0]+G[0]+H[0]) + Minv[1][2]*(F[1]+G[1]+H[1]) + Minv[2][2]*(F[2]+G[2]+H[2]);
  }

The output update function, compute_y, is appreciably simpler:

  /* Output equations. */
  void compute_y(double y[], double x[])
  {
      /* y[0]: Relative angle between fundament and arm 1. */
      /* y[1]: Relative angle between arm 1 and arm 2. */
      /* y[2]: Relative angle between arm 2 and arm 3. */
      y[0] = x[0];
      y[1] = x[1];
      y[2] = x[2];
  }

Consult the "Creating IDNLGREY Model Files" example for further details about C-MEX model files.

We now have sufficient knowledge to create an IDNLGREY object reflecting the movement of the
simplified Manutec r3 robot. We start by describing the inputs:

InputName = {'Voltage applied to motor moving arm 1'; ...
             'Voltage applied to motor moving arm 2'; ...
             'Voltage applied to motor moving arm 3'};
InputUnit = {'V'; 'V'; 'V'};

Next, we define the six states, the first three being the outputs:

StateName  = {'\Theta_1'; ...   % Relative angle between fundament and arm 1
              '\Theta_2'; ...   % Relative angle between arm 1 and arm 2
              '\Theta_3'; ...   % Relative angle between arm 2 and arm 3
              'Vel_1'; ...     % Relative velocity between fundament and arm 1
              'Vel_2'; ...     % Relative velocity between arm 1 and arm 2
              'Vel_3'...       % Relative velocity between arm 2 and arm 3
              };
StateUnit  = {'rad'; 'rad'; 'rad'; 'rad/s'; 'rad/s'; 'rad/s'};
OutputName = StateName(1:3);
OutputUnit = StateUnit(1:3);

As mentioned earlier, the model involves 28 different parameters or constants that are lumped into 10
different parameter objects as follows. Notice that some of the parameters, by physical reasoning, are
specified to have distinct minimum values. These minimum parameter values are defined in a cell
array with elements of the same size as are used for specifying the parameter values.

ParName  = {'Gravity constant';                          ... % g, scalar.
            'Voltage-force constant of motor';           ... % Fc, 3-by-1 vector, for motor 1, 2, 3.
            'Gear ratio of motor';                       ... % r, 3-by-1 vector, for motor 1, 2, 3.
            'Moment of inertia of motor';                ... % Im, 3-by-1 vector, for motor 1, 2, 3.
            'Mass of arm 2 and 3 (incl. tool)';          ... % m, 2-by-1 vector, for arm 2 and 3.
            'Point mass of payload';                     ... % pl, scalar.
            'Length of arm 2 and 3 (incl. tool)';        ... % L, 2-by-1 vector, for arm 2 and 3.
            'Center of mass coordinates of arm 2 and 3'; ... % com, 2-by-2 matrix, 1:st column for arm 2 (x-,z-coord), 2:nd for arm 3.
            'Moment of inertia arm 1, element (3,3)';    ... % Ia1, scalar.
            'Moment of inertia arm 2 and 3'              ... % Ia, 4-by-2 matrix. 1:st column for arm 2, 2:nd for arm 3;
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                                                         ... % column elements: 1: (1,1); 2: (2,2); 3: (3,3); 4: (1,3) and (3,1).
           };
ParUnit  = {'m/s^2'; 'N*m/V'; ''; 'kg*m^2'; 'kg'; 'kg'; 'm'; 'm'; 'kg*m^2'; 'kg*m^2'};
ParValue = {9.81; [-126; 252; 72]; [-105; 210; 60]; [1.3e-3; 1.3e-3; 1.3e-3]; ...
            [56.5; 60.3]; 10; [0.5; 0.98]; [0.172 0.028; 0.205 0.202];        ...
            1.16; [2.58 11.0; 2.73 8.0; 0.64 0.80; -0.46 0.50]};
ParMin   = {eps(0); -Inf(3, 1); -Inf(3, 1); eps(0)*ones(3, 1); [40; 40]; ...
            eps(0); eps(0)*ones(2, 1); eps(0)*ones(2); -Inf; -Inf(4, 2)};
ParMax   = Inf;   % No maximum constraint.

After having specified the model file, the initial state, and so on, a Manutec r3 IDNLGREY model
object is created as follows:

FileName      = 'robot_c';               % File describing the model structure.
Order         = [3 3 6];                 % Model orders [ny nu nx].
Parameters    = struct('Name', ParName, 'Unit', ParUnit, 'Value', ParValue, ...
                       'Minimum', ParMin, 'Maximum', ParMax, 'Fixed', false);
InitialStates = struct('Name', StateName, 'Unit', StateUnit, 'Value', 0, ...
                       'Minimum', -Inf, 'Maximum', Inf, 'Fixed', true);
Ts            = 0;                       % Time-continuous system.
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts,     ...
                'Name', 'Manutec r3 robot', 'InputName', InputName, ...
                'InputUnit', InputUnit, 'OutputName', OutputName,   ...
                'OutputUnit', OutputUnit,  'TimeUnit', 's');

Input-Output Data

Next we load the available input-output data. The outputs were here simulated using the above
IDNLGREY model structure. Before storage, the outputs were corrupted by some additive noise.

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'robotdata'));

The file holds data from two different (simulation) experiments each holding 101 input-output
samples generated using a sampling rate (Ts) of 0.02 seconds. Starting with a zero initial state, the
inputs to the three motors [V] used in the experiments were all kept constant:

  u(t) = [u_1(t) u_2(t) u_3(t)]^T =  [0.20 0.05 0.03]^T   % Experiment 1.
  u(t) = [u_1(t) u_2(t) u_3(t)]^T = -[0.20 0.05 0.03]^T   % Experiment 2.

The generated outputs hold data according to the above description. For our modeling purposes, we
create one IDDATA object z containing data from the two experiments:

z = merge(iddata(y1, u1, 0.02), iddata(y2, u2, 0.02));
z.Name = 'Manutec r3 robot';
z.InputName = nlgr.InputName;
z.InputUnit = nlgr.InputUnit;
z.OutputName = nlgr.OutputName;
z.OutputUnit = nlgr.OutputUnit;
z.Tstart = 0;
z.TimeUnit = 's';

Performance of the Initial Manutec R3 Robot Model

Before proceeding with parameter estimation we simulate the model using the initial parameter
values. We use the default differential equation solver (ode45) with a somewhat higher requirement
on the relative accuracy than what is used by default. The simulated and true outputs are shown in a
plot window, and as is indicated the fit is already now decent (maybe except for the fit between true
and simulated relative angle between arm 2 and arm 3, i.e., the third output).
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nlgr.SimulationOptions.RelTol = 1e-5;
compare(z, nlgr);

Figure 2: Comparison between true outputs and the simulated outputs of the initial Manutec r3
robot model.

Parameter Estimation

Identification of the Manutec r3 parameters is quite demanding, partly because the available data is
rather limited in terms of excitation, and partly because of the highly nonlinear nature of the robot
dynamics. In order to simplify the task, we only estimate the last four parameters, i.e., the moments
of inertia related to arm 3 and the tool:

for k = 1:size(nlgr, 'Npo')-1   % Fix all parameters of the first 9 parameter objects.
    nlgr.Parameters(k).Fixed = true;
end
nlgr.Parameters(end).Fixed(:, 1) = true;   % Fix the moment of inertia parameters for arm 2.

This time we use a Levenberg-Marquardt search algorithm.

opt = nlgreyestOptions('SearchMethod', 'lm', 'Display', 'on');
nlgr = nlgreyest(z, nlgr, opt);

Performance of the Estimated Manutec R3 Robot Model

The performance of the estimated Manutec r3 robot is next investigated through a simulation.

compare(z, nlgr);
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Figure 3: Comparison between true outputs and the simulated outputs of the estimated Manutec r3
robot model.

As can be seen in the figure, the fit between simulated and true outputs have improved considerably,
especially when it comes to the third output (the relative angle between arm 2 and arm 3). The true
and the estimated parameters are quite close to each other:

disp('   True     Estimated parameter vector');

   True     Estimated parameter vector

ptrue = [9.81; -126; 252; 72; -105; 210; 60; 1.3e-3; 1.3e-3; 1.3e-3; ...
         56.5; 60.3; 10; 0.5; 0.98; 0.172; 0.205; 0.028; 0.202; 1.16; ...
         2.58; 2.73; 0.64; -0.46; 5.41; 5.60; 0.39; 0.33];
fprintf('   %1.3f    %1.3f\n', ptrue(25), nlgr.Parameters(end).Value(1, 2));

   5.410    5.414

fprintf('   %1.3f    %1.3f\n', ptrue(26), nlgr.Parameters(end).Value(2, 2));

   5.600    5.609

fprintf('   %1.3f    %1.3f\n', ptrue(27), nlgr.Parameters(end).Value(3, 2));

   0.390    0.390

fprintf('   %1.3f    %1.3f\n', ptrue(28), nlgr.Parameters(end).Value(4, 2));

   0.330    0.331
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Let us further investigate the estimated Manutec r3 robot model via the PRESENT command:

present(nlgr);

                                                                                                                        
nlgr =                                                                                                                  
Continuous-time nonlinear grey-box model defined by 'robot_c' (MEX-file):                                               
                                                                                                                        
   dx/dt = F(t, u(t), x(t), p1, ..., p10)                                                                               
    y(t) = H(t, u(t), x(t), p1, ..., p10) + e(t)                                                                        
                                                                                                                        
 with 3 input(s), 6 state(s), 3 output(s), and 4 free parameter(s) (out of 28).                                         
                                                                                                                        
 Inputs:                                                                                                                
    u(1)   Voltage applied to motor moving arm 1(t) [V]                                                                 
    u(2)   Voltage applied to motor moving arm 2(t) [V]                                                                 
    u(3)   Voltage applied to motor moving arm 3(t) [V]                                                                 
 States:                     Initial value                                                                              
    x(1)   \Theta_1(t) [rad]   xinit@exp1   0   (fixed) in [-Inf, Inf]                                                  
                               xinit@exp2   0   (fixed) in [-Inf, Inf]                                                  
    x(2)   \Theta_2(t) [rad]   xinit@exp1   0   (fixed) in [-Inf, Inf]                                                  
                               xinit@exp2   0   (fixed) in [-Inf, Inf]                                                  
    x(3)   \Theta_3(t) [rad]   xinit@exp1   0   (fixed) in [-Inf, Inf]                                                  
                               xinit@exp2   0   (fixed) in [-Inf, Inf]                                                  
    x(4)   Vel_1(t) [rad/s]    xinit@exp1   0   (fixed) in [-Inf, Inf]                                                  
                               xinit@exp2   0   (fixed) in [-Inf, Inf]                                                  
    x(5)   Vel_2(t) [rad/s]    xinit@exp1   0   (fixed) in [-Inf, Inf]                                                  
                               xinit@exp2   0   (fixed) in [-Inf, Inf]                                                  
    x(6)   Vel_3(t) [rad/s]    xinit@exp1   0   (fixed) in [-Inf, Inf]                                                  
                               xinit@exp2   0   (fixed) in [-Inf, Inf]                                                  
 Outputs:                                                                                                               
    y(1)   \Theta_1(t) [rad]                                                                                            
    y(2)   \Theta_2(t) [rad]                                                                                            
    y(3)   \Theta_3(t) [rad]                                                                                            
 Parameters:                                                     Value Standard Deviation                               
    p1        Gravity constant [m/s^2]                                9.81                0   (fixed) in ]0, Inf]       
   p2(1)      Voltage-force constant of motor [N*m/V]                 -126                0   (fixed) in [-Inf, Inf]    
   p2(2)                                                               252                0   (fixed) in [-Inf, Inf]    
   p2(3)                                                                72                0   (fixed) in [-Inf, Inf]    
   p3(1)      Gear ratio of motor                                     -105                0   (fixed) in [-Inf, Inf]    
   p3(2)                                                               210                0   (fixed) in [-Inf, Inf]    
   p3(3)                                                                60                0   (fixed) in [-Inf, Inf]    
   p4(1)      Moment of inertia of motor [kg*m^2]                   0.0013                0   (fixed) in ]0, Inf]       
   p4(2)                                                            0.0013                0   (fixed) in ]0, Inf]       
   p4(3)                                                            0.0013                0   (fixed) in ]0, Inf]       
   p5(1)      Mass of arm 2 and 3 (incl. tool) [kg]                   56.5                0   (fixed) in [40, Inf]      
   p5(2)                                                              60.3                0   (fixed) in [40, Inf]      
    p6        Point mass of payload [kg]                                10                0   (fixed) in ]0, Inf]       
   p7(1)      Length of arm 2 and 3 (incl. tool) [m]                   0.5                0   (fixed) in ]0, Inf]       
   p7(2)                                                              0.98                0   (fixed) in ]0, Inf]       
   p8(1,1)    Center of mass coordinates of arm 2 and 3 [m]          0.172                0   (fixed) in ]0, Inf]       
   p8(2,1)                                                           0.205                0   (fixed) in ]0, Inf]       
   p8(1,2)                                                           0.028                0   (fixed) in ]0, Inf]       
   p8(2,2)                                                           0.202                0   (fixed) in ]0, Inf]       
    p9        Moment of inertia arm 1, element (3,3) [kg*m^2]         1.16                0   (fixed) in [-Inf, Inf]    
   p10(1,1)   Moment of inertia arm 2 and 3 [kg*m^2]                  2.58                0   (fixed) in [-Inf, Inf]    
   p10(2,1)                                                           2.73                0   (fixed) in [-Inf, Inf]    
   p10(3,1)                                                           0.64                0   (fixed) in [-Inf, Inf]    
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   p10(4,1)                                                          -0.46                0   (fixed) in [-Inf, Inf]    
   p10(1,2)                                                        5.41371      1.80292e-11   (estimated) in [-Inf, Inf]
   p10(2,2)                                                        5.60905      7.67168e-11   (estimated) in [-Inf, Inf]
   p10(3,2)                                                       0.389978      1.58707e-12   (estimated) in [-Inf, Inf]
   p10(4,2)                                                       0.330506      2.25628e-12   (estimated) in [-Inf, Inf]
                                                                                                                        
Name: Manutec r3 robot                                                                                                  
                                                                                                                        
Status:                                                                                                                 
Termination condition: Near (local) minimum, (norm(g) < tol)..                                                          
Number of iterations: 10, Number of function evaluations: 49                                                            
                                                                                                                        
Estimated using Solver: ode45; Search: lm on time domain data "Manutec r3 robot".                                       
Fit to estimation data: [99.99 99.99;99.92 99.93;99.97 99.97]%                                                          
FPE: 9.788e-25, MSE: [2.821e-08 3.086e-08]                                                                              
More information in model's "Report" property.                                                                          

Some Identification Remarks

In this case we obtain parameters very close to the true ones. However, generally speaking there are
a number of reasons for why the true parameters might not be found:

1 The available data is not "informative enough" for identifying the parameters (the data is not
persistently exciting).

2 The data is corrupted by so much noise that it is virtually impossible to find the true parameters.
3 A local and not the searched-for global minimum is found. This risk is always present when using

iterative search algorithms.
4 The parameters of the model structure are not uniquely identifiable. Generally speaking, this risk

becomes larger when more parameters are estimated. (Estimating all 28 parameters of the
Manutec r3 robot, e.g., typically leads to some physically impossible parameter values.)

5 The model structure is just "too complex" or contains nonlinearities that are not "sufficiently
smooth".

Conclusions

The main purpose of this tutorial has been to illustrate how to include parameters that are vectors or
matrices in an IDNLGREY C-MEX modeling framework. In addition, we did this for a robot modeling
example, where the equations had to be manipulated in order to fit into the required explicit state
space form.
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Non-Adiabatic Continuous Stirred Tank Reactor: MATLAB File
Modeling with Simulations in Simulink®

This example shows how to include and simulate an IDNLGREY model in Simulink®. We use a
chemical reaction system as a modeling basis. The first modeling and identification part of the
example can be run without Simulink.

Modeling A Non-Adiabatic Continuous Stirred Tank Reactor

A rather common chemical system encountered in the process industry is the Continuously Stirred
Tank Reactor (CSTR). Here we will study a jacketed diabatic (i.e., non-adiabatic) tank reactor
described extensively in Bequette's book "Process Dynamics: Modeling, Analysis and Simulation",
published by Prentice-Hall, 1998. The vessel is assumed to be perfectly mixed, and a single first-order
exothermic and irreversible reaction, A --> B, takes place. A schematic diagram of the vessel and the
surrounding cooling jacket is shown in a plot window. Notice that this is a sketch; in reality the
coolant flow is, e.g., normally surrounding the whole reactor jacket, and not just the bottom of it.

Figure 1: Schematic diagram of a CSTR.

A model of the CSTR is required for more advanced control approaches. The inlet stream of reagent A
is fed at a constant rate F. After stirring, the end product streams out of the vessel at the same rate as
reagent A is fed into the tank (the volume V in the reactor tank is thus kept constant). The control
strategy requires that the jacket temperature u_3(t) is manipulated in order to keep the concentration
of reagent A y_1(t) at the desired level, in spite of disturbances arising from the inlet feed stream
concentration and temperature (inputs u_1(t) and u_2(t), respectively). As the temperature in the tank
y_2(t) can vary significantly during operation of the reactor, it is also desirable to ensure that this
process variable is kept within reasonable limits.
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Modeling the CSTR

The CSTR system is modeled using basic accounting and energy conservation principles. The change
of the concentration of reagent A in the vessel per time unit d C_A(t)/dt (= d y_1(t)/dt) can be
modeled as:

  d C_A(t)
  -------- = F/V*(C_Af(t)-C_A(t)) - r(t)
     dt

where the first term expresses concentration changes due to differences between the concentration
of reagent A in the inlet stream and in the vessel, and the second term expresses concentration
changes (reaction rate) that occurs due to the chemical reaction in the vessel. The reaction rate per
unit volume is described by Arrhenius rate law:

  r(t) = k_0*exp(-E/(R*T(t)))*C_A(t)

which states that the rate of a chemical reaction increases exponentially with the absolute
temperature. k_0 is here an unknown nonthermal constant, E is the activation energy, R Boltzmann's
ideal gas constant and T(t) (= y_2(t)) the temperature in the reactor.

Similarly, using the energy balance principle (assuming constant volume in the reactor), the
temperature change per time unit d T(t)/dt in the reactor can be modeled as:

  d T(t)
  ------ = F/V(T_f(t)-T(t)) - (H/c_p*rho)*r(t) - (U*A)/(c_p*rho*V)*(T(t)-T_j(t))
    dt

where the first and third terms describe changes due to that the feed stream temperature T_f(t) and
the jacket coolant temperature T_j(t) differ from the reactor temperature, respectively. The second
term is the influence on the reactor temperature caused by the chemical reaction in the vessel. In this
equation, H is a heat of reaction parameter, c_p a heat capacity term, rho a density term, U an overall
heat transfer coefficient and A the area for the heat exchange (coolant/vessel area).

Put together, the CSTR has three input signals:

  u_1(t) = C_Af(t)  Concentration of A in inlet feed stream [kgmol/m^3].
  u_2(t) = T_f(t)   Inlet feed stream temperature [K].
  u_3(t) = T_j(t)   Jacket coolant temperature [K].

and two output signals:

  y_1(t) = C_A(t)   Concentration of A in reactor tank [kgmol/m^3].
  y_2(t) = T(t)     Reactor temperature [K].

which also are the natural model states, i.e., y_1(t) = x_1(t) and y_2(t) = x_2(t).

After lumping together some of the original parameters we end up with eight different model
parameters:

  F               Volumetric flow rate (volume/time) [m^3/h].   Fixed.
  V               Volume in reactor [m^3].                      Fixed.
  k_0             Pre-exponential nonthermal factor [1/h].      Free.
  E               Activation energy [kcal/kgmol].               Free.
  R               Boltzmann's gas constant [kcal/(kgmol*K)].    Fixed.
  H               Heat of reaction [kcal/kgmol].                Fixed.
  HD = c_p*rho    Heat capacity times density [kcal/(m^3*K)].   Free.
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  HA = U*A        Overall heat transfer coefficient times tank
                  area [kcal/(K*h)]                             Free.

Four of the parameters are here specified to be free (i.e., to be estimated). In practice, one could
probably also determine the pre-exponential nonthermal factor k_0 and the activation energy E from
bench scale experiments. This would then simplify the identification task to only consider two
unknowns: the heat capacity c_p and the overall heat transfer coefficient U (which are inferred from
HD and HA, respectively, as rho and A are known).

With the above introduced notation, the following state-space representation is obtained for the
CSTR.

  d x_1(t)
  -------- =  F/V*(u_1(t)-x_1(t)) - k_0*exp(-E/(R*x_2(t)))*x_1(t)
     dt

  d x_2(t)
  -------- =   F/V(u_2(t)-x_2(t)) - (H/HD)*k_0*exp(-E/(R*x_2(t)))*x_1(t)
     dt      - (HA/(HD*V))*(x_2(t)-u_3(t))

    y_1(t) = x_1(t)
    y_2(t) = x_2(t)

Creating A Non-Adiabatic Continuous Stirred Tank Reactor IDNLGREY Object

This information is entered into a MATLAB file named cstr_m.m with the following content.

  function [dx, y] = cstr_m(t, x, u, F, V, k_0, E, R, H, HD, HA, varargin)
  %CSTR_M  A non-adiabatic Continuous Stirred Tank Reactor (CSTR).

  % Output equations.
  y = [x(1);               ... % Concentration of substance A in the reactor.
       x(2)                ... % Reactor temperature.
      ];

  % State equations.
  dx = [F/V*(u(1)-x(1))-k_0*exp(-E/(R*x(2)))*x(1); ...
        F/V*(u(2)-x(2))-(H/HD)*k_0*exp(-E/(R*x(2)))*x(1)-(HA/(HD*V))*(x(2)-u(3)) ...
       ];

An IDNLGREY object reflecting the modeling situation is next created.

FileName      = 'cstr_m';                          % File describing the model structure.
Order         = [2 3 2];                           % Model orders [ny nu nx].
Parameters    = [1; 1; 35e6; 11850; ...            % Initial parameters.
                 1.98589; -5960; 480; 145];
InitialStates = [8.5695; 311.267];                 % Initial value of the initial states.
Ts            = 0;                                 % Time-continuous system.
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts, 'Name', ...
                'Stirred tank reactor',  ...
                'TimeUnit', 'hours');

The inputs, states and outputs of the CSTR model structure are specified using the methods SET and
SETINIT. We also specify that the initial states by default should be estimated.

nlgr.InputName = {'Concentration of A in inlet feed stream'   ...   % u(1).
                         'Inlet feed stream temperature'             ...   % u(2).
                         'Jacket coolant temperature'};                % u(3).
nlgr.InputUnit = {'kgmol/m^3' 'K' 'K'};
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nlgr = setinit(nlgr, 'Name', {'Concentration of A in reactor tank'          ...   % x(1).
                       'Reactor temperature'});                      ...   % x(2).
nlgr = setinit(nlgr, 'Unit', {'kgmol/m^3' 'K'});
nlgr = setinit(nlgr, 'Fixed', {false false});
nlgr.OutputName = {'A Concentration' ...   % y(1); Concentration of A in reactor tank
                         'Reactor temp.'};   % y(2).
nglr.OutputUnit = {'kgmol/m^3' 'K'};

The parameters of the CSTR model structure are defined and F, V, R and H are specified to be fixed.

nlgr = setpar(nlgr, 'Name', {'Volumetric flow rate (volume/time)'                   ...   % F.
                      'Volume in reactor'                                    ...   % V.
                      'Pre-exponential nonthermal factor'                    ...   % k_0.
                      'Activation energy'                                    ...   % E.
                      'Boltzmann''s ideal gas constant'                       ...   % R.
                      'Heat of reaction'                                     ...   % H.
                      'Heat capacity times density'                          ...   % HD.
                      'Overall heat transfer coefficient times tank area'}); ...   % HA.
nlgr = setpar(nlgr, 'Unit', {'m^3/h' 'm^3' '1/h' 'kcal/kgmol' 'kcal/(kgmol*K)'      ...
                      'kcal/kgmol' 'kcal/(m^3*K)' 'kcal/(K*h)'});
nlgr.Parameters(1).Fixed = true;   % Fix F.
nlgr.Parameters(2).Fixed = true;   % Fix V.
nlgr.Parameters(5).Fixed = true;   % Fix R.
nlgr.Parameters(6).Fixed = true;   % Fix H.

Through physical reasoning we also know that all but the heat of reaction parameter (always negative
because the reaction is exothermic) are positive. Let us also incorporate this (somewhat crude)
knowledge into our CSTR model structure:

nlgr.Parameters(1).Minimum = 0;   % F.
nlgr.Parameters(2).Minimum = 0;   % V.
nlgr.Parameters(3).Minimum = 0;   % k_0.
nlgr.Parameters(4).Minimum = 0;   % E.
nlgr.Parameters(5).Minimum = 0;   % R.
nlgr.Parameters(6).Maximum = 0;   % H.
nlgr.Parameters(7).Minimum = 0;   % HD.
nlgr.Parameters(8).Minimum = 0;   % HA.

A summary of the entered CSTR model structure is next obtained through the PRESENT command:

present(nlgr);

                                                                                                                
nlgr =                                                                                                          
Continuous-time nonlinear grey-box model defined by 'cstr_m' (MATLAB file):                                     
                                                                                                                
   dx/dt = F(t, u(t), x(t), p1, ..., p8)                                                                        
    y(t) = H(t, u(t), x(t), p1, ..., p8) + e(t)                                                                 
                                                                                                                
 with 3 input(s), 2 state(s), 2 output(s), and 4 free parameter(s) (out of 8).                                  
                                                                                                                
 Inputs:                                                                                                        
    u(1)  Concentration of A in inlet feed stream(t) [kgmol/m^3]                                                
    u(2)  Inlet feed stream temperature(t) [K]                                                                  
    u(3)  Jacket coolant temperature(t) [K]                                                                     
 States:                                                    Initial value                                       
    x(1)  Concentration of A in reactor tank(t) [kgmol/m^3]   xinit@exp1    8.5695   (estimated) in [-Inf, Inf] 
    x(2)  Reactor temperature(t) [K]                          xinit@exp1   311.267   (estimated) in [-Inf, Inf] 
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 Outputs:                                                                                                       
    y(1)  A Concentration(t)                                                                                    
    y(2)  Reactor temp.(t)                                                                                      
 Parameters:                                                            Value                                   
    p1   Volumetric flow rate (volume/time) [m^3/h]                               1      (fixed) in [0, Inf]    
    p2   Volume in reactor [m^3]                                                  1      (fixed) in [0, Inf]    
    p3   Pre-exponential nonthermal factor [1/h]                            3.5e+07      (estimated) in [0, Inf]
    p4   Activation energy [kcal/kgmol]                                       11850      (estimated) in [0, Inf]
    p5   Boltzmann's ideal gas constant [kcal/(kgmo..]                      1.98589      (fixed) in [0, Inf]    
    p6   Heat of reaction [kcal/kgmol]                                        -5960      (fixed) in [-Inf, 0]   
    p7   Heat capacity times density [kcal/(m^3*K)]                             480      (estimated) in [0, Inf]
    p8   Overall heat transfer coefficient times tank area [kcal/(K*h)]         145      (estimated) in [0, Inf]
                                                                                                                
Name: Stirred tank reactor                                                                                      
                                                                                                                
Status:                                                                                                         
Created by direct construction or transformation. Not estimated.                                                
More information in model's "Report" property.                                                                  

Input-Output Data

System identification experiment design for many nonlinear systems is typically much more involved
than for linear systems. This is also true for the CSTR, where on one hand it is desired that the
controllable input u_3 is such that it excites the system sufficiently and on the other hand it must be
chosen to be "plant-friendly" (the chemical process must be kept stable, the duration of the test
should be as short as possible so as to influence the production least, and so forth). The article in [1]
discusses the choice of input signals to the CSTR. There it is argued that a multi-sinusoidal input u_3
is advantageous to a multi-level pseudo random input signal for several reasons. In the identification
experiments below we will use two such input signals, one for estimation and one for validation
purposes, that were generated through a MATLAB® input data generation tool (a GUI) kindly
provided by the authors of the mentioned article.

We load this CSTR data and place it in two different IDDATA objects, ze for estimation and zv for
validation purposes:

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'cstrdata'));
Ts = 0.1;   % 10 samples per hour!
ze = iddata(y1, u1, 0.1, 'Name', 'Estimation data');
ze.InputName = nlgr.InputName;
ze.InputUnit = nlgr.InputUnit;
ze.OutputName = nlgr.OutputName;
ze.OutputUnit = nlgr.OutputUnit;
ze.Tstart = 0;
ze.TimeUnit = 'hour';
ze.ExperimentName = 'Estimation';
zv = iddata(y2, u2, 0.1, 'Name', 'Validation data');
zv.InputName = nlgr.InputName;
zv.InputUnit = nlgr.InputUnit;
zv.OutputName = nlgr.OutputName;
zv.OutputUnit = nlgr.OutputUnit;
zv.Tstart = 0;
zv.TimeUnit = 'hour';
zv.ExperimentName = 'Validation';

The inputs and outputs of the estimation data set ze are shown in two plots.

figure('Name', [ze.Name ': input data']);
for i = 1:ze.Nu
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   subplot(ze.Nu, 1, i);
   plot(ze.SamplingInstants, ze.InputData(:,i));
   title(['Input #' num2str(i) ': ' ze.InputName{i}]);
   xlabel('');
   axis tight;
end
xlabel([ze.Domain ' (' ze.TimeUnit ')']);

Figure 2: Estimation data set inputs to a CSTR.

figure('Name', [ze.Name ': output data']);
for i = 1:ze.Ny
   subplot(ze.Ny, 1, i);
   plot(ze.SamplingInstants, ze.OutputData(:,i));
   title(['Output #' num2str(i) ': ' ze.OutputName{i}]);
   xlabel('');
   axis tight;
end
xlabel([ze.Domain ' (' ze.TimeUnit ')']);
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Figure 3: Estimation data set outputs from a CSTR.

Before we proceed with the identification experiments, we should mention that the generated input
signals force the outputs of the CSTR to display a lot of the reactor nonlinearities (with temperature
changes of around 80 degrees overall and causing some of the "ignition" phenomena of the reactor to
be evident). Whereas this excites the reactor (typically good from an identification point of view), it is
probably not the way in which engineers would like to operate a real-world reactor, especially not one
that is as exothermic as this one. Using the guidelines described in Braun et al. (2002), one could
then redesign the experiment before it is actually carried out. In this case, it would be interesting to
try to reduce the duration of the experiment and use multi-sinusoidal input signals with shorter cycle
lengths. The aim is to reduce the low-frequency content of the controllable input signal so as to
reduce the variations in the reactor outputs.

Performance of the Initial CSTR Model

How good is the initial CSTR model? Let us investigate this by simulating the initial model using the
input signals of ze and zv and compare the computed outputs with the true outputs (obtained by
simulating the above IDNLGREY model using other parameters and adding some noise) contained in
ze and zv, respectively.

clf
compare(ze, nlgr);
figure; compare(zv, nlgr);
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Figure 4: Comparison between the true outputs and the simulated outputs of the initial CSTR model.

Parameter Estimation

The agreement between true and simulated outputs of the initial CSTR model is decent. To further
improve it, we estimate the four free model parameters as well as the initial state vector of the model
by using the estimation data set ze. We instruct NLGREYEST to display iteration information and to
perform at most 25 search iterations.

opt = nlgreyestOptions('Display', 'on');
opt.SearchOptions.MaxIterations = 25;
nlgr = nlgreyest(ze, nlgr, opt);
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If desired, the search can always be continued via a second call to NLGREYEST (or PEM). This time
NLGREYEST is instructed to not display any iteration information and to only carry out at most 5
more iterations.

opt.Display = 'off';
opt.SearchOptions.MaxIterations = 5;
nlgr = nlgreyest(ze, nlgr, opt);

Performance of the Estimated CSTR Model

To evaluate the performance of the estimated model we once again use COMPARE:
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compare(ze, nlgr);
figure; compare(zv, nlgr);
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Figure 5: Comparison between the true outputs and the simulated outputs of the estimated CSTR
model.

Visual inspection immediately reveals that the outputs of the estimated model are close to the true
outputs, both for ze and zv. The improvement is especially significant for the validation data set,
where the model fits have increased from negative values to around 70% and 99%, respectively, for
the two model outputs.

Further information about the estimated CSTR model is next returned by PRESENT:

present(nlgr);

                                                                                                                                
nlgr =                                                                                                                          
Continuous-time nonlinear grey-box model defined by 'cstr_m' (MATLAB file):                                                     
                                                                                                                                
   dx/dt = F(t, u(t), x(t), p1, ..., p8)                                                                                        
    y(t) = H(t, u(t), x(t), p1, ..., p8) + e(t)                                                                                 
                                                                                                                                
 with 3 input(s), 2 state(s), 2 output(s), and 4 free parameter(s) (out of 8).                                                  
                                                                                                                                
 Inputs:                                                                                                                        
    u(1)  Concentration of A in inlet feed stream(t) [kgmol/m^3]                                                                
    u(2)  Inlet feed stream temperature(t) [K]                                                                                  
    u(3)  Jacket coolant temperature(t) [K]                                                                                     
 States:                                                    Initial value                                                       
    x(1)  Concentration of A in reactor tank(t) [kgmol/m^3]   xinit@exp1   8.62914   (estimated) in [-Inf, Inf]                 
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    x(2)  Reactor temperature(t) [K]                          xinit@exp1   311.215   (estimated) in [-Inf, Inf]                 
 Outputs:                                                                                                                       
    y(1)  A Concentration(t)                                                                                                    
    y(2)  Reactor temp.(t)                                                                                                      
 Parameters:                                                               Value    Standard Deviation                          
    p1   Volumetric flow rate (volume/time) [m^3/h]                                   1              0   (fixed) in [0, Inf]    
    p2   Volume in reactor [m^3]                                                      1              0   (fixed) in [0, Inf]    
    p3   Pre-exponential nonthermal factor [1/h]                            3.55889e+07        17548.3   (estimated) in [0, Inf]
    p4   Activation energy [kcal/kgmol]                                         11853.9      0.0703052   (estimated) in [0, Inf]
    p5   Boltzmann's ideal gas constant [kcal/(kgmo..]                          1.98589              0   (fixed) in [0, Inf]    
    p6   Heat of reaction [kcal/kgmol]                                            -5960              0   (fixed) in [-Inf, 0]   
    p7   Heat capacity times density [kcal/(m^3*K)]                              500.71       0.194139   (estimated) in [0, Inf]
    p8   Overall heat transfer coefficient times tank area [kcal/(K*h)]         150.127      0.0697455   (estimated) in [0, Inf]
                                                                                                                                
Name: Stirred tank reactor                                                                                                      
                                                                                                                                
Status:                                                                                                                         
Termination condition: Maximum number of iterations or number of function evaluations reached..                                 
Number of iterations: 6, Number of function evaluations: 7                                                                      
                                                                                                                                
Estimated using Solver: ode45; Search: lsqnonlin on time domain data "Estimation data".                                         
Fit to estimation data: [71.36;99.18]%                                                                                          
FPE: 0.02736, MSE: 0.6684                                                                                                       
More information in model's "Report" property.                                                                                  

Simulation of the Estimated CSTR Model in Simulink

An IDNLGREY model can also be imported and used within Simulink. The Simulink model "cstr_sim"
imports the validation data set zv and passes its data to a Simulink IDNLGREY model block, which
when simulated produces outputs that together with the used input signals are stored in the MATLAB
workspace in the IDDATA object zsim. (The last five lines of code below are used to ensure that the
proper model inputs are fed to the Simulink model. This is only needed if idnlgreydemo9 is run within
a function, where access to zv and nlgr cannot be guaranteed.)

open_system('cstr_sim');
if ~evalin('base', 'exist(''zv'', ''var'')')
    cstrws = get_param(bdroot, 'modelworkspace');
    cstrws.assignin('zv', zv);
    cstrws.assignin('nlgr', nlgr);
end

Figure 6: Simulink model containing the estimated CSTR model.
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The generic IDNLGREY Simulink library block is found in the standard system identification Simulink
library and can be copied to and used in any Simulink model. For example, in the CSTR case it could
very well be used in a closed-loop control arrangement.

The IDNLGREY block must be configured before it is simulated. This is done by entering the MATLAB
workspace variable holding the IDNLGREY model (here nlgr) or by defining a proper IDNLGREY
model object using the idnlgrey constructor in the parameter edit box labeled "IDNLGREY model".
Here it is also possible to specify the initial state vector to use (default is the internally stored initial
state vector of the specified IDNLGREY object).

An IDNLGREY model object stores the properties specifying the setup of the differential/difference
equation solver used by SIM, PREDICT, NLGREYEST and so on (see nlgr.SimulationOptions for
options controlling the simulation of the model). In Simulink, these settings are always overridden so
that the options of the Simulink specified solver are used. If the IDNLGREY model object specifies
and uses a different solver, then the simulation result obtained in Simulink might be different to that
obtained with IDNLGREY/SIM in MATLAB. An example illustrating this is provided in the example
"idnlgreydemo10".

With the solver options settled, we can next perform a command prompt simulation of the cstr_sim
Simulink model (which here will be conducted for the estimated CSTR model). (The evalin call is
needed to retrieve zsim in case idnlgreydemo9 is run within a function.)

sim('cstr_sim');
if ~exist('zsim', 'var')
    zsim = evalin('base', 'zsim');
end
zsim.InputName = nlgr.InputName;
zsim.InputUnit = nlgr.InputUnit;
zsim.OutputName = nlgr.OutputName;
zsim.OutputUnit = nlgr.OutputUnit;
zsim.TimeUnit = 'hour';

Let us finally conclude the example by plotting the Simulink obtained simulation result.

figure('Name', 'Simulink simulation result of estimated CSTR model');
for i = 1:zsim.Ny
   subplot(zsim.Ny, 1, i);
   plot(zsim.SamplingInstants, ze.OutputData(:,i));
   title(['Output #' num2str(i) ': ' zsim.OutputName{i}]);
   xlabel('');
   axis tight;
end
xlabel([zsim.Domain ' (' zsim.TimeUnit ')']);
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Figure 7: Outputs obtained by simulating the estimated CSTR model in Simulink.

Conclusions

This tutorial has covered modeling and identification of a non-adiabatic continuous stirred tank
reactor. In particular, it was illustrated how to import and use an IDNLGREY model within Simulink.
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Classical Pendulum: Some Algorithm-Related Issues
This example shows how the estimation algorithm choices may impact the results for a nonlinear grey
box model estimation. We use data produced by a nonlinear pendulum system, which is schematically
shown in Figure 1. We show in particular how the choice of differential equation solver impacts the
results.

Figure 1: Schematic view of a classical pendulum.

Output Data

We start our modeling tour by loading the output data (time-series data). The data contains one
output, y, which is the angular position of the pendulum [rad]. The angle is zero when the pendulum
is pointing downwards, and it is increasing anticlockwise. There are 1001 (simulated) samples of data
points and the sample time is 0.1 seconds. The pendulum is affected by a constant gravity force, but
no other exogenous force affects the motion of the pendulum. To investigate this situation, we create
an IDDATA object:

load(fullfile(matlabroot, 'toolbox', 'ident', 'iddemos', 'data', 'pendulumdata'));
z = iddata(y, [], 0.1, 'Name', 'Pendulum');
z.OutputName = 'Pendulum position';
z.OutputUnit = 'rad';
z.Tstart = 0;
z.TimeUnit = 's';

The angular position of the pendulum (the output) is shown in a plot window.

figure('Name', [z.Name ': output data']);
plot(z);
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Figure 2: Angular position of the pendulum (output).

Pendulum Modeling

The next step is to specify a model structure for the pendulum system. The dynamics of it has been
studied in numerous books and articles and are well understood. If we choose x1(t) as the angular
position [rad] and x2(t) as the angular velocity [rad/s] of the pendulum, then it is rather
straightforward to set up a state-space structure of the following kind:

  d/dt x1(t) = x2(t)
  d/dt x2(t) = -(g/l)*sin(x1(t)) - (b/(m*l^2))*x2(t)

        y(t) = x1(t)

having parameters (or constants)

  g - the gravity constant [m/s^2]
  l - the length of the rod of the pendulum [m]
  b - viscous friction coefficient [Nms/rad]
  m - the mass of the bob of the pendulum [kg]

We enter this information into the MATLAB file pendulum_m.m, with contents as follows:

  function [dx, y] = pendulum_m(t, x, u, g, l, b, m, varargin)
  %PENDULUM_M  A pendulum system.

  % Output equation.
  y = x(1);                                   % Angular position.
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  % State equations.
  dx = [x(2);                             ... % Angular position.
        -(g/l)*sin(x(1))-b/(m*l^2)*x(2)   ... % Angular velocity.
       ];

The next step is to create a generic IDNLGREY object for describing the pendulum. We also enter
information about the names and the units of the inputs, states, outputs and parameters. Owing to
the physical reality all model parameters must be positive and this is imposed by setting the
'Minimum' property of all parameters to the smallest recognizable positive value in MATLAB®,
eps(0).

FileName      = 'pendulum_m';        % File describing the model structure.
Order         = [1 0 2];             % Model orders [ny nu nx].
Parameters    = [9.81; 1; 0.2; 1];   % Initial parameters.
InitialStates = [1; 0];              % Initial initial states.
Ts            = 0;                   % Time-continuous system.
nlgr = idnlgrey(FileName, Order, Parameters, InitialStates, Ts);
nlgr.OutputName = 'Pendulum position';
nlgr.OutputUnit = 'rad';
nlgr.TimeUnit = 's';
nlgr = setinit(nlgr, 'Name', {'Pendulum position' 'Pendulum velocity'});
nlgr = setinit(nlgr, 'Unit', {'rad' 'rad/s'});
nlgr = setpar(nlgr, 'Name', {'Gravity constant' 'Length' ...
                      'Friction coefficient' 'Mass'});
nlgr = setpar(nlgr, 'Unit', {'m/s^2' 'm' 'Nms/rad' 'kg'});
nlgr = setpar(nlgr, 'Minimum', {eps(0) eps(0) eps(0) eps(0)});   % All parameters > 0.

Performance of Three Initial Pendulum Models

Before trying to estimate any parameter we simulate the system with the guessed parameter values.
We do this for three of the available solvers, Euler forward with fixed step length (ode1), Runge-Kutta
23 with adaptive step length (ode23), and Runge-Kutta 45 with adaptive step length (ode45). The
outputs obtained when using these three solvers are shown in a plot window.

% A. Model computed with first-order Euler forward ODE solver.
nlgref = nlgr;
nlgref.SimulationOptions.Solver = 'ode1';        % Euler forward.
nlgref.SimulationOptions.FixedStep = z.Ts*0.1;   % Step size.

% B. Model computed with adaptive Runge-Kutta 23 ODE solver.
nlgrrk23 = nlgr;
nlgrrk23.SimulationOptions.Solver = 'ode23';     % Runge-Kutta 23.

% C. Model computed with adaptive Runge-Kutta 45 ODE solver.
nlgrrk45 = nlgr;
nlgrrk45.SimulationOptions.Solver = 'ode45';     % Runge-Kutta 45.

compare(z, nlgref, nlgrrk23, nlgrrk45, 1, ...
   compareOptions('InitialCondition', 'model'));
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Figure 3: Comparison between true output and the simulated outputs of the three initial pendulum
models.

As can be seen, the result with the Euler forward method (with a finer grid than what is used by
default) differs significantly from the results obtained with the Runge-Kutta solvers. In this case, it
turns out that the Euler forward solver produces a rather good result (in terms of model fit), whereas
the outputs obtained with the Runge-Kutta solvers are a bit limited. However, this is somewhat
deceiving, as will be evident later on, because the initial value of b, the viscous friction coefficient, is
twice as large as in reality.

Parameter Estimation

The gravitational constant, g, the length of the rod, l, and the mass of the bob, m, can easily be
measured or taken from a table without estimation. However, this is typically not the case with
friction coefficients, which often must be estimated. We therefore fix the former three parameters to
g = 9.81, l = 1, and m = 1, and consider only b as a free parameter:

nlgref = setpar(nlgref, 'Fixed', {true true false true});
nlgrrk23 = setpar(nlgrrk23, 'Fixed', {true true false true});
nlgrrk45 = setpar(nlgrrk45, 'Fixed', {true true false true});

Next we estimate b using the three differential equation solvers. We start with the Euler forward
based model structure.

opt = nlgreyestOptions('Display', 'on');
tef = clock;
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nlgref = nlgreyest(z, nlgref, opt);   % Perform parameter estimation.
tef = etime(clock, tef);

Then we continue with the model based on the Runge-Kutta 23 solver (ode23).

trk23 = clock;
nlgrrk23 = nlgreyest(z, nlgrrk23, opt);   % Perform parameter estimation.
trk23 = etime(clock, trk23);

We finally use the Runge-Kutta 45 solver (ode45).

trk45 = clock;
nlgrrk45 = nlgreyest(z, nlgrrk45, opt);   % Perform parameter estimation.
trk45 = etime(clock, trk45);

Performance of Three Estimated Pendulum Models

The results when using these three solvers are summarized below. The true value of b is 0.1, which is
obtained with ode45. ode23 returns a value quite close to 0.1, while ode1 returns a value quite a
distance from 0.1.

disp('           Estimation time   Estimated b value');

           Estimation time   Estimated b value

fprintf('   ode1 :  %3.1f               %1.3f\n', tef, nlgref.Parameters(3).Value);

   ode1 :  7.2               0.194

fprintf('   ode23:  %3.1f               %1.3f\n', trk23, nlgrrk23.Parameters(3).Value);

   ode23:  2.3               0.093

fprintf('   ode45:  %3.1f               %1.3f\n', trk45, nlgrrk45.Parameters(3).Value);

   ode45:  3.3               0.100

However, this does not mean that the simulated outputs differ that much from the actual output,
because the errors produced by the different differential equation solvers are typically accounted for
in the estimation procedure. This is a fact that readily can be seen by simulating the three estimated
pendulum models.

compare(z, nlgref, nlgrrk23, nlgrrk45, 1, ...
   compareOptions('InitialCondition', 'model'));
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Figure 4: Comparison between true output and the simulated outputs of the three estimated
pendulum models.

As expected given this figure, the Final Prediction Error (FPE) criterion values of these models are
also rather close to each other:

fpe(nlgref, nlgrrk23, nlgrrk45);

   1.0e-03 *

    0.1609    0.1078    0.1056

Based on this we conclude that all three models are able to capture the pendulum dynamics, but the
Euler forward based model reflects the underlying physics quite poorly. The only way to increase its
"physics" performance is to decrease the step length of the solver, but this also means that the
solution time increases significantly. Our experiments indicate that the Runge-Kutta 45 solver is the
best solver for non-stiff problems when taking both accuracy and computational speed into account.

Conclusions

The Runge-Kutta 45 (ode45) solver often returns high quality results relatively fast, and is therefore
chosen as the default differential equation solver in IDNLGREY. Typing "help
idnlgrey.SimulationOptions" provides some more details about the available solvers and typing "help
nlgreyestOptions" provides details on the various estimation options that can be used for IDNLGREY
modeling.
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Additional Information

For more information on identification of dynamic systems with System Identification Toolbox™ visit
the System Identification Toolbox product information page.
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What Are Time Series Models?
A time series is one or more measured output channels with no measured input. A time series model,
also called a signal model, is a dynamic system that is identified to fit a given signal or time series
data. The time series can be multivariate, which leads to multivariate models.

A time series is modeled by assuming it to be the output of a system that takes a white noise signal
e(t) of variance λ as its virtual input. The true measured input size of such models is zero, and their
governing equation takes the form:

y(t) = He(t)
Here, y(t) is the signal being modeled and H is the transfer function that represents the relationship
between y(t) and e(t).

The multivariate power spectrum Φ of the time series y(t) is given by:
Φ = H(ΛTs)H'

Here Λ is the noise variance matrix and Ts is the model sample time.

System Identification Toolbox software provides tools for modeling and forecasting time-series data.
You can estimate both linear and nonlinear black-box and grey-box models for time series data. A
linear time series model can be a polynomial (idpoly), state-space (idss, or idgrey) model. Some
particular types of models are parametric autoregressive (AR), autoregressive and moving average
(ARMA), and autoregressive models with integrated moving average (ARIMA). For nonlinear time
series models, the toolbox supports nonlinear ARX models.

You can estimate time series spectra using both time- and frequency-domain data. Time-series
spectra describe time series variations using cyclic components at different frequencies.

To represent a time series vector or a matrix s as an iddata object, use the following syntax:

y = iddata(s,[],Ts);

The following example illustrates a 4th order autoregressive model estimation for the time series data
z9 that is stored in file iddata9.

load iddata9 z9
sys = ar(z9,4);

Because the model has no measured inputs, size(sys,2) returns zero. The governing equation of
sys is A(q)y(t) = e(t). You can access the A polynomial using sys.A and the estimated variance of the
noise e(t) using sys.NoiseVariance.

See Also

More About
• “Identify Time Series Models at the Command Line” on page 14-12
• “Estimate Time-Series Power Spectra” on page 14-4
• “Analyze Time-Series Models” on page 14-30
• “Identifying Nonlinear ARX Models” on page 11-15
• “Estimate Nonlinear Grey-Box Models” on page 13-25
• “Time Series Analysis”
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Preparing Time-Series Data
Before you can estimate models for time series data, you must import your data into the MATLAB
software. You can only use time domain data. For information about which variables you need to
represent time series data, see “Time-Series Data Representation” on page 2-8.

For more information about preparing data for modeling, see “Ways to Prepare Data for System
Identification” on page 2-5.

If your data is already in the MATLAB workspace, you can import it directly into the System
Identification app. If you prefer to work at the command line, you must represent the data as a
System Identification Toolbox data object instead.

In the System Identification app — When you import scalar or multiple-output time series data into
the app, leave the Input field empty. For more information about importing data, see “Represent
Data”.

At the command line — To represent a time series vector or a matrix s as an iddata object, use the
following syntax:

y = iddata(s,[],Ts);

s contains as many columns as there are measured outputs and Ts is the sample time.
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Estimate Time-Series Power Spectra
A frequency-response model encapsulates the frequency response of a linear system evaluated over a
range of frequency values. When the data contains both input and output channels, the frequency-
response model describes the steady-state response of the system to sinusoidal inputs. Time-series
data contains no input channel. The frequency response of a time series model reduces to a spectral
representation of the output data. This output data implicitly includes the effects of the unmeasured
input noise.

For a discrete-time system sampled for both inputs and outputs with a time interval T, the transfer
function G(z) relates the Z-transforms of the input U(z) and output Y(z):

Y(z) = G(z)U(z) + H(z)E(z)

H(z) represents the noise transfer functions for each output and E(z) is the Z-transform of the
additive disturbance e(t) with variance Λ.

For a time-series model, this equation reduces to:
Y(z) = H(z)E(z)

In this case, E(z) represents the assumed, but unmeasured, white-noise input disturbance. The single-
output noise spectrum Φ in the presence of disturbance noise with scalar variance λ is defined as:

Φv(ω) = λT H(eiωT) 2

The equivalent multi-output noise power spectrum can be given as:

Φv(ω) = TH(eiωT)ΛH′(e−iωT)

Here, Λ is the variance vector with a length equal to the number of outputs.

Estimate Time-Series Power Spectra at the Command Line
You can use the etfe, spa, and spafdr commands to estimate power spectra of time series for both
time-domain and frequency-domain data. These functions return estimated models that are
represented by idfrd model objects, which contain the spectral data in the property SpectrumData
and the spectral variance in the property NoiseCovariance. For multiple-output data,
SpectrumData contains power spectra of each output and the cross-spectra between each output
pair.

Commands for Estimating and Comparing Frequency Response of Time Series

Command Description
etfe Estimates a periodogram using Fourier analysis.
spa Estimates the power spectrum with its standard deviation

using spectral analysis.
spafdr Estimates the power spectrum with its standard deviation

using a variable frequency resolution.
spectrum Estimates and plots the output power spectrum of time

series models.
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For example, suppose y is time series data. Estimate the power spectrum g and the periodogram p
using spa and etfe. Plot the models together with three standard deviation confidence intervals by
using spectrum.

g = spa(y);
p = etfe(y);
spectrum(g,p);

For a more detailed example of spectral estimation, see “Identify Time Series Models at the
Command Line” on page 14-12. For more information about the individual commands, see the
corresponding reference pages.

Estimate Time-Series Power Spectra Using the App
You must have already imported your data into the app.

To estimate time series spectral models in the System Identification app:

1 In the System Identification app, select Estimate > Spectral Models to open the Spectral
Model dialog box.

2 In the Method list, select the spectral analysis method you want to use. For information about
each method, see “Selecting the Method for Computing Spectral Models” on page 9-7.

3 Specify the frequencies at which to compute the spectral model in either of the following ways:

• In the Frequencies field, enter either a vector of values, a MATLAB expression that evaluates
to a vector, or a variable name of a vector in the MATLAB workspace. For example,
logspace(-1,2,500).

• Use the combination of Frequency Spacing and Frequencies to construct the frequency
vector of values:

• In the Frequency Spacing list, select Linear or Logarithmic frequency spacing.

Note For etfe, only the Linear option is available.
• In the Frequencies field, enter the number of frequency points.

For time-domain data, the frequency ranges from 0 to the Nyquist frequency. For frequency-
domain data, the frequency ranges from the smallest to the largest frequency in the data set.

4 In the Frequency Resolution field, enter the frequency resolution, as described in “Controlling
Frequency Resolution of Spectral Models” on page 9-8. To use the default value, enter default
or leave the field empty.

5 In the Model Name field, enter the name of the correlation analysis model. The model name
should be unique in the Model Board.

6 Click Estimate to add this model to the Model Board in the System Identification app.
7 In the Spectral Model dialog box, click Close.
8 To view the estimated disturbance spectrum, select the Noise spectrum check box in the

System Identification app. For more information about working with this plot, see “Noise
Spectrum Plots” on page 17-61.
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To export the model to the MATLAB workspace, drag it to the To Workspace rectangle in the System
Identification app. You can view the power spectrum and the confidence intervals of the resulting
idfrd model object using the spectrum command.

See Also
etfe | idfrd | spa | spafdr

More About
• “What Are Time Series Models?” on page 14-2
• “What is a Frequency-Response Model?” on page 9-2
• “Identify Time Series Models at the Command Line” on page 14-12
• “Spectrum Estimation Using Complex Data - Marple's Test Case” on page 14-21
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Estimate AR and ARMA Models
AR and ARMA models are autoregressive parametric models that have no measured inputs. These
models operate on time series data.

• The AR model contains a single polynomial A that operates on the measured output. For a single-
output signal y(t), the AR model is given by the following equation:

A(q)y(t) = e(t)
• The ARMA model adds a second polynomial C that calculates the moving average of the noise

error. The ARMA model for a single-output time series is given by the following equation:

A(q)y(t) = C(q)e(t)

The ARMA structure reduces to the AR structure for C(q) = 1.

The AR and ARMA model structures are special cases of the more general ARX and ARMAX model
structures, which do provide for measured inputs. You can estimate AR and ARMA models at the
command line and in the app.

For information about:

• Time series models, see “What Are Time Series Models?” on page 14-2
• Polynomial models, see “What Are Polynomial Models?” on page 6-2
• Autoregressive time series models containing noise integration, see “Estimate ARIMA Models” on

page 14-18

Estimate AR and ARMA Models at the Command Line
Estimate AR and ARMA models at the command line by using ar, arx, ivar, or armax with
estimation data that contains only output measurements. These functions return estimated models
that are represented by idpoly model objects.
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Selected Commands for Estimating Polynomial AR and ARMA Time-Series Models

Function Description
ar Noniterative, least-squares method to estimate linear, discrete-time, single-

output AR models. Provides algorithmic options including lattice-based
approaches and the Yule-Walker covariance approach.

Example: sys = ar(y,na) estimates an AR model sys of polynomial
order na from the scalar time series y.

arx Noniterative, least-squares method for estimating linear AR models.
Supports multiple outputs. Assumes white noise.

Example: sys = arx(y,na) estimates an AR model from the multiple-
output time series y.

ivar Noniterative, instrumental variable method for estimating single-output AR
models. Insensitive to noise color.

Example: sys = ivar(y,na) estimates an AR model using the
instrumental variable method for the scalar time series y.

armax Iterative prediction-error method to estimate linear ARMA models.

Example: sys = armax(y,[na nc]) of estimates an ARMA model of
polynomial orders na and nc from the time series y.

For more detailed usage information and examples, as well as information on other models that these
functions can estimate, see ar, arx, ivar, and armax.

Estimate AR and ARMA Time Series Models in the App
Before you begin, complete the following steps:

• Prepare the data, as described in “What Are Time Series Models?” on page 14-2.
• Estimate model order, as described in “Preliminary Step – Estimating Model Orders and Input

Delays” on page 6-8.
• For multiple-output AR models only, specify the model-order matrix in the MATLAB workspace

before estimation, as described in “Polynomial Sizes and Orders of Multi-Output Polynomial
Models” on page 6-21.

Estimate AR and ARMA models using the System Identification app by following these steps.

1 In the System Identification app, select Estimate > Polynomial Models to open the Polynomial
Models dialog box.

2 In the Structure list, select the polynomial model structure you want to estimate from the
following options:

• AR:[na]
• ARMA:[na nc]

This action updates the options in the Polynomial Models dialog box to correspond with this
model structure.
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3 In the Orders field, specify the model orders.

• For single-output models, enter the model orders according to the sequence displayed in the
Structure field.

• For multiple-output ARX models, enter the model orders directly, as described in “Polynomial
Sizes and Orders of Multi-Output Polynomial Models” on page 6-21. Alternatively, enter the
name of the matrix NA in the MATLAB Workspace browser that stores model orders, which is
Ny-by-Ny.

To enter model orders and delays using the Order Editor dialog box, click Order Editor.
4 (AR models only) Select the estimation Method as ARX or IV (instrumental variable method).

For more information about these methods, see “Polynomial Model Estimation Algorithms” on
page 6-25.

5 Select Add noise integration if you want to include an integrator in noise source e(t). This
selection changes an AR model into an ARI model (Ay = e

1− q−1 ) and an ARMA model into an

ARIMA model (Ay = C
1− q−1e(t)).

6 In the Name field, edit the name of the model or keep the default. The name of the model must
be unique in the Model Board.

7 In the Initial state list, specify how you want the algorithm to treat initial states. For more
information about the available options, see “Specifying Initial States for Iterative Estimation
Algorithms” on page 6-24.

If you get an inaccurate fit, try setting a specific method for handling initial states rather than
specifying automatic selection.

8 In the Covariance list, select Estimate if you want the algorithm to compute parameter
uncertainties. Effects of such uncertainties are displayed on plots as model confidence regions.

If you do not want the algorithm to estimate uncertainty, select None. Skipping uncertainty
computation can reduce computation time for complex models and large data sets.

9 Click Regularization to obtain regularized estimates of model parameters. Specify
regularization constants in the Regularization Options dialog box. For more information, see
“Regularized Estimates of Model Parameters” on page 1-34.

10 To view the estimation progress at the command line, select the Display progress check box.
During estimation, the following information is displayed for each iteration:

• Loss function — Determinant of the estimated covariance matrix of the input noise.
• Parameter values — Values of the model structure coefficients you specified.
• Search direction — Changes in parameter values from the previous iteration.
• Fit improvements — Actual versus expected improvements in the fit.

11 Click Estimate to add this model to the Model Board in the System Identification app.
12 For the prediction-error method, only, to stop the search and save the results after the current

iteration completes, click Stop Iterations. To continue iterations from the current model, click
the Continue iter button to assign current parameter values as initial guesses for the next
search and start a new search. For the multi-output case, you can stop iterations for each output
separately. Note that the software runs independent searches for each output.

13 To plot the model, select the appropriate check box in the Model Views area of the System
Identification app.
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You can export the model to the MATLAB workspace for further analysis by dragging it to the To
Workspace rectangle in the System Identification app.

See Also
ar | armax | arx | ivar

More About
• “What Are Model Objects?” on page 1-3
• “What Are Time Series Models?” on page 14-2
• “What Are Polynomial Models?” on page 6-2
• “Identify Time Series Models at the Command Line” on page 14-12
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Estimate State-Space Time Series Models

Definition of State-Space Time Series Model
The discrete-time state-space model for a time series is given by the following equations:

x(kT + T) = Ax(kT) + Ke(kT)
y(kT) = Cx(kT) + e(kT)

where T is the sample time and y(kT) is the output at time instant kT.

The time series structure corresponds to the general structure with empty B and D matrices.

For information about general discrete-time and continuous-time structures for state-space models,
see “What Are State-Space Models?” on page 7-2.

Estimate State-Space Models at the Command Line
You can estimate single-output and multiple-output state-space models at the command line for time-
domain data (iddata object).

The following table provides a brief description of each command. The resulting models are idss
model objects. You can estimate either continuous-time, or discrete-time models using these
commands.

Commands for Estimating State-Space Time Series Models

Command Description
n4sid Noniterative subspace method for estimating linear state-space

models.
ssest Estimates linear time series models using an iterative estimation

method that minimizes the prediction error.

 Estimate State-Space Time Series Models

14-11



Identify Time Series Models at the Command Line
This example shows how to simulate a time series and use parametric and nonparametric methods to
estimate and compare time series models.

Generate Model and Simulate Model Output

Generate time series data by creating and simulating an autoregressive (AR) polynomial model
ts_orig of the form yk = a1 yk− 1 + a2 yk− 2 + ek, where ek is random Gaussian noise. This noise
represents an unmeasured input to the model. Since the model is a time series, there are no
measured inputs.

Before calculating ek, initialize the random number generator seed so that the noise values are
repeatable.

ts_orig = idpoly([1 -1.75 0.9]);
rng('default')
e = idinput(300,'rgs');

Simulate the observed output y_obs of this model and convert y_obs to an iddata object y with the
default sample time of one second. Plot the model output together with the input noise.

y_obs = sim(ts_orig,e); 
y = iddata(y_obs);

plot(e)
hold on
plot(y_obs)
title('Input Noise and Original Model Output')
legend('RGS Noise','Model Output')
hold off
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Estimate Model and Compare Spectra

The functions etfe and spa provide two nonparametric techniques for performing spectral analysis.
Compare the estimated power spectra from etfe and spa to the original model.

ts_etfe = etfe(y);
ts_spa = spa(y);
spectrum(ts_etfe,ts_spa,ts_orig);
legend('ts_{etfe}','ts_{spa}','ts_{orig}')
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Now estimate a parametric model using the AR structure. Estimate a second-order AR model and
compare its spectrum with the original model and the spa estimate.

ts_ar = ar(y,2);
spectrum(ts_spa,ts_ar,ts_orig);
legend('ts_{spa}', 'ts_{ar}', 'ts_{orig}')
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The AR model spectrum fits the original model spectrum more closely than the nonparametric
models.

Estimate and Compare Covariance

Calculate the covariance function for the original model and the AR model by convolving each model
output with itself.

ir_orig = sim(ts_orig,[1;zeros(24,1)]);
Ry_orig = conv(ir_orig,ir_orig(25:-1:1));
ir_ar = sim(ts_ar,[1;zeros(24,1)]);
Ry_ar = conv(ir_ar,ir_ar(25:-1:1));

Also estimate the covariance Ry directly from the observed outputs y using xcorr.

Ry = xcorr(y.y,24,'biased');

Plot and compare the original and estimated covariances.

plot(-24:24'*ones(1,3),[Ry_orig,Ry_ar,Ry]);
legend('Ry_{orig}', 'Ry_{ar}', 'Ry')
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The covariance of the estimated AR model, Ry_ar, is closer to the original covariance Ry_orig.

Predict and Compare Model Outputs

Compare the three-step prediction accuracy, or fit percentage, for the original model and the AR
model, using the function compare. Here, compare computes the predicted response of the ts_orig
and ts_ar models with the original model output data y, assuming unmeasured input ek is zero. The
fourth argument, 3, is the number of steps to predict.

compare(y,ts_orig,ts_ar,3);
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The percentages in the legend are the fit percentages, which represent goodness of fit. The
prediction accuracy is far from 100% even for the original model because the unmeasured model
input ek is not accounted for in the prediction process. The fit value for the estimated AR model is
close to the original model, indicating that the AR model is a good estimate.

See Also
ar | etfe | spa | spectrum

Related Examples
• “Estimate Time-Series Power Spectra” on page 14-4

More About
• “What Are Time Series Models?” on page 14-2

 Identify Time Series Models at the Command Line

14-17



Estimate ARIMA Models
This example shows how to estimate autoregressive integrated moving average (ARIMA) models.

Models of time series containing non-stationary trends (seasonality) are sometimes required. One
category of such models are the ARIMA models. These models contain a fixed integrator in the noise
source. Thus, if the governing equation of an ARMA model is expressed as A(q)y(t)=Ce(t), where A(q)
represents the auto-regressive term and C(q) the moving average term, the corresponding model of
an ARIMA model is expressed as

A(q)y(t) = C(q)
(1− q−1)

e(t)

where the term 1
1− q−1  represents the discrete-time integrator. Similarly, you can formulate the

equations for ARI and ARIX models.

Using time-series model estimation commands ar, arx and armax you can introduce integrators into
the noise source e(t). You do this by using the IntegrateNoise parameter in the estimation
command.

The estimation approach does not account any constant offsets in the time-series data. The ability to
introduce noise integrator is not limited to time-series data alone. You can do so also for input-output
models where the disturbances might be subject to seasonality. One example is the polynomial
models of ARIMAX structure:

A(q)y(t) = B(q)u(t) + C(q)
(1− q−1)

e(t)

See the armax reference page for examples.

Estimate an ARI model for a scalar time-series with linear trend.

load iddata9 z9
Ts = z9.Ts;
y = cumsum(z9.y);
model = ar(y,4,'ls','Ts',Ts,'IntegrateNoise', true);
% 5 step ahead prediction
compare(y,model,5)
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Estimate a multivariate time-series model such that the noise integration is present in only one of the
two time series.

load iddata9 z9
Ts = z9.Ts;
y = z9.y;
y2 = cumsum(y);
% artificially construct a bivariate time series
data = iddata([y, y2],[],Ts); na = [4 0; 0 4];
nc = [2;1];
model1 = armax(data, [na nc], 'IntegrateNoise',[false; true]);
% Forecast the time series 100 steps into future
yf = forecast(model1,data(1:100), 100);
plot(data(1:100),yf)
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If the outputs were coupled ( na was not a diagonal matrix), the situation will be more complex and
simply adding an integrator to the second noise channel will not work.
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Spectrum Estimation Using Complex Data - Marple's Test Case
This example shows how to perform spectral estimation on time series data. We use Marple's test
case (The complex data in L. Marple: S.L. Marple, Jr, Digital Spectral Analysis with Applications,
Prentice-Hall, Englewood Cliffs, NJ 1987.)

Test Data

Let us begin by loading the test data:

load marple

Most of the routines in System Identification Toolbox™ support complex data. For plotting we
examine the real and imaginary parts of the data separately, however.

First, take a look at the data:

subplot(211),plot(real(marple)),title('Real part of data.')
subplot(212),plot(imag(marple)),title('Imaginary part of data.')

As a preliminary analysis step, let us check the periodogram of the data:

per = etfe(marple);
w = per.Frequency;
clf
h = spectrumplot(per,w);
opt = getoptions(h);
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opt.FreqScale = 'linear';
opt.FreqUnits = 'Hz';
setoptions(h,opt)

Since the data record is only 64 samples, and the periodogram is computed for 128 frequencies, we
clearly see the oscillations from the narrow frequency window. We therefore apply some smoothing to
the periodogram (corresponding to a frequency resolution of 1/32 Hz):

sp = etfe(marple,32);
spectrumplot(per,sp,w);
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Let us now try the Blackman-Tukey approach to spectrum estimation:

ssm = spa(marple); % Function spa performs spectral estimation
spectrumplot(sp,'b',ssm,'g',w,opt);    
legend({'Smoothed periodogram','Blackman-Tukey estimate'});
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The default window length gives a very narrow lag window for this small amount of data. We can
choose a larger lag window by:

ss20 = spa(marple,20);
spectrumplot(sp,'b',ss20,'g',w,opt);
legend({'Smoothed periodogram','Blackman-Tukey estimate'});
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Estimating an Autoregressive (AR) Model

A parametric 5-order AR-model is computed by:

t5 = ar(marple,5);

Compare with the periodogram estimate:

spectrumplot(sp,'b',t5,'g',w,opt); 
legend({'Smoothed periodogram','5th order AR estimate'});
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The AR-command in fact covers 20 different methods for spectrum estimation. The above one was
what is known as 'the modified covariance estimate' in Marple's book.

Some other well known ones are obtained with:

tb5 = ar(marple,5,'burg');      % Burg's method
ty5 = ar(marple,5,'yw');        % The Yule-Walker method
spectrumplot(t5,tb5,ty5,w,opt);
legend({'Modified covariance','Burg','Yule-Walker'})
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Estimating AR Model using Instrumental Variable Approach

AR-modeling can also be done using the Instrumental Variable approach. For this, we use the function
ivar:

ti = ivar(marple,4); 
spectrumplot(t5,ti,w,opt);
legend({'Modified covariance','Instrumental Variable'})
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Autoregressive-Moving Average (ARMA) Model of the Spectra

Furthermore, System Identification Toolbox covers ARMA-modeling of spectra:

ta44 = armax(marple,[4 4]); % 4 AR-parameters and 4 MA-parameters
spectrumplot(t5,ta44,w,opt);
legend({'Modified covariance','ARMA'})

14 Time Series Identification

14-28



 Spectrum Estimation Using Complex Data - Marple's Test Case

14-29



Analyze Time-Series Models
This example shows how to analyze time-series models.

A time-series model has no inputs. However, you can use many response computation commands on
such models. The software treats (implicitly) the noise source e(t) as a measured input. Thus,
step(sys) plots the step response assuming that the step input was applied to the noise channel
e(t).

To avoid ambiguity in how the software treats a time-series model, you can transform it explicitly into
an input-output model using noise2meas. This command causes the noise input e(t) to be treated
as a measured input and transforms the linear time series model with Ny outputs into an input-output
model with Ny outputs and Ny inputs. You can use the resulting model with commands, such as,
bode, nyquist, and iopzmap to study the characteristics of the H transfer function.

Estimate a time-series model.

load iddata9
sys = ar(z9,4);

Convert the time-series model to an input-output model.

iosys = noise2meas(sys);

Plot the step response of H.

step(iosys);
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Plot the poles and zeros of H.

iopzmap(iosys);

Calculate and plot the time-series spectrum directly without converting to an input-output model.

spectrum(sys);
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The command plots the time-series spectrum amplitude Φ(ω) = H(ω) 2.

See Also
noise2meas | step

More About
• “What Are Time Series Models?” on page 14-2
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Introduction to Forecasting of Dynamic System Response
Forecasting the response of a dynamic system is the prediction of future outputs of the system using
past output measurements. In other words, given observations y(t) = {y(1), …, y(N)} of the output of
a system, forecasting is the prediction of the outputs y(N+1), …, y(N+H) until a future time horizon
H.

When you perform forecasting in System Identification Toolbox software, you first identify a model
that fits past measured data from the system. The model can be a linear time series model such as
AR, ARMA, and state-space models, or a nonlinear ARX model. If exogenous inputs influence the
outputs of the system, you can perform forecasting using input-output models such as ARX and
ARMAX. After identifying the model, you then use the forecast command to compute y(N+1), …,
y(N+H). The command computes the forecasted values by:

• Generating a predictor model using the identified model.
• Computing the final state of the predictor using past measured data.
• Simulating the identified model until the desired forecasting horizon, H, using the final state as

initial conditions.

This topic illustrates these forecasting steps for linear and nonlinear models. Forecasting the
response of systems without external inputs (time series data) is illustrated, followed by forecasting
for systems with an exogenous input. For information about how to perform forecasting in the
toolbox, see “Forecast Output of Dynamic System” on page 14-43.

Forecasting Time Series Using Linear Models
The toolbox lets you forecast time series (output only) data using linear models such as AR, ARMA,
and state-space models. Here is an illustration of forecasting the response of an autoregressive
model, followed by the forecasting steps for more complex models such as moving-average and state-
space models.

Autoregressive Models

Suppose that you have collected time series data y(t) = {y(1), …, y(N)} of a stationary random
process. Assuming the data is a second-order autoregressive (AR) process, you can describe the
dynamics by the following AR model:

y(t) + a1y(t − 1) + a2y(t − 2) = e(t)

Where a1 and a2 are the fit coefficients and e(t) is the noise term.

You can identify the model using the ar command. The software computes the fit coefficients and
variance of e(t) by minimizing the 1-step prediction errors between the observations {y(1), …, y(N)}
and model response.

Assuming that the innovations e(t) are a zero mean white sequence, you can compute the predicted
outputy (t) using the formula:

y (t) = − a1y(t − 1)− a2y(t − 2)

Where y(t-1) and y(t-2) are either measured data, if available, or previously predicted values. For
example, the forecasted outputs five steps in the future are:
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y (N + 1) = − a1y(N)− a2y(N − 1)
y (N + 2) = − a1y (N + 1)− a2y(N)
y (N + 3) = − a1y (N + 2)− a2y (N + 1)
y (N + 4) = − a1y (N + 3)− a2y (N + 2)
y (N + 5) = − a1y (N + 4)− a2y (N + 3)

Note that the computation of y (N + 2) uses the previously predicted value y (N + 1) because
measured data is not available beyond time step N. Thus, the direct contribution of measured data
diminishes as you forecast further into the future.

The forecasting formula is more complex for time series processes that contain moving-average
terms.

Moving-Average Models

In moving-average (MA) models, the output depends on current and past innovations (e(t),e(t-1),
e(t-2), e(t-3)....). Thus, forecasting the response of MA models requires knowledge of the initial
conditions of the measured data.

Suppose that time series data y(t) from your system can be fit to a second-order moving-average
model:

y(t) = e(t) + c1e(t − 1) + c2e(t − 2)

Suppose that y(1) and y(2) are the only available observations, and their values equal 5 and 10,
respectively. You can estimate the model coefficients c1 and c2 using the armax command. Assume
that the estimated c1 and c2 values are 0.1 and 0.2, respectively. Then assuming as before that e(t) is
a random variable with zero mean, you can predict the output value at time t using the following
formula:

y (t) = c1e(t − 1) + c2e(t − 2)

Where e(t-1) and e(t-2) are the differences between the measured and the predicted response at
times t-1 and t-2, respectively. If measured data does not exist for these times, a zero value is used
because the innovations process e(t) is assumed to be zero-mean white Gaussian noise.

Therefore, forecasted output at time t = 3 is:

y (3) = 0.1e(2) + 0.2e(1)

Where, the innovations e(1) and e(2) are the difference between the observed and forecasted
values of output at time t equal to 1 and 2, respectively:

e(2) = y(2)− y (2) = y(2)− [0.1e(1) + 0.2 e(0)]
e(1) = y(1)− y (1) = y(1)− [0.1e(0) + 0.2 e(− 1)]

Because the data was measured from time t equal to 1, the values of e(0) and e(-1) are unknown.
Thus, to compute the forecasted outputs, the value of these initial conditions e(0) and e(-1) is
required. You can either assume zero initial conditions, or estimate them.

• Zero initial conditions: If you specify that e(0) and e(-1) are equal to 0, the error values and
forecasted outputs are:
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e(1) = 5− (0.1 * 0 + 0.2 * 0) = 5
e(2) = 10− (0.1 * 5 + 0.2 * 0) = 9.5
y (3) = 0.1 * 9.5 + 0.2 * 5 = 1.95

The forecasted values at times t = 4 and 5 are:

y (4) = 0.1e(3) + 0.2e(2)
y (5) = 0.1e(4) + 0.2e(3)

Here e(3) and e(4) are assumed to be zero as there are no measurements beyond time t = 2.
This assumption yields, y (4) = 0.2 * e(2) = 0.2 * 9.5 = 1.9, and y (5) = 0.

Thus, for this second-order MA model, the forecasted outputs that are more than two time steps
beyond the last measured data point (t = 2) are all zero. In general, when zero initial conditions
are assumed, the forecasted values beyond the order of a pure MA model with no autoregressive
terms are all zero.

• Estimated initial conditions: You can estimate the initial conditions by minimizing the squared
sum of 1-step prediction errors of all the measured data.

For the MA model described previously, estimation of the initial conditions e(0) and e(-1)
requires minimization of the following least-squares cost function:

V = e(1)2 + e(2)2 =  (y(1) ‐ [0.1 e(0) + 0.2 e(‐1)])2 + (y(2) ‐ [0.1 e(1) + 0.2 e(0)])2

Substituting a = e(0) and b = e(-1), the cost function is:

V(a, b) = (5− [0.1a + 0.2b])2 + (10− [0.1(5− [0.1a + 0.2b]) + 0.2a])2

Minimizing V yields e(0) = 50 and e(-1) = 0, which gives:

e(1) = 5− (0.1 * 50 + 0.2 * 0) = 0
e(2) = 10− (0.1 * 0 + 0.2 * 50) = 0
y (3) = 0
(4) = 0

Thus, for this system, if the prediction errors are minimized over the available two samples, all
future predictions are equal to zero, which is the mean value of the process. If there were more
than two observations available, you would estimate e(-1) and e(0) using a least-squares
approach to minimize the 1-step prediction errors over all the available data.

This example shows how to reproduce these forecasted results using the forecast command.

Load the measured data.

PastData = [5;10];

Create an MA model with A and C polynomial coefficients equal to 1 and [1 0.1 0.2], respectively.

model = idpoly(1,[],[1 0.1 0.2]);

Specify zero initial conditions, and forecast the output five steps into the future.

opt = forecastOptions('InitialCondition','z');
yf_zeroIC = forecast(model,PastData,5,opt)
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yf_zeroIC = 5×1

    1.9500
    1.9000
         0
         0
         0

Specify that the software estimate initial conditions, and forecast the output.

opt = forecastOptions('InitialCondition','e');
yf_estimatedIC = forecast(model,PastData,5,opt)

yf_estimatedIC = 5×1
10-15 ×

   -0.3553
   -0.3553
         0
         0
         0

For arbitrary structure models, such as models with autoregressive and moving-average terms, the
forecasting procedure can be involved and is therefore best described in the state-space form.

State-Space Models

The discrete-time state-space model of time series data has the form:

x(t + 1) = Ax(t) + Ke(t)
y(t) = Cx(t) + e(t)

Where, x(t) is the state vector, y(t) are the outputs, e(t) is the noise-term. A, C, and K are fixed-
coefficient state-space matrices.

You can represent any arbitrary structure linear model in state-space form. For example, it can be
shown that the ARMA model described previously is expressed in state-space form using A = [0
0;1 0], K = [0.5;0] and C = [0.2 0.4]. You can estimate a state-space model from observed
data using commands such as ssest and n4sid. You can also convert an existing polynomial model
such as AR, MA, ARMA, ARX, and ARMAX into the state-space form using the idss command.

The advantage of state-space form is that any autoregressive or moving-average model with multiple
time lag terms (t-1,t-2,t-3,...) only has a single time lag (t-1) in state variables when the model is
converted to state-space form. As a result, the required initial conditions for forecasting translate into
a single value for the initial state vector X(0). The forecast command converts all linear model to
state-space form and then performs forecasting.

To forecast the response of a state-space model:

1 Generate a 1-step ahead predictor model for the identified model. The predictor model has the
form:

x (t + 1) = (A− K * C) x (t) + Ky(t)
y (t) = C * x (t)
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Where y(t) is the measured output and y (t) is the predicted value. The measured output is
available until time step N and is used as an input in the predictor model. The initial state vector
is x (0) = x0.

2 Assign a value to the initial state vector x0.

The initial states are either specified as zero, or estimated by minimizing the prediction error
over the measured data time span.

Specify a zero initial condition if the system was in a state of rest before the observations were
collected. You can also specify zero initial conditions if the predictor model is sufficiently stable
because stability implies the effect of initial conditions diminishes rapidly as the observations are
gathered. The predictor model is stable if the eigenvalues of A-K*C are inside the unit circle.

3 Compute x (N + 1), the value of the states at the time instant t = N+1, the time instant following
the last available data sample.

To do so, simulate the predictor model using the measured observations as inputs:

x (1) = (A− K * C) x0+Ky(0)
x (2) = (A− K * C)x (1) + Ky(1)
⋮
x (N + 1) = (A− K * C)x (N) + Ky(N)

4 Simulate the response of the identified model for H steps using x (N + 1) as initial conditions,
where H is the prediction horizon. This response is the forecasted response of the model.

Reproduce the Output of forecast Command

This example shows how to manually reproduce forecasting results that are obtained using the
forecast command. You first use the forecast command to forecast time series data into the
future. You then compare the forecasted results to a manual implementation of the forecasting
algorithm.

Load time series data.

load iddata9 z9

z9 is an iddata object that stores time series data (no inputs).

Specify data to use for model estimation.

observed_data = z9(1:128); 
Ts = observed_data.Ts;
t = observed_data.SamplingInstants;
y = observed_data.y;

Ts is the sample time of the measured data, t is the time vector, and y is the vector of measured
data.

Estimate a discrete-time state space model of 4th order.

sys = ssest(observed_data,4,'Ts',Ts);

Forecast the output of the state-space model 100 steps into the future using the forecast command.
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H = 100;
yh1 = forecast(sys,observed_data,H);

yh1 is the forecasted output obtained using the forecast command. Now reproduce the output by
manually implementing the algorithm used by the forecast command.

Retrieve the estimated state-space matrices to create the predictor model.

A = sys.A;
K = sys.K;
C = sys.C;

Generate a 1-step ahead predictor where the A matrix of the Predictor model is A-K*C and the B
matrix is K.

Predictor = idss((A-K*C),K,C,0,'Ts',Ts);

Estimate initial states that minimize the difference between the observed output y and the 1-step
predicted response of the identified model sys.

x0 = findstates(sys,observed_data,1);

Propagate the state vector to the end of observed data. To do so, simulate the predictor using y as
input and x0 as initial states.

Input = iddata([],y,Ts);
opt = simOptions('InitialCondition',x0);
[~,~,x] = sim(Predictor,Input,opt);
xfinal = x(end,:)';

xfinal is the state vector value at time t(end), the last time instant when observed data is
available. Forecasting 100 time steps into the future starts at the next time step, t1 = t(end)+Ts.

To implement the forecasting algorithm, the state vector value at time t1 is required. Compute the
state vector by applying the state update equation of the Predictor model to xfinal.

x0_for_forecasting = Predictor.A*xfinal + Predictor.B*y(end);

Simulate the identified model for H steps using x0_for_forecasting as initial conditions.

opt = simOptions('InitialCondition',x0_for_forecasting);

Because sys is a time series model, specify inputs for simulation as an H-by-0 signal, where H is the
wanted number of simulation output samples.

Input = iddata([],zeros(H,0),Ts,'Tstart',t(end)+Ts);
yh2 = sim(sys,Input,opt);

Compare the results of the forecast command yh1 with the manually computed results yh2.

plot(yh1,yh2,'r.')
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The plot shows that the results match.

Forecasting Response of Linear Models with Exogenous Inputs
When there are exogenous stimuli affecting the system, the system cannot be considered stationary.
However, if these stimuli are measurable then you can treat them as inputs to the system and account
for their effects when forecasting the output of the system. The workflow for forecasting data with
exogenous inputs is similar to that for forecasting time series data. You first identify a model to fit the
measured input-output data. You then specify the anticipated input values for the forecasting time
span, and forecast the output of the identified model using the forecast command. If you do not
specify the anticipated input values, they are assumed to be zero.

This example shows how to forecast an ARMAX model with exogenous inputs in the toolbox:

Load input-output data.

load iddata1 z1

z1 is an iddata object with input-output data at 300 time points.

Use the first half of the data as past data for model identification.

past_data = z1(1:150);

Identify an ARMAX model Ay(t) = Bu(t-1) + Ce(t), of order [2 2 2 1].
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na = 2; % A polynomial order
nb = 2; % B polynomial order
nc = 2; % C polynomial order
nk = 1; % input delay
sys = armax(past_data,[na nb nc nk]);

Forecast the response 100 time steps into the future, beyond the last sample of observed data
past_data. Specify the anticipated inputs at the 100 future time points.

H = 100;
FutureInputs = z1.u(151:250);
forecast(sys,past_data,H,FutureInputs)
legend('Past Outputs','Future Outputs')

Forecasting Response of Nonlinear Models
The toolbox also lets you forecast data using nonlinear ARX, Hammerstein-Wiener, and nonlinear
grey-box models.

Hammerstein-Wiener, and nonlinear grey-box models have a trivial noise-component, that is
disturbance in the model is described by white noise. As a result, forecasting using the forecast
command is the same as performing a pure simulation.

Forecasting Response of Nonlinear ARX Models

A time series nonlinear ARX model has the following structure:
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y(t) = f (y(t − 1),  y(t − 2),  ... ,  y(t − N)) + e(t)

Where f is a nonlinear function with inputs R(t), the model regressors. The regressors can be the
time-lagged variables y(t-1), y(t-2),... , y(t-N) and their nonlinear expressions, such as
y(t-1)2,y(t-1)y(t-2), abs(y(t-1)). When you estimate a nonlinear ARX model from the measured data,
you specify the model regressors. You can also specify the structure of f using different structures
such as wavelet networks and tree partitions. For more information, see the reference page for the
nlarx estimation command.

Suppose that time series data from your system can be fit to a second-order linear-in-regressor model
with the following polynomial regressors:

R(t) = [y(t − 1), y(t − 2), y(t − 1)2, y(t − 2)2, y(t − 1)y(t − 2)]T

Then f(R)=W'*R+c, where W=[w1 w2 w3 w4 w5] is a weighting vector, and c is the output offset.

The nonlinear ARX model has the form:

y(t) = w1y(t − 1) + w2y(t − 2) + w3y(t − 1)2 + w4y(t − 2)2 + w5y(t − 1)y(t − 2) + c + e(t)

When you estimate the model using the nlarx command, the software estimates the model
parameters W and c.

When you use the forecast command, the software computes the forecasted model outputs by
simulating the model H time steps into the future, using the last N measured output samples as initial
conditions. Where N is the largest lag in the regressors, and H is the forecast horizon you specify.

For the linear-in-regressor model, suppose that you have measured 100 samples of the output y, and
you want to forecast four steps into the future (H = 4). The largest lag in the regressors of the model
is N = 2 . Therefore, the software takes the last two samples of the data y(99) and y(100) as initial
conditions, and forecasts the outputs as:

y (101) = w1y(100) + w2y(99) + w3y(100 + w4y(99 + w5y(100)y(99)

y (102) = w1y (101) + w2y(100) + w3y (101 + w4y(100 + w5y (101)y(100)

y (103) = w1y (102) + w2y (101) + w3y (102 + w4y (101 + w5y (102)y (101)

y (104) = w1y (103) + w2y (102) + w3y (103 + w4y (102 + w5y (103)y (102)

If your system has exogenous inputs, the nonlinear ARX model also includes regressors that depend
on the input variables. The forecasting process is similar to that for time series data. You first identify
the model, sys, using input-output data, past_data. When you forecast the data, the software
simulates the identified model H time steps into the future, using the last N measured output samples
as initial conditions. You also specify the anticipated input values for the forecasting time span,
FutureInputs. The syntax for forecasting the response of nonlinear models with exogenous inputs
is the same as that for linear models, forecast(sys,past_data,H,FutureInputs).

See Also
forecast | predict | sim

 Introduction to Forecasting of Dynamic System Response

14-41



Related Examples
• “Forecast Output of Dynamic System” on page 14-43
• “Forecast Multivariate Time Series” on page 17-25
• “Time Series Prediction and Forecasting for Prognosis” on page 23-2

More About
• “Simulate and Predict Identified Model Output” on page 17-6
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Forecast Output of Dynamic System
To forecast the output of a dynamic system, you first identify a model that fits past measured data
from the system, and then forecast the future outputs of the identified model. Suppose that you have
a set Y of N measurements of the output of a system (Y = {y1, y2, ...yN}). To forecast the outputs into
the future:

1 Identify a model of the system using time series estimation commands such as ar, arx, armax,
and ssest.

The software estimates the models by minimizing the squared sum of one-step ahead prediction
errors. You can identify linear models such as AR, ARMA, and state-space models. You can also
estimate nonlinear ARX and nonlinear grey-box models.

2 Validate the identified model using predict command.

The predict command predicts the output of an identified model over the time span of
measured data (Yp = yp1, yp2, ...ypN). Use predict to determine if the predicted results Yp match
the observed outputs Y for a desired prediction horizon. If the predictions are good over the time
span of available data, use the model for forecasting.

3 Specify forecasting options such as how the software computes initial conditions of the measured
data. To specify the options, use the forecastOptions option set.

4 Compute the output of the identified model until a future time horizon H, (yN+1, yN+2,..., yN+H)
using the forecast command. Unlike the predict command, the forecast command
performs prediction into the future, in a time range beyond the last instant of measured data.

The software computes the forecasted values by:

• Generating a predictor model using the identified model.
• Computing the final state of the predictor using measured (available) data.
• Simulating the identified model using the final state as initial conditions.

For more information, see “Introduction to Forecasting of Dynamic System Response” on page
14-33.

You can also forecast outputs for systems where measurable exogenous inputs u(t) influence the
output observations. In this case, you first identify an input-output model using measured y(t) and
u(t), and then use the forecast command.

Forecast Time Series Data Using an ARMA Model
This example shows how to forecast time series data from a system using an ARMA model. Load the
time series data that is to be forecasted.

load iddata9 z9
past_data = z9.OutputData(1:50);

Fit an ARMA model of order [4 3] to the measured data.

sys = armax(past_data,[4 3]);

Perform a 10-step ahead prediction to validate the model over the time-span of the measured data.

yp = predict(sys,past_data,10);

 Forecast Output of Dynamic System

14-43



Plot the predicted response and the measured data.

t = z9.SamplingInstants;
t1 = t(1:50);
plot(t1,past_data,'k',t1,yp,'*b')
legend('Past Data','Predicted Data')

The plot shows that sys is a good prediction model that can be used for forecasting.

Specify zero initial conditions for the measured data.

opt = forecastOptions('InitialCOndition','z');

Forecast model output 100 steps beyond the estimation data.

H = 100;
yf = forecast(sys,past_data,H,opt);

Plot the past and forecasted data.

t2 = t(51:150)';
plot(t1,past_data,'k',t2,yf,'--r')
legend('Past Data','Forecasted Data')
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See Also

More About
• “Forecast Multivariate Time Series” on page 17-25
• “Time Series Prediction and Forecasting for Prognosis” on page 23-2
• “Introduction to Forecasting of Dynamic System Response” on page 14-33
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Modeling Current Signal From an Energizing Transformer
This example shows the modeling of a measured signal. We analyze the current signal from the R-
phase when a 400 kV three-phase transformer is energized. The measurements were performed by
Sydkraft AB in Sweden.

We describe the use of function ar for modeling the current signal. A non-parametric analysis of the
signal is first performed. Tools for choosing a reasonable model order are then discussed, along with
the use of ar for signal modeling. Methods for fitting a model to only a chosen range of harmonics
are also discussed.

Introduction

Signals can be considered as the impulse response of an autoregressive linear model, and can thus be
modeled using tools such as ar.

Data for signals can be encapsulated into iddata objects, by setting the output data of the object to
the signal values, and leaving the input empty. For example, if x(t) represents a signal to be
modeled, then the corresponding iddata object can be created as: data = iddata(x,[],T);,
where T is the sample time of x.

Standard identification tools, such as n4sid, ssest, ar and arx may be used to estimate the
characteristics of the "output-only" data. These models are assessed for their spectral estimation
capability, as well as their ability to predict the future values of the signal from a measurement of
their past values.

Analyzing Data

We begin this case study by loading the data for the current signal from the transformer:

load current.mat

Now, we package the current data (i4r) into an iddata object. The sample time is 0.001 seconds (1
ms).

i4r = iddata(i4r,[],0.001)  % Second argument empty for no input

i4r =

Time domain data set with 601 samples.
Sample time: 0.001 seconds             
                                       
Outputs      Unit (if specified)       
   y1                                  
                                       

Let us now analyze this data. First, take a look at the data:

plot(i4r)
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A close up view of the data is shown below:

plot(i4r(201:250))
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Next, we compute the raw periodogram of the signal:

ge = etfe(i4r)
spectrum(ge)

ge =
IDFRD model.
Contains spectrum of signal in the "SpectrumData" property.
 
Output channels: 'y1'
Status:                                        
Estimated using ETFE on time domain data "i4r".
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This periodogram reveals several harmonics, but is not very smooth. A smoothed periodogram is
obtained by:

ges = etfe(i4r,size(i4r,1)/4);
spectrum(ge,ges);
legend({'ge (no smoothing)','ges (with smoothing)'})
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Configure the plot to use linear frequency scale and Hz units:

h = spectrumplot(ges);
opt = getoptions(h);
opt.FreqScale = 'linear';
opt.FreqUnits = 'Hz';
setoptions(h,opt);
axis([0 500,-5 40])
grid on, legend('ges')
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We clearly see the dominant frequency component of 50 Hz, and its harmonics.

Let us perform a spectral analysis of the data using spa, which uses a Hann window to compute the
spectral amplitudes (as opposed to etfe which just computes the raw periodogram). The standard
estimate (with the default window % size, which is not adjusted to resonant spectra) gives:

gs =  spa(i4r);
hold on
spectrumplot(gs);
legend({'ges (using etfe)','gs (using spa)'})
hold off
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We see that a very large lag window will be required to see all the fine resonances of the signal.
Standard spectral analysis does not work well. We need a more sophisticated model, such as those
provided by parametric autoregressive modeling techniques.

Parametric Modeling of the Current Signal

Let us now compute the spectra by parametric AR-methods. Models of 2nd 4th and 8th order are
obtained by:

t2 = ar(i4r,2);
t4 = ar(i4r,4);
t8 = ar(i4r,8);

Let us take a look at their spectra:

spectrumplot(t2,t4,t8,ges,opt);
axis([0 500,-8 40])
legend({'t2 (2nd order AR)','t4 (4th order AR)','t8 (8th order AR)','ges (using spa)'});
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We see that the parametric spectra are not capable of picking up the harmonics. The reason is that
the AR-models attach too much attention to the higher frequencies, which are difficult to model. (See
Ljung (1999) Example 8.5).

We will have to go to high order models before the harmonics are picked up.

What will a useful order be? We can use arxstruc to determine that.

V = arxstruc(i4r(1:301),i4r(302:601),(1:30)'); % Checking all order up to 30

Execute the following command to select the best order interactively: nn = selstruc(V,'log');
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As the figure above shows, there is a dramatic drop for n=20. So let us pick that order for the
following discussions.

t20 = ar(i4r,20);
spectrumplot(ges,t20,opt);
axis([0 500 -25 80])
legend({'ges (using spa)','t20 (20th order AR)'});
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All the harmonics are now picked up, but why has the level dropped? The reason is that t20 contains
very thin but high peaks. With the crude grid of frequency points in t20 we simply don't see the true
levels of the peaks. We can illustrate this as follows:

g20c = idfrd(t20,(551:650)/600*150*2*pi); % A frequency region around 150 Hz
spectrumplot(ges,t20,g20c,opt)
axis([0 500 -25 80])
legend({'ges (using spa)','t20 (20th order AR)','g20c (resp. around 150 Hz)'});
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As this plot reveals, the model t20 is fairly accurate; when plotted on a fine frequency grid, it does
capture the harmonics of the signal quite accurately.

Modeling Only the Lower-Order Harmonics

If we are primarily interested in the lower harmonics, and want to use lower order models we will
have to apply prefiltering of the data. We select a 5th order Butterworth filter with cut-off frequency
at 155 Hz. (This should cover the 50, 100 and 150 Hz modes):

i4rf = idfilt(i4r,5,155/500); % 500 Hz is the Nyquist frequency
t8f = ar(i4rf,8);

Let us now compare the spectrum obtained from the filtered data (8th order model) with that for
unfiltered data (8th order) and with the periodogram:

spectrumplot(t8f,t8,ges,opt)
axis([0 350 -60 80])
legend({'t8f (8th order AR, filtered data)',...
   't8 (8th order AR, unfiltered data)','ges (using spa)'});

14 Time Series Identification

14-56



We see that with the filtered data we pick up the first three peaks in the spectrum quite well.

We can compute the numerical values of the resonances as follows: The roots of a sampled sinusoid of
frequency, say om, are located on the unit circle at exp(i*om*T), T being the sample time. We thus
proceed as follows:

a = t8f.a % The AR-polynomial
omT = angle(roots(a))'
freqs = omT/0.001/2/pi';
% show only the positive frequencies for clarity:
freqs1 = freqs(freqs>0) % In Hz

a =

  Columns 1 through 7

    1.0000   -5.0312   12.7031  -20.6934   23.7632  -19.6987   11.5651

  Columns 8 through 9

   -4.4222    0.8619

omT =

  Columns 1 through 7
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    1.3591   -1.3591    0.9620   -0.9620    0.3146   -0.3146    0.6314

  Column 8

   -0.6314

freqs1 =

  216.3063  153.1036   50.0665  100.4967

We thus find the first three harmonics (50, 100 and 150 Hz) quite well.

We could also test how well the model t8f is capable of predicting the signal, say 100 ms (100 steps)
ahead, and evaluate the fit on samples 201 to 500:

compare(i4rf,t8f,100,compareOptions('Samples',201:500));

As observed, a model of the first 3 harmonics is pretty good at predicting the future output values,
even 100 steps ahead.

Modeling Only the Higher-Order Harmonics

If we were interested in only the fourth and fifth harmonics (around 200 and 250 Hz) we would
proceed by band-filtering the data to this higher frequency range:
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i4rff = idfilt(i4r,5,[185 275]/500);
t8fhigh = ar(i4rff,8);
spectrumplot(ges,t8fhigh,opt)
axis([0 500 -60 40])
legend({'ges (using spa)','t8fhigh (8th order AR, filtered to high freq. range)'});

We thus got a good model in t8fhigh for describing the 4th and 5th harmonics. We thus see that
with proper prefiltering, low order parametric models can be built that give good descriptions of the
signal over the desired frequency ranges.

Conclusions

Which model is the best? In general, a higher order model would give a higher fidelity. To analyze
this, we consider what the 20th order model would give in terms of its capability in estimating
harmonics:

a = t20.a  % The AR-polynomial
omT = angle(roots(a))'
freqs = omT/0.001/2/pi';
% show only the positive frequencies for clarity:
freqs1 = freqs(freqs>0) %In Hz

a =

  Columns 1 through 7
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    1.0000    0.0034    0.0132    0.0012    0.0252    0.0059    0.0095

  Columns 8 through 14

    0.0038    0.0166    0.0026    0.0197   -0.0013    0.0143    0.0145

  Columns 15 through 21

    0.0021    0.0241   -0.0119    0.0150    0.0246   -0.0221   -0.9663

omT =

  Columns 1 through 7

         0    0.3146   -0.3146    0.6290   -0.6290    0.9425   -0.9425

  Columns 8 through 14

    1.2559   -1.2559    1.5726   -1.5726    1.8879   -1.8879    2.2027

  Columns 15 through 20

   -2.2027    2.5136   -2.5136    3.1416    2.8240   -2.8240

freqs1 =

  Columns 1 through 7

   50.0639  100.1139  149.9964  199.8891  250.2858  300.4738  350.5739

  Columns 8 through 10

  400.0586  500.0000  449.4611

We see that this model picks up the harmonics very well. This model will predict 100 steps ahead as
follows:

compare(i4r,t20,100,compareOptions('Samples',201:500));
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We now have a 93% fit with t20, as opposed to 80% for t8f.

We thus conclude that for a complete model of the signal, t20 is the natural choice, both in terms of
capturing the harmonics as well as in its prediction capabilities. For models in certain frequency
ranges we can however do very well with lower order models, but we then have to prefilter the data
accordingly.

Additional Information

For more information on identification of dynamic systems with System Identification Toolbox visit the
System Identification Toolbox product information page.
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Data Segmentation
For systems that exhibit abrupt changes while the data is being collected, you might want to develop
models for separate data segments such that the system does not change during a particular data
segment. Such modeling requires identification of the time instants when the changes occur in the
system, breaking up the data into segments according to these time instants, and identification of
models for the different data segments.

The following cases are typical applications for data segmentation:

• Segmentation of speech signals, where each data segment corresponds to a phoneme.
• Detection of trend breaks in time series.
• Failure detection, where the data segments correspond to operation with and without failure.
• Estimating different working modes of a system.

Use segment to build polynomial models, such as ARX, ARMAX, AR, and ARMA, so that the model
parameters are piece-wise constant over time. For detailed information about this command, see the
corresponding reference page.

15 Recursive Model Identification

15-2



Online Estimation

• “What Is Online Estimation?” on page 16-2
• “How Online Parameter Estimation Differs from Offline Estimation” on page 16-5
• “Preprocess Online Parameter Estimation Data in Simulink” on page 16-7
• “Validate Online Parameter Estimation Results in Simulink” on page 16-8
• “Validate Online Parameter Estimation at the Command Line” on page 16-10
• “Troubleshoot Online Parameter Estimation” on page 16-12
• “Generate Online Parameter Estimation Code in Simulink” on page 16-15
• “Recursive Algorithms for Online Parameter Estimation” on page 16-16
• “Perform Online Parameter Estimation at the Command Line” on page 16-21
• “Generate Code for Online Parameter Estimation in MATLAB” on page 16-24
• “Extended and Unscented Kalman Filter Algorithms for Online State Estimation” on page 16-27
• “Validate Online State Estimation at the Command Line” on page 16-34
• “Validate Online State Estimation in Simulink” on page 16-36
• “Generate Code for Online State Estimation in MATLAB” on page 16-39
• “Troubleshoot Online State Estimation” on page 16-42
• “Line Fitting with Online Recursive Least Squares Estimation” on page 16-43
• “Online ARX Parameter Estimation for Tracking Time-Varying System Dynamics” on page 16-50
• “Online Recursive Least Squares Estimation” on page 16-61
• “Online ARMAX Polynomial Model Estimation” on page 16-69
• “Estimate Parameters of System Using Simulink Recursive Estimator Block” on page 16-79
• “Use Frame-Based Data for Recursive Estimation in Simulink” on page 16-83
• “State Estimation Using Time-Varying Kalman Filter” on page 16-88
• “Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter” on page 16-99
• “Estimate States of Nonlinear System with Multiple, Multirate Sensors” on page 16-115
• “Parameter and State Estimation in Simulink Using Particle Filter Block” on page 16-125
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What Is Online Estimation?
Online estimation algorithms estimate the parameters and states of a model when new data is
available during the operation of the physical system. The System Identification Toolbox software
uses linear, extended, and unscented Kalman filter, or particle filter algorithms for online state
estimation. The toolbox uses recursive prediction error minimization algorithms for online parameter
estimation.

Consider a heating and cooling system that does not have prior information about the environment in
which it operates. Suppose that this system must heat or cool a room to achieve a certain
temperature in a given amount of time. To fulfill its objective, the system must obtain knowledge of
the temperature and insulation characteristics of the room. You can estimate the insulation
characteristics of the room while the system is online (operational). For this estimation, use the
system effort as the input and the room temperature as the output. You can use the estimated model
to improve system behavior. Online estimation is ideal for estimating small deviations in the
parameter values of a system at a known operating point.

Common applications of online estimation include:

• Adaptive control — Estimate a plant model to modify the controller based on changes in the plant
model.

• Fault detection — Compare the online plant model with the idealized or reference plant model to
detect a fault (anomaly) in the plant.

• Soft sensing — Generate a “measurement” based on the estimated plant model, and use this
measurement for feedback control or fault detection.

• Verification of the experiment-data quality before starting offline estimation — Before using the
measured data for offline estimation, perform online estimation for a few iterations. The online
estimation provides a quick check of whether the experiment used excitation signals that captured
the relevant system dynamics.

Online Parameter Estimation
Online parameter estimation is typically performed using a recursive algorithm. To estimate the
parameter values at a time step, recursive algorithms use the current measurements and previous
parameter estimates. Therefore, recursive algorithms are efficient in terms of memory usage. Also,
recursive algorithms have smaller computational demands. This efficiency makes them suited to
online and embedded applications. For more information about the algorithms, see “Recursive
Algorithms for Online Parameter Estimation” on page 16-16.

In System Identification Toolbox you can perform online parameter estimation in Simulink or at the
command line:

• In Simulink, use the Recursive Least Squares Estimator and Recursive Polynomial Model
Estimator blocks to perform online parameter estimation. You can also estimate a state-space
model online from these models by using the Recursive Polynomial Model Estimator and Model
Type Converter blocks together. You can generate C/C++ code and Structured Text for these
blocks using Simulink Coder and Simulink PLC Coder™ software.

• At the command line, use recursiveAR, recursiveARMA, recursiveARX, recursiveARMAX,
recursiveOE, recursiveBJ, and recursiveLS commands to estimate model parameters for
your model structure. Unlike estimation in Simulink, you can change the properties of the
recursive estimation algorithm during online estimation. You can generate code and standalone
applications using MATLAB Coder and MATLAB Compiler™ software.
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When you perform online parameter estimation in Simulink or at the command line, the following
requirements apply:

• Model must be discrete-time linear or nearly linear with parameters that vary slowly with time.
• Structure of the estimated model must be fixed during estimation.
• iddata object is not supported during online parameter estimation. Specify estimation output

data as a real scalar and input data as a real scalar or vector.

Online State Estimation
You can perform online state estimation of systems at the command line and in Simulink:

• In Simulink, use the Kalman Filter, Extended Kalman Filter, Unscented Kalman Filter or Particle
Filter blocks to perform online state estimation of discrete-time linear and nonlinear systems. You
can generate C/C++ code for these blocks using Simulink Coder software. For the Kalman Filter
block, you can also generate Structured Text using Simulink PLC Coder software.

• At the command line, use extendedKalmanFilter, unscentedKalmanFilter and
particleFilter commands to estimate states of discrete-time nonlinear systems. These
commands implement discrete-time extended Kalman filter (EKF), unscented Kalman filter (UKF)
and particle filter algorithms. For more information about the algorithms, see “Extended and
Unscented Kalman Filter Algorithms for Online State Estimation” on page 16-27. You can
generate code and standalone applications using MATLAB Coder and MATLAB Compiler software.

When you perform online state estimation in Simulink or at the command line, the following
requirements apply:

• System must be discrete-time. If you are using the Kalman Filter block, the system can also be
continuous-time.

• iddata object is not supported during online state estimation. Specify estimation input-output
data as real scalars or vectors.

References
[1] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR,

1999, pp. 428–440.
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See Also
Functions
extendedKalmanFilter | particleFilter | recursiveAR | recursiveARMA |
recursiveARMAX | recursiveARX | recursiveBJ | recursiveLS | recursiveOE |
unscentedKalmanFilter

Blocks
Extended Kalman Filter | Kalman Filter | Particle Filter | Recursive Least Squares Estimator |
Recursive Polynomial Model Estimator | Unscented Kalman Filter
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Related Examples
• “How Online Parameter Estimation Differs from Offline Estimation” on page 16-5
• “Online ARMAX Polynomial Model Estimation” on page 16-69
• “Line Fitting with Online Recursive Least Squares Estimation” on page 16-43
• “State Estimation Using Time-Varying Kalman Filter” on page 16-88
• “Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter” on page 16-99
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How Online Parameter Estimation Differs from Offline
Estimation

Online estimation algorithms estimate the parameters of a model when new data is available during
the operation of the model. In offline estimation, you first collect all the input/output data and then
estimate the model parameters . Parameter values estimated using online estimation can vary with
time, but parameters estimated using offline estimation do not.

To perform offline estimation, use commands such as arx, pem, ssest, tfest, nlarx, and the
System Identification app.

To perform online parameter estimation in Simulink, use the Recursive Least Squares Estimator and
Recursive Polynomial Model Estimator blocks. For online estimation at the command line on page 16-
21, use commands such as recursiveARX to create a System object™, and then use step
command to update the model parameters.

Online estimation differs from offline estimation in the following ways:

• Model delays — You can estimate model delays in offline estimation using tools such as delayest
(see “Determining Model Order and Delay” on page 4-39). Online estimation provides limited
ability to estimate delays. For polynomial model estimation using the Recursive Polynomial Model
Estimation block or the online estimation commands, you can specify a known value of the input
delay (nk). If nk is unknown, choose a sufficiently large value for the number of coefficients of B
(nb). The number of leading coefficients of the estimated B polynomial that are close to zero
represent the input delay.

• Data preprocessing — For offline estimation data preprocessing, you can use functions such as
detrend, retrend, idfilt, and the System Identification app.

For online estimation using Simulink, use the tools available in the Simulink environment. For
more information, see “Preprocess Online Parameter Estimation Data in Simulink” on page 16-
7.

For online parameter estimation at the command line, you cannot use preprocessing tools in
System Identification Toolbox. These tools support only data specified as iddata objects.
Implement preprocessing code as required by your application. To be able to generate C and C++
code, use commands supported by MATLAB Coder. For a list of these commands, see “Functions
and Objects Supported for C/C++ Code Generation” (MATLAB Coder).

• Resetting of estimation — You cannot reset offline estimation. Online estimation lets you reset the
estimation at a specific time step during estimation. For example, reset the estimation when the
system changes modes or if you are not satisfied with the estimation. The reset operation sets the
model states, estimated parameters, and estimated parameter covariance to their initial values.

To reset online estimation in Simulink, on the Algorithm and Block Options tab of the block
parameters, select the appropriate External reset option. At the command line, use the reset
command.

• Enabling or disabling of estimation — You cannot selectively enable or disable offline estimation.
You can use preprocessing tools to remove or filter certain portions of the data before the
estimation. Online estimation lets you enable or disable estimation for chosen time spans. For
example, suppose that the measured data is especially noisy or faulty (contains many outliers) for
a specific time interval. Disable online estimation for this interval.
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To enable or disable estimation in Simulink, on the Algorithm and Block Options tab of the
block parameters, select the Add enable port check box.

At the command line, use the EnableAdaptation property of the System object created using
online estimation commands, such as recursiveARMAX and recursiveLS. Even if you set
EnableAdaptation to false, execute the step command. Do not skip step to keep parameter
values constant because parameter estimation depends on current and past input/output
measurements. step ensures that past input-output data is stored, even when it does not update
the parameters.

See Also

More About
• “What Is Online Estimation?” on page 16-2
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Preprocess Online Parameter Estimation Data in Simulink
Estimation data that contains deficiencies, such as drift, offset, missing samples, seasonalities,
equilibrium behavior, and outliers, can adversely affect the quality of the estimation. Therefore, it is
recommended that you preprocess your estimation data as needed.

Use the tools in the Simulink software to preprocess data for online estimation. Common tools to
perform data preprocessing in Simulink are:

• Blocks in the Math Operations (Simulink) library. Use these blocks, for example, to subtract or add
an offset or normalize a signal.

• Blocks in the “Continuous” (Simulink) and “Discrete” (Simulink) library. Use these blocks, for
example, to filter a signal.

• Rate Transition block, which allows you to handle the transfer of data between blocks operating at
different rates. Use this block, for example, to resample your data from a source that is operating
at a different sampling rate than the online estimation block.

• MATLAB Function block, which allows you to include MATLAB code in your model. Use this block,
for example, to implement a custom preprocessing algorithm.

See “Online ARMAX Polynomial Model Estimation” on page 16-69 for an example of how you can
preprocess an estimation input signal by removing its mean.

See Also
Kalman Filter | Recursive Least Squares Estimator | Recursive Polynomial Model Estimator

More About
• “What Is Online Estimation?” on page 16-2
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Validate Online Parameter Estimation Results in Simulink
Use the following approaches to validate an online estimation performed using the Recursive Least
Squares Estimator or Recursive Polynomial Model Estimator block:

• Examine the estimation error (residuals), which is the difference between the measured and
estimated outputs. The estimation error can be large at the beginning of the estimation or when
there are large parameter variations. The error should get smaller as the parameter estimates
converge. Small errors with respect to the size of the outputs give confidence in the estimated
values.

You can also analyze the residuals using techniques such as the whiteness test and the
independence test. For such analysis, use the measured data and estimation error collected after
the parameter values have settled to approximately constant values. For more information
regarding these tests, see “What Is Residual Analysis?” on page 17-40

To obtain the estimation error, in the Algorithm and Block Options tab, select the Output
estimation error check box. The software adds an Error outport to the block, which you can
monitor using a Scope block. This outport provides the one-step-ahead estimation error, e(t) =
y(t)–yest(t). For the time step, t, y and yest are the measured and estimated outputs, respectively.

• The parameter covariance is a measure of estimated uncertainty in the parameters, and is
calculated when the forgetting factor or Kalman filter estimation algorithms are used.

Parameter covariance is computed assuming that the residuals are white noise, and the variance
of these residuals is 1. To obtain the parameter covariance, in the Algorithm and Block Options
tab of the online estimation block parameters, select the Output parameter covariance matrix
check box. The software adds a Covariance outport to the block, which you can monitor using a
Display block. This outport provides the parameter covariance matrix, P.

The estimated parameters can be considered as random variables with variance equal to the
corresponding diagonal of the parameter covariance matrix, scaled by the variance of the
residuals (residualVariance) at each time step. You use prior knowledge, or calculate
residualVariance from the residuals, e. Where, e is the vector of estimation errors, e(t).

 residualVariance = var(e);

Scale the parameter covariance to calculate the variance of the estimated parameters.

paramVariance = diag(P)*residualVariance;

A smaller variance value gives confidence in the estimated values.
• Simulate the estimated model and compare the simulated and measured outputs. To do so, feed

the measured input into a model that uses the estimated time-varying parameter values. Then,
compare the model output with the measured output. The simulated output closely matching the
measured output gives confidence in the estimated values.

For examples of such validation, see “Online Recursive Least Squares Estimation” on page 16-61
and “Online ARMAX Polynomial Model Estimation” on page 16-69.

If the validation indicates low confidence in the estimation, then refer to the Troubleshooting topics
on the “Online Estimation” page.
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See Also
Kalman Filter | Recursive Least Squares Estimator | Recursive Polynomial Model Estimator
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Validate Online Parameter Estimation at the Command Line
This topic shows how to validate online parameter estimation at the command line. If the validation
indicates low confidence in the estimation, then see “Troubleshoot Online Parameter Estimation” on
page 16-12. After you have validated the online estimation results, you can generate C/C++ code or
a standalone application using MATLAB Coder or MATLAB Compiler.

Examine the Estimation Error
The estimation error is the difference between measured output, y, and the estimated output,
EstimatedOutput at each time step.

obj = recursiveARX;
[A,B,EstimatedOutput] = step(obj,y,u);
estimationError = y-EstimatedOutput;

Here, u is the input data at that time step.

The estimation errors (residuals) can be large at the beginning of the estimation or when there are
large parameter variations. The error should get smaller as the parameter estimates converge. Small
errors relative to the size of the outputs increase confidence in the estimated values.

Simulate the Estimated Model
Simulate the estimated model and compare the simulated and measured outputs. To do so, feed the
measured input into a model that uses the estimated time-varying parameter values. Then compare
the model output with the measured output. A close match between the simulated output and the
measured output gives confidence in the estimated values.

Examine Parameter Covariance
Parameter covariance is a measure of estimated uncertainty in the parameters. The covariance is
calculated when the forgetting factor or Kalman filter estimation algorithms are used.

Parameter covariance is computed assuming that the residuals are white noise, and the variance of
these residuals is 1. You view the parameter covariance matrix using the ParameterCovariance
property of your System object.

P = obj.ParameterCovariance;

The estimated parameters can be considered as random variables with variance equal to the
corresponding diagonal of the parameter covariance matrix, scaled by the variance of the residuals
(residualVariance) at each time step. You use prior knowledge, or calculate residualVariance
from the residuals, e. Where, e is the vector of estimation errors, estimationError.

 residualVariance = var(e);

Scale the parameter covariance to calculate the variance of the estimated parameters.

paramVariance = diag(P)*residualVariance;

A smaller variance value gives confidence in the estimated values.
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Use Validation Commands from System Identification Toolbox
You can validate a snapshot of the estimated model using validation commands for offline estimation.
This validation only captures the behavior of a time-invariant model. For available offline validation
techniques in System Identification Toolbox, see “Model Validation”.

To use offline commands, convert your online estimation System object, obj, into an idpoly model
object. Also convert your stream of input-output validation data, Output(t) and Input(t), into an
iddata object.

sys = idpoly(obj);
sys.Ts = Ts;
z = iddata(Output,Input,Ts)

Here, Ts is the sample time.

Note This conversion and any subsequent analysis are not supported by MATLAB Coder.

The validation techniques include:

• Analysis of the residuals using techniques such as the whiteness test and the independence test
using offline commands such as resid. For example, use resid(z,sys). For information about
these tests, see “What Is Residual Analysis?” on page 17-40.

• Comparison of model output and measured output. For example, use compare(z,sys).
• Comparison of different online estimation System objects.

You can create multiple versions of a System object with different object properties, convert each
of them to idpoly model objects, and use compare to choose the best one.

If you want to copy an existing System object and then modify properties of the copied object, use
the clone command. Do not create additional objects using syntax obj2 = obj. Any changes
made to the properties of the new System object created this way (obj2) also change the
properties of the original System object (obj).

See Also
recursiveAR | recursiveARMA | recursiveARMAX | recursiveARX | recursiveBJ |
recursiveLS | recursiveOE

Related Examples
• “Perform Online Parameter Estimation at the Command Line” on page 16-21
• “Generate Code for Online Parameter Estimation in MATLAB” on page 16-24
• “Line Fitting with Online Recursive Least Squares Estimation” on page 16-43
• “Online ARX Parameter Estimation for Tracking Time-Varying System Dynamics” on page 16-50
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Troubleshoot Online Parameter Estimation
To troubleshoot online parameter estimation, check the following:

Model Structure
Check that you are using the simplest model structure that adequately captures the system dynamics.

AR and ARX model structures are good first candidates for estimating linear models. The underlying
estimation algorithms for these model structures are simpler than those for ARMA, ARMAX, Output-
Error, and Box-Jenkins model structures. In addition, these simpler AR and ARX algorithms are less
sensitive to initial parameter guesses.

The more generic recursive least squares (RLS) estimation also has the advantage of algorithmic
simplicity like AR and ARX model estimation. RLS lets you estimate parameters for a wider class of
models than ARX and AR and can include nonlinearities. However, configuring an AR or ARX
structure is simpler.

Consider the following when choosing a model structure:

• AR and ARX model structures — If you are estimating a time-series model (no inputs), try the AR
model structure. If you are estimating an input-output model, try the ARX model structure. Also
try different model orders with these model structures. These models estimate the system output
based on time-shifted versions of the output and inputs signals. For example, the a and b
parameters of the system y(t) = b1u(t)+b2u(t-1)-a1y(t-1) can be estimated using ARX models.

For more information regarding AR and ARX models, see “What Are Polynomial Models?” on page
6-2.

• RLS estimation— If you are estimating a system that is linear in the estimated parameters, but
does not fit into AR or ARX model structures, try RLS estimation. You can estimate the system
output based on the time-shifted versions of input-outputs signals like the AR and ARX, and can
also add nonlinear functions. For example, you can estimate the parameters p1, p2, and p3 of the
system y(t) = p1y(t-1) + p2u(t-1) + p3u(t-1)2 . You can also estimate static models, such as the line-
fit problem of estimating parameters a and b in y(t) = au(t)+b.

• ARMA, ARMAX, Output-Error, Box-Jenkins model structures — These model structures provide
more flexibility compared to AR and ARX model structures to capture the dynamics of linear
systems. For instance, an ARMAX model has more dynamic elements (C polynomial parameters)
compared to ARX for estimating noise models. This flexibility can help when AR and ARX are not
sufficient to capture the system dynamics of interest.

Specifying initial parameter and parameter covariance values are especially recommended for
these model structures. This is because the estimation method used for these model structures
can get stuck at a local optima. For more information about these models, see “What Are
Polynomial Models?” on page 6-2.

Model Order
Check the order of your specified model structure. You can under-fit (model order is too low) or over-
fit (model order is too high) data by choosing an incorrect model order.

Ideally, you want the lowest-order model that adequately captures your system dynamics. Under-
fitting prevents algorithms from finding a good fit to the model, even if all other estimation settings
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are good, and there is good excitation of system dynamics. Over-fitting typically leads to high
sensitivity of parameters to the measurement noise or the choice of input signals.

Estimation Data
Use inputs that excite the system dynamics adequately. Simple inputs, such as a step input, typically
does not provide sufficient excitation and are good for estimating only a very limited number of
parameters. One solution is to inject extra input perturbations.

Estimation data that contains deficiencies can lead to poor estimation results. Data deficiencies
include drift, offset, missing samples, equilibrium behavior, seasonalities, and outliers. It is
recommended that you preprocess the estimation data as needed.

For information on how to preprocess estimation data in Simulink, see “Preprocess Online Parameter
Estimation Data in Simulink” on page 16-7.

For online parameter estimation at the command line, you cannot use preprocessing tools in System
Identification Toolbox. These tools support only data specified as iddata objects. Implement
preprocessing code as required by your application. To be able to generate C and C++ code, use
commands supported by MATLAB Coder. For a list of these commands, see “Functions and Objects
Supported for C/C++ Code Generation” (MATLAB Coder).

Initial Guess for Parameter Values
Check the initial guesses you specify for the parameter values and initial parameter covariance
matrix. Specifying initial parameter guesses and initial parameter covariance matrix is
recommended. These initial guesses could be based on your knowledge of the system or be obtained
via offline estimation.

Initial parameter covariance represents the uncertainty in your guess for the initial values. When you
are confident about your initial parameter guesses, and if the initial parameter guesses are much
smaller than the default initial parameter covariance value, 10000, specify a smaller initial parameter
covariance. Typically, the default initial parameter covariance is too large relative to the initial
parameter values. The result is that initial guesses are given less importance during estimation.

Initial parameter and parameter covariance guesses are especially important for ARMA, ARMAX,
Output-Error, and Box-Jenkins models. Poor or no guesses can result in the algorithm finding a local
minima of the objective function in the parameter space, which can lead to a poor fit.

Estimation Settings
Check that you have specified appropriate settings for the estimation algorithm. For example, for the
forgetting factor algorithm, choose the forgetting factor, λ, carefully. If λ is too small, the estimation
algorithm assumes that the parameter value is varying quickly with time. Conversely, if λ is too large,
the estimation algorithm assumes that the parameter value does not vary much with time. For more
information regarding the estimation algorithms, see “Recursive Algorithms for Online Parameter
Estimation” on page 16-16.
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See Also

Related Examples
• “What Is Online Estimation?” on page 16-2
• “Validate Online Parameter Estimation Results in Simulink” on page 16-8
• “Validate Online Parameter Estimation at the Command Line” on page 16-10
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Generate Online Parameter Estimation Code in Simulink
You can generate C/C++ code and Structured Text for Recursive Least Squares Estimator and other
online estimation blocks using products such as Simulink Coder and Simulink PLC Coder. The Model
Type Converter block, which you can use with the Recursive Polynomial Model Estimator block, also
supports code generation. Use the generated code to deploy online model estimation to an embedded
target. For example, you can estimate the coefficients of a time-varying plant from measured input-
output data and feed the coefficients to an adaptive controller. After validating the online estimation
in simulation, you can generate code for your Simulink model and deploy that code to the target.

To generate code for online estimation, use the following workflow:

1 Develop a Simulink model that simulates the online model estimation. For example, create a
model that simulates the input/output data, performs online estimation for this data, and uses the
estimated parameter values.

2 After validating the online estimation performance in simulation, create a subsystem for the
online estimation block. If you preprocess the inputs or postprocess the parameter estimates,
include the relevant blocks in the subsystem.

3 Convert the subsystem to a referenced model. You generate code for this referenced model, so
ensure that it uses only the blocks that support code generation. For a list of blocks that support
code generation, see “Simulink Built-In Blocks That Support Code Generation” (Simulink Coder).

The original model, which now contains a model reference, is now referred to as the top model.
4 In the top model, replace the model source and sink blocks with their counterpart hardware

blocks. For example, replace the simulated inputs/output blocks with the relevant hardware
source block. You generate code for this model, which includes the online estimation. So, ensure
that it uses only blocks that support code generation.

5 Generate code for the top model.

See Also
Kalman Filter | Model Type Converter | Recursive Least Squares Estimator | Recursive Polynomial
Model Estimator

Related Examples
• “Generate Code for Model Reference Hierarchy” (Simulink Coder)

More About
• “Simulink Built-In Blocks That Support Code Generation” (Simulink Coder)
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Recursive Algorithms for Online Parameter Estimation
The recursive estimation algorithms in the System Identification Toolbox can be separated into two
categories:

• Infinite-history algorithms — These algorithms aim to minimize the error between the observed
and predicted outputs for all time steps from the beginning of the simulation. The System
Identification Toolbox supports infinite-history estimation in:

• Recursive command-line estimators for the least-squares linear regression, AR, ARX, ARMA,
ARMAX, OE, and BJ model structures

• Simulink Recursive Least Squares Estimator and Recursive Polynomial Model Estimator blocks
• Finite-history algorithms — These algorithms aim to minimize the error between the observed and

predicted outputs for a finite number of past time steps. The toolbox supports finite-history
estimation for linear-in-parameters models:

• Recursive command-line estimators for the least-squares linear regression, AR, ARX, and OE
model structures

• Simulink Recursive Least Squares Estimator block
• Simulink Recursive Polynomial Model Estimator block, for AR, ARX, and OE structures only

Finite-history algorithms are typically easier to tune than the infinite-history algorithms when the
parameters have rapid and potentially large variations over time.

Recursive Infinite-History Estimation
General Form of Infinite-History Recursive Estimation

The general form of the infinite-history recursive estimation algorithm is as follows:

θ t = θ t − 1 + K t y t − y t

θ t  is the parameter estimate at time t. y(t) is the observed output at time t, and y t  is the
prediction of y(t) based on observations up to time t-1. The gain, K(t), determines how much the
current prediction error y t − y t  affects the update of the parameter estimate. The estimation
algorithms minimize the prediction-error term y t − y t .

The gain has the following form:

K t = Q t ψ t

The recursive algorithms supported by the System Identification Toolbox product differ based on
different approaches for choosing the form of Q(t) and computing ψ t . Here, ψ t  represents the
gradient of the predicted model output y t θ  with respect to the parameters θ.

The simplest way to visualize the role of the gradient ψ t  of the parameters, is to consider models
with a linear-regression form:

y t = ψT t θ0 t + e t

In this equation, ψ t  is the regression vector that is computed based on previous values of measured
inputs and outputs. θ0 t  represents the true parameters. e(t) is the noise source (innovations), which
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is assumed to be white noise. The specific form of ψ t  depends on the structure of the polynomial
model.

For linear regression equations, the predicted output is given by the following equation:

y t = ψT t θ t − 1

For models that do not have the linear regression form, it is not possible to compute exactly the
predicted output and the gradient ψ t  for the current parameter estimate θ t − 1 . To learn how you
can compute approximation for ψ t  and θ t − 1  for general model structures, see the section on
recursive prediction-error methods in [1].

Types of Infinite-History Recursive Estimation Algorithms

The System Identification Toolbox software provides the following infinite-history recursive
estimation algorithms for online estimation:

• “Forgetting Factor” on page 16-17
• “Kalman Filter” on page 16-18
• “Normalized and Unnormalized Gradient” on page 16-19

The forgetting factor and Kalman Filter formulations are more computationally intensive than
gradient and unnormalized gradient methods. However, they typically have better convergence
properties.

Forgetting Factor

The following set of equations summarizes the forgetting factor adaptation algorithm:

θ t = θ t − 1 + K t y t − y t

y t = ψT t θ t − 1

K t = Q t ψ t

Q t = P t − 1
λ + ψT t P t − 1 ψ t

P t = 1
λ P t − 1 − P t − 1 ψ t ψ t TP t − 1

λ + ψ t TP t − 1 ψ t

The software ensures P(t) is a positive-definite matrix by using a square-root algorithm to update it
[2]. The software computes P assuming that the residuals (difference between estimated and
measured outputs) are white noise, and the variance of these residuals is 1. R2/2 * P is approximately
equal to the covariance matrix of the estimated parameters, where R2 is the true variance of the
residuals.

Q(t) is obtained by minimizing the following function at time t:

∑k = 1
t λt − k(y(k)− y (k))2

See section 11.2 in [1] for details.
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This approach discounts old measurements exponentially such that an observation that is τ samples
old carries a weight that is equal to λτ times the weight of the most recent observation. τ = 1 1− λ
represents the memory horizon of this algorithm. Measurements older than τ = 1 1− λ typically carry
a weight that is less than about 0.3.

λ is called the forgetting factor and typically has a positive value between 0.98 and 0.995. Set λ = 1
to estimate time-invariant (constant) parameters. Set λ < 1 to estimate time-varying parameters.

Note The forgetting factor algorithm for λ = 1 is equivalent to the Kalman filter algorithm with R1=0
and R2=1. For more information about the Kalman filter algorithm, see “Kalman Filter” on page 16-
18.

Kalman Filter

The following set of equations summarizes the Kalman filter adaptation algorithm:

θ t = θ t − 1 + K t y t − y t

y t = ψT t θ t − 1

K t = Q t ψ t

Q t = P t − 1
R2 + ψT t P t − 1 ψ t

P t = P t − 1 + R1−
P t − 1 ψ t ψ t TP t − 1

R2 + ψ t TP t − 1 ψ t

The software ensures P(t) is a positive-definite matrix by using a square-root algorithm to update it
[2]. The software computes P assuming that the residuals (difference between estimated and
measured outputs) are white noise, and the variance of these residuals is 1. R2* P is the covariance
matrix of the estimated parameters, and R1 /R2 is the covariance matrix of the parameter changes.
Where, R1 is the covariance matrix of parameter changes that you specify.

This formulation assumes the linear-regression form of the model:

y t = ψT t θ0 t + e t

Q(t) is computed using a Kalman filter.

This formulation also assumes that the true parameters θ0 t  are described by a random walk:

θ0 t = θ0 t − 1 + w t

w(t) is Gaussian white noise with the following covariance matrix, or drift matrix R1:

Ew t wT t = R1

R2 is the variance of the innovations e(t) in the following equation:

y t = ψT t θ0 t + e t
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The Kalman filter algorithm is entirely specified by the sequence of data y(t), the gradient ψ t , R1, R2,
and the initial conditions θ t = 0  (initial guess of the parameters) and P t = 0  (covariance matrix
that indicates parameters errors).

Note It is assumed that R1 and P(t = 0) matrices are scaled such that R2 = 1. This scaling does not
affect the parameter estimates.

Normalized and Unnormalized Gradient

In the linear regression case, the gradient methods are also known as the least mean squares (LMS)
methods.

The following set of equations summarizes the unnormalized gradient and normalized gradient
adaptation algorithm:

θ t = θ t − 1 + K t y t − y t

y t = ψT t θ t − 1

K t = Q t ψ t

In the unnormalized gradient approach, Q(t) is given by:

Q(t) = γ

In the normalized gradient approach, Q(t) is given by:

Q t = γ
ψ t 2 + Bias

The normalized gradient algorithm scales the adaptation gain, γ, at each step by the square of the
two-norm of the gradient vector. If the gradient is close to zero, this can cause jumps in the estimated
parameters. To prevent these jumps, a bias term is introduced in the scaling factor.

These choices of Q(t) for the gradient algorithms update the parameters in the negative gradient
direction, where the gradient is computed with respect to the parameters. See pg. 372 in [1] for
details.

Recursive Finite-History Estimation
The finite-history estimation methods find parameter estimates θ(t) by minimizing

∑
k = t − N + 1

t
(y(k)− y (k θ))2,

where y(k) is the observed output at time k, and y (k θ) is the predicted output at time k. This
approach is also known as sliding-window estimation. Finite-history estimation approaches minimize
prediction errors for the last N time steps. In contrast, infinite-history estimation methods minimize
prediction errors starting from the beginning of the simulation.

The System Identification Toolbox supports finite-history estimation for the linear-in-parameters
models (AR and ARX) where predicted output has the form y (k θ) = Ψ(k)θ(k− 1). The software
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constructs and maintains a buffer of regressors ψ(k) and observed outputs y(k) for k = t-N+1, t-N+2,
… , t-2, t-1, t. These buffers contain the necessary matrices for the underlying linear regression
problem of minimizing Ψbuf ferθ− ybuf fer 2

2 over θ. The software solves this linear regression
problem using QR factoring with column pivoting.

References
[1] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR,

1999.

[2] Carlson, N.A. "Fast triangular formulation of the square root filter." AIAA Journal, Vol. 11, Number
9, 1973, pp. 1259-1265.

[3] Zhang, Q. "Some Implementation Aspects of Sliding Window Least Squares Algorithms." IFAC
Proceedings. Vol. 33, Issue 15, 2000, pp. 763-768.

See Also
Recursive Least Squares Estimator | Recursive Polynomial Model Estimator | recursiveAR |
recursiveARMA | recursiveARMAX | recursiveARX | recursiveBJ | recursiveLS |
recursiveOE

More About
• “What Is Online Estimation?” on page 16-2
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Perform Online Parameter Estimation at the Command Line
This topic shows how to perform online parameter estimation at the command line. The online
estimation commands create a System object on page 16-21 for your model structure.

Online Estimation System Object
A System object is a specialized MATLAB object designed specifically for implementing and
simulating dynamic systems with inputs that change over time. System objects use internal states to
store past behavior, which is used in the next computational step.

After you create a System object, you use commands to process data or obtain information from or
about the object. System objects use a minimum of two commands to process data — a constructor to
create the object and the step command to update object parameters using real-time data. This
separation of declaration from execution lets you create multiple, persistent, reusable objects, each
with different settings.

You can use the following commands with the online estimation System objects in System
Identification Toolbox:

Command Description
step Update model parameter estimates using

recursive estimation algorithms and real-time
data.

step puts the object into a locked state. In a
locked state, you cannot change any nontunable
properties or input specifications, such as model
order, data type, or estimation algorithm. During
execution, you can only change tunable
properties.

release Unlock the System object. Use this command to
enable setting of nontunable parameters.

reset Reset the internal states of a locked System
object to the initial values, and leave the object
locked.

clone Create another System object with the same
object property values.

Do not create additional objects using syntax
obj2 = obj. Any changes made to the
properties of the new object created this way
(obj2) also change the properties of the original
object (obj).

isLocked Query locked status for input attributes and
nontunable properties of the System object.

Note If all data necessary for estimation is available at once, and you are estimating a time-invariant
model, use the offline estimation commands for model parameter estimation. For example, use arx
instead of recursiveARX.
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Workflow for Online Parameter Estimation at the Command Line
1 Choose a model structure for your application.

Ideally, you want the simplest model structure that adequately captures the system dynamics. For
considerations to keep in mind, see “Model Structure” on page 16-12.

2 Create an online estimation System object for your model structure by using one of the following
commands:

• recursiveAR — Time-series AR model
• recursiveARMA — Time-series ARMA model
• recursiveARX — SISO or MISO ARX model
• recursiveARMAX — SISO ARMAX model
• recursiveOE — SISO output-error polynomial model
• recursiveBJ — SISO Box-Jenkins polynomial model
• recursiveLS — Single-output system that is linear in estimated parameters

obj = recursiveARX;

You can specify additional object properties such as the recursive estimation algorithm and initial
parameter guesses. For information about the algorithms used, see “Recursive Algorithms for
Online Parameter Estimation” on page 16-16.

3 Acquire input-output data in real time.

Specify estimation output data, y, as a real scalar, and input data, u, as a real scalar or vector.
Data specified as an iddata object is not supported for online estimation.

4 Preprocess the estimation data.

Estimation data that contains deficiencies can lead to poor estimation results. Data deficiencies
include drift, offset, missing samples, equilibrium behavior, seasonalities, and outliers.
Preprocess the estimation data as needed. For considerations to keep in mind, see “Estimation
Data” on page 16-13.

For online parameter estimation at the command line, you cannot use preprocessing tools in
System Identification Toolbox. These tools support only data specified as iddata objects.
Implement preprocessing code as required by your application. To be able to generate C and C+
+ code, use commands supported by MATLAB Coder. For a list of these commands, see
“Functions and Objects Supported for C/C++ Code Generation” (MATLAB Coder).

5 Update the parameters of the model using incoming input-output data.

Use the step command to execute the specified recursive algorithm over each measurement of
input-output data.

[A,B,yhat] = step(obj,y,u);

The output of the step command gives the estimated parameters (A and B), and estimated model
output (yhat), at each set of input-output data.

Calling step on an object puts that object into a locked state. You can check the locked status of
a System object using isLocked. When the object is locked, you cannot change any nontunable
properties or input specifications such as model order, data type, or estimation algorithm. To
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change a nontunable property, use the release command to unlock the System object. You can
use release on a System object in code generated from MATLAB, but once you release its
resources, you cannot use that System object again.

6 Post-process estimated parameters.

If necessary, you can post-process the estimated parameters. For instance, you can use a low-
pass filter to smooth out noisy parameter estimates. To be able to generate C and C++ code, use
commands supported by MATLAB Coder. For a list of these commands, see “Functions and
Objects Supported for C/C++ Code Generation” (MATLAB Coder).

7 Validate the online estimation.

For details about the validation, see “Validate Online Parameter Estimation at the Command
Line” on page 16-10. If you are not satisfied with the estimation, use the reset command to set
the parameters of the System object to their initial value.

8 Use the estimated parameters for your application.

After validating the online parameter estimation, you can use MATLAB Compiler or MATLAB
Coder to deploy the code in your application.

See Also
clone | isLocked | recursiveAR | recursiveARMA | recursiveARMAX | recursiveARX |
recursiveBJ | recursiveLS | recursiveOE | release | reset | step

Related Examples
• “Validate Online Parameter Estimation at the Command Line” on page 16-10
• “Generate Code for Online Parameter Estimation in MATLAB” on page 16-24
• “Line Fitting with Online Recursive Least Squares Estimation” on page 16-43
• “Online ARX Parameter Estimation for Tracking Time-Varying System Dynamics” on page 16-50

More About
• “What Is Online Estimation?” on page 16-2
• “How Online Parameter Estimation Differs from Offline Estimation” on page 16-5
• “Recursive Algorithms for Online Parameter Estimation” on page 16-16
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Generate Code for Online Parameter Estimation in MATLAB
This topic shows how to generate C/C++ code from online estimation MATLAB code that uses a
System object. C/C++ code is generated using the codegen command from MATLAB Coder. Use the
generated code to deploy online estimation algorithms to an embedded target.

You can also deploy online estimation code by creating a standalone application using MATLAB
Compiler. MATLAB Compiler software supports System objects for use inside MATLAB functions, but
does not support System objects for use in MATLAB scripts.

For Simulink based workflows, use the online estimator blocks from System Identification Toolbox,
such as Recursive Least Squares Estimator and Recursive Polynomial Model Estimator. You can
generate C/C++ code and Structured Text for the online estimation blocks using Simulink Coder and
Simulink PLC Coder.

Supported Online Estimation Commands
Code generation support is available for these online estimation System objects:

• recursiveAR
• recursiveARMA
• recursiveARX
• recursiveARMAX
• recursiveOE
• recursiveBJ
• recursiveLS

Code generation support is available only for the following System object commands:

• step
• reset
• release
• isLocked

Generate Code for Online Estimation
To generate code for online estimation:

1 Create a function to declare your System object as persistent, and initialize the object. You define
the System object as persistent to maintain the object states between calls.

function [A,B,EstimatedOutput] = arxonline(output,input)
% Declare System object as persistent
persistent obj;
if isempty(obj)
    obj = recursiveARX([1 2 2],'EstimationMethod','Gradient');
end
[A,B,EstimatedOutput] = step(obj,output,input);
end
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The function creates a System object for online estimation of an ARX model of order [1 2 1],
using the unnormalized gradient algorithm, and estimation data, input and output. Save this
function on the MATLAB path. Alternatively, you can specify the full path name for this function.

The persistent System object is initialized with condition if isempty(obj) to ensure that the
object is initialized only once, when the function is called the first time. Subsequent calls to the
function just execute the step command to update the estimated parameters. During
initialization you specify the nontunable properties of the object, such as EstimationMethod,
Orders, and DataType.

2 Generate C/C++ code and MEX-files using the codegen command from MATLAB Coder.

codegen arxonline -args {1,1}

The syntax -args {1,1} specifies a set of example arguments to your function. The example
arguments set the dimensions and data types of the function arguments outputand input as
double-precision scalars.

3 Use the generated code.

• Use the generated C/C++ code to deploy online model estimation to an embedded target.
• Use the generated MEX-file for testing the compiled C/C++ code in MATLAB. The generated
MEX-file is also useful for accelerating simulations of parameter estimation algorithms in
MATLAB.

Load the estimation data. In this example, use a static data set for illustration.

load iddata3
output = z3.y;
input = z3.u;

Update the model parameters by calling the generated MEX-file.

for i = 1:numel(input)
    [A,B,EstimatedOutput] = arxonline_mex(output(i),input(i));
end

Rules and Limitations When Using System Objects in Generated
MATLAB Code
The following rules and limitations apply to using online estimation System objects when writing
MATLAB code suitable for code generation.

Object Construction and Initialization

• If System objects are stored in persistent variables, initialize objects once by embedding the
object handles in an if statement with a call to isempty( ).

• Set arguments to System object constructors as compile-time constants when using the codegen
command. For more information, see coder.Constant.

• Do not initialize System objects properties with other MATLAB class objects as default values in
code generation. Initialize these properties in the constructor.

Inputs and Outputs

• Do not change the data type of the System object inputs.
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• Do not pass a System object as an example input argument to a function being compiled with
codegen.

• Do not pass a System object to functions declared as extrinsic (functions called in interpreted
mode) using the coder.extrinsic function. System objects returned from extrinsic functions
and scope System objects that automatically become extrinsic can be used as inputs to another
extrinsic function, but they do not generate code.

Cell Arrays

• Cell arrays cannot contain System objects.

Tunable and Nontunable Properties of System Objects

• The value assigned to a nontunable property must be a constant, and there can be at most one
assignment to that property (including the assignment in the constructor).

• You can set the tunable properties of online estimation System objects at construction time or by
using dot notation after that.

See Also
codegen | isLocked | recursiveAR | recursiveARMA | recursiveARMAX | recursiveARX |
recursiveBJ | recursiveLS | recursiveOE | release | reset | step

Related Examples
• “Perform Online Parameter Estimation at the Command Line” on page 16-21
• “Validate Online Parameter Estimation at the Command Line” on page 16-10
• “Line Fitting with Online Recursive Least Squares Estimation” on page 16-43
• “Online ARX Parameter Estimation for Tracking Time-Varying System Dynamics” on page 16-50

More About
• “What Is Online Estimation?” on page 16-2
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Extended and Unscented Kalman Filter Algorithms for Online
State Estimation

You can use discrete-time extended and unscented Kalman filter algorithms for online state
estimation of discrete-time nonlinear systems. If you have a system with severe nonlinearities, the
unscented Kalman filter algorithm may give better estimation results. You can perform the state
estimation in Simulink and at the command line. To perform the state estimation, you first create the
nonlinear state transition function and measurement function for your system.

At the command line, you use the functions to construct the extendedKalmanFilter or
unscentedKalmanFilter object for desired algorithm, and specify whether the process and
measurement noise terms in the functions are additive or non-additive. After you create the object,
you use the predict and correct commands to estimate the states using real-time data. For
information about the order in which to execute these commands, see the predict and correct
reference pages.

In Simulink, you specify these function in the Extended Kalman Filter and Unscented Kalman Filter
blocks. You also specify whether the process and measurement noise terms in the functions are
additive or non-additive. In the blocks, the software decides the order in which prediction and
correction of state estimates is done.

Extended Kalman Filter Algorithm
The extendedKalmanFilter command and Extended Kalman Filter block implement the first-order
discrete-time Kalman filter algorithm. Assume that the state transition and measurement equations
for a discrete-time nonlinear system have non-additive process and measurement noise terms with
zero mean and covariance matrices Q and R, respectively:

x[k + 1] = f (x[k], w[k], us[k])
y[k] = h(x[k], v[k], um[k])
w[k] (0, Q[k])
v[k] (0, R[k])

Here f is a nonlinear state transition function that describes the evolution of states x from one time
step to the next. The nonlinear measurement function h relates x to the measurements y at time step
k. These functions can also have additional input arguments that are denoted by us and um. The
process and measurement noise are w and v, respectively. You provide Q and R.

In the block, the software decides the order of prediction and correction of state estimates. At the
command line, you decide the order. For information about the order in which to execute these
commands, see the predict and correct reference pages. Assuming that you implement the
correct command before predict, the software implements the algorithm as follows:

1 Initialize the filter object with initial values of the state, x[0], and state estimation error
covariance matrix, P.

x [0 − 1] = E(x[0])

P[0 − 1] = E(x[0]− x [0 − 1])(x
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Here x  is the state estimate and x [ka kb] denotes the state estimate at time step ka using
measurements at time steps 0,1,...,kb. So x [0 − 1] is the best guess of the state value before
you make any measurements. You specify this value when you construct the filter.

2 For time steps k = 0,1,2,3,..., perform the following:

a Compute the Jacobian of the measurement function, and update the state and state
estimation error covariance using the measured data, y[k]. At the command line, the
correct command performs this update.

C[k] = ∂h
∂x x [k k− 1]

S[k] = ∂h
∂v x [k k− 1]

The software calculates these Jacobian matrices numerically unless you specify the analytical
Jacobian.

K[k] = P[k k− 1]C[k(C

x [k k] = x [k k− 1] + K[k](y[k]− h(x [k k− 1], 0, um[k])

P [k k] = P[k k− 1]− K[k] C[k] P[k k− 1]

Here K is the Kalman gain.
b Compute the Jacobian of the state transition function, and predict the state and state

estimation error covariance at the next time step. In the software, the predict command
performs this prediction.

A[k] = ∂ f
∂x x [k k]

G[k] = ∂ f
∂w x [k k]

The software calculates these Jacobian matrices numerically unless you specify the analytical
Jacobian. This numerical computation may increase processing time and numerical
inaccuracy of the state estimation.

P[k + 1 k] = A[k]P[k k]A[k + G[k]Q[k]G[k

x [k + 1 k] = f (x [k k], 0, us[k])

The correct function uses these values in the next time step. For better numerical
performance, the software uses the square-root factorization of the covariance matrices. For
more information on this factorization, see [2] .

The Extended Kalman Filter block supports multiple measurement functions. These measurements
can have different sample times as long as their sample time is an integer multiple of the state
transition sample time. In this case, a separate correction step is performed corresponding to
measurements from each measurement function.

The algorithm steps described previously assume that you have non-additive noise terms in the state
transition and measurement functions. If you have additive noise terms in the functions, the changes
in the algorithm are:
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• If the process noise w is additive, that is the state transition equation has the form
x[k] = f (x[k− 1], us[k− 1]) + w[k− 1], then the Jacobian matrix G[k] is an identity matrix.

• If the measurement noise v is additive, that is the measurement equation has the form
y[k] = h(x[k], um[k]) + v[k], then the Jacobian matrix S[k] is an identity matrix.

Additive noise terms in the state and transition functions reduce the processing time.

The first-order extended Kalman filter uses linear approximations to nonlinear state transition and
measurement functions. As a result, the algorithm may not be reliable if the nonlinearities in your
system are severe. The unscented Kalman filter algorithm may yield better results in this case.

Unscented Kalman Filter Algorithm
The unscented Kalman filter algorithm and Unscented Kalman Filter block use the unscented
transformation to capture the propagation of the statistical properties of state estimates through
nonlinear functions. The algorithm first generates a set of state values called sigma points. These
sigma points capture the mean and covariance of the state estimates. The algorithm uses each of the
sigma points as an input to the state transition and measurement functions to get a new set of
transformed state points. The mean and covariance of the transformed points is then used to obtain
state estimates and state estimation error covariance.

Assume that the state transition and measurement equations for an M-state discrete-time nonlinear
system have additive process and measurement noise terms with zero mean and covariances Q and R,
respectively:

x[k + 1] = f (x[k], us[k]) + w[k]
y[k] = h(x[k], um[k]) + v[k]
w[k] (0, Q[k])
v[k] (0, R[k])

You provide the initial values of Q and R in the ProcessNoise and MeasurementNoise properties
of the unscented Kalman filter object.

In the block, the software decides the order of prediction and correction of state estimates. At the
command line, you decide the order. For information about the order in which to execute these
commands, see the predict and correct reference pages. Assuming that you implement the
correct command before predict, the software implements the algorithm as follows:

1 Initialize the filter object with initial values of the state, x[0], and state estimation error
covariance, P.

x [0 − 1] = E(x[0])

P[0 − 1] = E(x[0]− x [0 − 1])(x

Here x  is the state estimate and x [ka kb] denotes the state estimate at time step ka using
measurements at time steps 0,1,...,kb. So x [0 − 1] is the best guess of the state value before
you make any measurements. You specify this value when you construct the filter.

2 For each time step k, update the state and state estimation error covariance using the measured
data, y[k]. In the software, the correct command performs this update.
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a Choose the sigma points x (i)[k k− 1] at time step k.

x (0)[k k− 1] =  x [k k− 1]

x (i)[k k− 1]    =   x [k k− 1] + Δx(i)        i = 1, ..., 2M

Δx(i)      =    cP[k k− 1]  i    i = 1, ..., M

Δx(M + i) =  − cP[k k− 1] i   i = 1, ..., M

Where c = α2(M + κ) is a scaling factor based on number of states M, and the parameters α
and κ. For more information about the parameters, see “Effect of Alpha, Beta, and Kappa
Parameters” on page 16-32. cP is the matrix square root of cP such that cP  cP T = cP
and cP i is the ith column of cP.

b Use the nonlinear measurement function to compute the predicted measurements for each of
the sigma points.

y (i)[k k− 1] = h(x (i)[k k− 1], um[k])        i = 0, 1, ..., 2M

c Combine the predicted measurements to obtain the predicted measurement at time k.

y [k] = ∑
i = 0

2M
WM

(i)y (i)[k k− 1]

WM
(0) = 1− M

α2(M + κ)

WM
i = 1

2α2(M + κ)
       i = 1, 2, ..., 2M

d Estimate the covariance of the predicted measurement. Add R[k] to account for the additive
measurement noise.

Py = ∑
i = 0

2M
Wc

(i)(y (i)[k k− 1]− y [k])(y (i)
+ R[k]

Wc
(0) = (2− α2 + β)− M

α2(M + κ)

Wc
i = 1/(2α2(M + κ))       i = 1, 2, ..., 2M

For information about β parameter, see “Effect of Alpha, Beta, and Kappa Parameters” on
page 16-32.

e Estimate the cross-covariance between x [k k− 1] and y [k].

Pxy = 1
2α2(m + κ) ∑i = 1

2M
(x (i)[k k− 1]− x [k k− 1])(y (i)[k k− 1]− y [k])

T

The summation starts from i = 1 because x (0)[k k− 1]− x [k k− 1] = 0.

f Obtain the estimated state and state estimation error covariance at time step k.
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K = PxyPy
−1

x [k k] = x [k k− 1] + K(y[k]− y [k])

P[k k] = P[k k− 1]− KPyKk
T

Here K is the Kalman gain.
3 Predict the state and state estimation error covariance at the next time step. In the software, the

predict command performs this prediction.

a Choose the sigma points x (i)[k k] at time step k.

x (0)[k k]  =   x [k k]

x (i)[k k]      =   x [k k] + Δx(i)        i = 1, ..., 2M

Δx(i)      =    cP[k k]  i    i = 1, ..., M

Δx(M + i) =  − cP[k k] i   i = 1, ..., M
b Use the nonlinear state transition function to compute the predicted states for each of the

sigma points.

x (i)[k + 1 k] = f (x (i)[k k], us[k]) 

c Combine the predicted states to obtain the predicted states at time k+1. These values are
used by the correct command in the next time step.

x [k + 1 k] = ∑
i = 0

2M
WM

(i)x (i)[k + 1 k]

WM
(0) = 1− M

α2(M + κ)

WM
i = 1

2α2(M + κ)
     i = 1, 2, ..., 2M

d Compute the covariance of the predicted state. Add Q[k] to account for the additive process
noise. These values are used by the correct command in the next time step.

P[k + 1 k] = ∑
i = 0

2M
Wc

(i)(x (i)[k + 1 k]− x [k + 1 k])(x (i)[k + 1 k]− x [k + 1 k])
T

+ Q[k]

Wc
(0) = (2− α2 + β)− M

α2(M + κ)

Wc
i = 1/(2α2(M + κ))   i = 1, 2, ..., 2M

The Unscented Kalman Filter block supports multiple measurement functions. These measurements
can have different sample times as long as their sample time is an integer multiple of the state
transition sample time. In this case, a separate correction step is performed corresponding to
measurements from each measurement function.

The previous algorithm is implemented assuming additive noise terms in the state transition and
measurement equations. For better numerical performance, the software uses the square-root
factorization of the covariance matrices. For more information on this factorization, see [2] .

 Extended and Unscented Kalman Filter Algorithms for Online State Estimation

16-31



If the noise terms are non-additive, the main changes to the algorithm are:

• The correct command generates 2*(M+V)+1 sigma points using P[k|k-1] and R[k], where V
is the number of elements in measurement noise v[k]. The R[k] term is no longer added in the
algorithm step 2(d) because the extra sigma points capture the impact of measurement noise on
Py.

• The predict command generates 2*(M+W)+1 sigma points using P[k|k] and Q[k], where W is
the number of elements in process noise w[k]. The Q[k] term is no longer added in the algorithm
step 3(d) because the extra sigma points capture the impact of process noise on P[k+1|k].

Effect of Alpha, Beta, and Kappa Parameters

To compute the state and its statistical properties at the next time step, the unscented Kalman filter
algorithm generates a set of state values distributed around the mean state value. The algorithm uses
each sigma points as an input to the state transition and measurement functions to get a new set of
transformed state points. The mean and covariance of the transformed points is then used to obtain
state estimates and state estimation error covariance.

The spread of the sigma points around the mean state value is controlled by two parameters α and κ.
A third parameter, β, impacts the weights of the transformed points during state and measurement
covariance calculations.

• α — Determines the spread of the sigma points around the mean state value. It is usually a small
positive value. The spread of sigma points is proportional to α. Smaller values correspond to sigma
points closer to the mean state.

• κ — A second scaling parameter that is usually set to 0. Smaller values correspond to sigma points
closer to the mean state. The spread is proportional to the square-root of κ.

• β — Incorporates prior knowledge of the distribution of the state. For Gaussian distributions, β = 2
is optimal.

You specify these parameters in the Alpha, Kappa, and Beta properties of the unscented Kalman
filter. If you know the distribution of state and state covariance, you can adjust these parameters to
capture the transformation of higher-order moments of the distribution. The algorithm can track only
a single peak in the probability distribution of the state. If there are multiple peaks in the state
distribution of your system, you can adjust these parameters so that the sigma points stay around a
single peak. For example, choose a small Alpha to generate sigma points close to the mean state
value.
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Blocks
Extended Kalman Filter | Unscented Kalman Filter

External Websites
• Understanding Kalman Filters: Nonlinear State Estimators — MATLAB Video Series
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Validate Online State Estimation at the Command Line
After you use the extendedKalmanFilter, unscentedKalmanFilter or particleFilter
commands for online state estimation of a nonlinear system, validate the estimation before deploying
the code in your application. If the validation indicates low confidence in the estimation, then see
“Troubleshoot Online State Estimation” on page 16-42 for next steps. After you have validated the
online estimation results, you can generate C/C++ code or a standalone application using MATLAB
Coder or MATLAB Compiler software.

To validate the performance of your filter, perform state estimation using measured or simulated
output data from different scenarios.

• Obtain output data from your system at different operating conditions and input values — To
ensure that estimation works well under all operating conditions of interest. For example, suppose
that you want to track the position and velocity of a vehicle using noisy position measurements.
Measure the data at different vehicle speeds and slow and sharp maneuvers.

• For each operating condition of interest, obtain multiple sets of experimental or simulated data
with different noise realizations — To ensure different noise values do not deteriorate estimation
performance.

For each of these scenarios, test the filter performance by examining the output estimation error and
state estimation error. For an example about performing and validating online state estimation, see
“Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter” on page 16-99.

Examine Output Estimation Error
The output estimation error is the difference between the measured output, y, and the estimated
output, yEstimated. You can obtain the estimated output at each time step by using the
measurement function of the system. For example, if vdpMeasurementFcn.m is the measurement
function for your nonlinear system, and you are performing state estimation using an extended
Kalman filter object, obj, you can compute the estimated output using the current state estimates as:

yEstimated = vdpMeasurementFcn(obj.State);
estimationError = y-yEstimated;

Here obj.State is the state value x [k k− 1] after you estimate the states using the predict
command. x [k k− 1] is the predicted state estimate for time k, estimated using measured output
until a previous time k-1.

If you are using extendedKalmanFilter or unscentedKalmanFilter, you can also use
residual to get the estimation error:

[residual,residualCovariance] = residual(obj,y);

The estimation errors (residuals) must have the following characteristics:

• Small magnitude — Small errors relative to the size of the outputs increase confidence in the
estimated values.

• Zero mean
• Low autocorrelation, except at zero time lag — To compute the autocorrelation, you can use the

MATLAB xcorr command.

16 Online Estimation

16-34



Examine State Estimation Error for Simulated Data
When you simulate the output data of your nonlinear system and use that data for state estimation,
you know the true state values. You can compute the errors between estimated and true state values
and analyze the errors. The estimated state value at any time step is the value stored in obj.State
after you estimate the states using the predict or correct command. The state estimation errors
must satisfy the following characteristics:

• Small magnitude
• Zero mean
• Low autocorrelation, except at zero time lag

You can also compute the covariance of the state estimation error and compare it to the state
estimation error covariance stored in the StateCovariance property of the filter. Similar values
increase confidence in the performance of the filter.

See Also
extendedKalmanFilter | particleFilter | residual | unscentedKalmanFilter

More About
• “Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter” on page 16-99
• “Extended and Unscented Kalman Filter Algorithms for Online State Estimation” on page 16-27
• “Troubleshoot Online State Estimation” on page 16-42
• “Generate Code for Online State Estimation in MATLAB” on page 16-39
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Validate Online State Estimation in Simulink
After you use the Extended Kalman Filter, Unscented Kalman Filter or Particle Filter blocks for online
state estimation of a nonlinear system, validate the estimation before deploying the code in your
application. If the validation indicates low confidence in the estimation, then see “Troubleshoot
Online State Estimation” on page 16-42 for next steps. After you have validated the online
estimation results, you can generate C/C++ code for the blocks using Simulink Coder software.

To validate the performance of your filter, perform state estimation using measured or simulated
output data from these scenarios.

• Obtain output data from your system at different operating conditions and input values — To
ensure that estimation works well under all operating conditions of interest. For example, suppose
that you want to track the position and velocity of a vehicle using noisy position measurements.
Measure the data at different vehicle speeds and slow and sharp maneuvers.

• For each operating condition of interest, obtain multiple sets of experimental or simulated data
with different noise realizations — To ensure that different noise values do not deteriorate
estimation performance.

For each of these scenarios, test the filter performance by examining the residuals and state
estimation error.

Examine Residuals
The residual, or output estimation error, is the difference between the measured system output
yMeasured[k], and the estimated system output yPredicted[k|k-1] at time step k. Here,
yPredicted[k|k-1] is the estimated output at time step k, which is predicted using output
measurements until time step k-1.

The blocks do not explicitly output yPredicted[k|k-1], however you can compute the output using
the estimated state values and your state transition and measurement functions. For an example, see
“Compute Residuals and State Estimation Errors” on page 16-37.

The residuals must have the following characteristics:

• Small magnitude — Small errors relative to the size of the outputs increase confidence in the
estimated values.

• Zero mean
• Low autocorrelation, except at zero time lag — To compute the autocorrelation, you can use the

Autocorrelation block from DSP System Toolbox™ software.

Examine State Estimation Error for Simulated Data
When you simulate the output data of your nonlinear system and use that data for state estimation,
you know the true state values. You can compute the errors between estimated and true state values
and analyze the errors. The estimated state value at any time step is output at the xhat port of the
blocks. The state estimation errors must satisfy the following characteristics:

• Small magnitude
• Zero mean
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• Low autocorrelation, except at zero time lag

You can also compute the covariance of the state estimation error, and compare it to the state
estimation error covariance that is output by the blocks in the P port of the blocks. Similar values
increase confidence in the performance of the filter.

Compute Residuals and State Estimation Errors
This example shows how to estimate the states of a discrete-time Van der Pol oscillator and compute
state estimation errors and residuals for validating the estimation. The residuals are the output
estimation errors, that is, they are the difference between the measured and estimated outputs.

In the Simulink™ model vdpStateEstimModel, the Van der Pol Oscillator block implements the
oscillator with nonlinearity parameter, mu, equal to 1. The oscillator has two states. A noisy
measurement of the first state x1 is available.

The model uses the Unscented Kalman Filter block to estimate the states of the oscillator. Since the
block requires discrete-time inputs, the Rate Transition block samples x1 to give the discretized
output measurement yMeasured[k] at time step k. The Unscented Kalman Filter block outputs the
estimated state values xhat[k|k] at time step k, using yMeasured until time k. The filter block uses
the previously written and saved state transition and measurement functions, vdpStateFcn.m and
vdpMeasurementFcn.m. For information about these functions, see “Nonlinear State Estimation
Using Unscented Kalman Filter and Particle Filter” on page 16-99.

To validate the state estimation, the model computes the residuals in the Generate Residual block. In
addition, since the true state values are known, the model also computes the state estimation errors.

To compute the residuals, the Generate Residual block first computes the estimated output
yPredicted[k|k-1] using the estimated states and state transition and measurement functions.
Here, yPredicted[k|k-1] is the estimated output at time step k, predicted using output
measurements until time step k-1. The block then computes the residual at time step k as
yMeasured[k] - yPredicted[k|k-1].
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Examine the residuals and state estimation errors, and ensure that they have a small magnitude, zero
mean, and low autocorrelation.

In this example, the Unscented Kalman Filter block outputs xhat[k|k] because the Use the
current measurements to improve state estimates parameter of the block is selected. If you
clear this parameter, the block instead outputs xhat[k|k-1], the predicted state value at time step
k, using yMeasured until time k-1. In this case, compute yPredicted[k|k-1] =
MeasurementFcn(xhat[k|k-1]), where MeasurementFcn is the measurement function for your
system.

See Also
Extended Kalman Filter | Kalman Filter | Particle Filter | Unscented Kalman Filter

More About
• “Extended and Unscented Kalman Filter Algorithms for Online State Estimation” on page 16-27
• “Troubleshoot Online State Estimation” on page 16-42
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Generate Code for Online State Estimation in MATLAB
You can generate C/C++ code from MATLAB code that uses extendedKalmanFilter,
unscentedKalmanFilter and particleFilter objects for online state estimation. C/C++ code is
generated using the codegen command from MATLAB Coder software. Use the generated code to
deploy online estimation algorithms to an embedded target. You can also deploy online estimation
code by creating a standalone application using MATLAB Compiler software.

To generate C/C++ code for online state estimation:

1 Create a function to declare your filter object as persistent, and initialize the object. You define
the object as persistent to maintain the object states between calls.

function [CorrectedX] = ukfcodegen(output)
% Declare object as persistent.
persistent obj;
if isempty(obj)
% Initialize the object.
obj = unscentedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[2;0]);
obj.MeasurementNoise = 0.01;
end
% Estimate the states.
CorrectedX = correct(obj,output);
predict(obj);
end

The function creates an unscented Kalman filter object for online state estimation of a van der
Pol oscillator with two states and one output. You use the previously written and saved state
transition and measurement functions, vdpStateFcn.m and vdpMeasurementFcn.m, and
specify the initial state values for the two states as [2;0]. Here output is the measured output
data. Save the ukfcodegen.m function on the MATLAB path. Alternatively, you can specify the
full path name for this function.

In the ukfcodegen.m function, the persistent object is initialized with condition if
isempty(obj) to ensure that the object is initialized only once, when the function is called the
first time. Subsequent calls to the function only execute the predict and correct commands to
update the state estimates. During initialization, you specify the nontunable properties of the
object, such as StateTransitionFcn (specified in ukfcodegen.m as vdpStateFcn.m) and
MeasurementFcn (specified in ukfcodegen.m as vdpMeasurementFcn.m). After that, you can
specify only the tunable properties. For more information, see “Tunable and Nontunable Object
Properties” on page 16-40.

In the state transition and measurement functions you must use only commands that are
supported for code generation. For a list of these commands, see “Functions and Objects
Supported for C/C++ Code Generation” (MATLAB Coder). Include the compilation directive
%#codegen in these functions to indicate that you intend to generate code for the function.
Adding this directive instructs the MATLAB Code Analyzer to help you diagnose and fix violations
that would result in errors during code generation. For an example, type vdpStateFcn.m at the
command line.

2 Generate C/C++ code and MEX-files using the codegen command from MATLAB Coder
software.

codegen ukfcodegen -args {1}
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The syntax -args {1} specifies an example of an argument to your function. The argument sets
the dimensions and data types of the function argument output as a double-precision scalar.

Note If you want a filter with single-precision floating-point variables, you must specify the
initial value of the states as single-precision during object construction.
obj = unscentedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,single([2;0]))

Then to generate code, use the following syntax.

codegen ukfcodegen -args {{single(1)}

3 Use the generated code.

• Use the generated C/C++ code to deploy online state estimation to an embedded target.
• Use the generated MEX-file for testing the compiled C/C++ code in MATLAB. The generated
MEX-file is also useful for accelerating simulations of state estimation algorithms in MATLAB.

Load the estimation data. Suppose that your output data is stored in the
measured_data.mat file.

load measured_data.mat output

Estimate the states by calling the generated MEX-file.

for i = 1:numel(output)
    XCorrected = ukfcodegen_mex(output(i));
end

This example generates C/C++ code for compiling a MEX-file. To generate code for other targets,
see codegen in the MATLAB Coder documentation.

Tunable and Nontunable Object Properties
Property Type Extended Kalman

Filter Object
Unscented Kalman
Filter Object

Particle Filter Object

Tunable properties that
you can specify multiple
times either during
object construction, or
afterward using dot
notation

State,
StateCovariance,
ProcessNoise, and
MeasurementNoise

State,
StateCovariance,
ProcessNoise,
MeasurementNoise,
Alpha, Beta, and
Kappa

Particles and
Weights

Nontunable properties
that you can specify
only once, either during
object construction, or
afterward using dot
notation, but before
using the predict or
correct commands

StateTransitionFcn,
MeasurementFcn,
StateTransitionJac
obianFcn, and
MeasurementJacobia
nFcn

StateTransitionFcn
and MeasurementFcn

StateTransitionFcn,
MeasurementLikelih
oodFcn,
StateEstimationMet
hod,
StateOrientation,
ResamplingPolicy
and
ResamplingMethod
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Property Type Extended Kalman
Filter Object

Unscented Kalman
Filter Object

Particle Filter Object

Nontunable properties
that you must specify
during object
construction

HasAdditiveProcess
Noise and
HasAdditiveMeasure
mentNoise

HasAdditiveProcess
Noise and
HasAdditiveMeasure
mentNoise

 

See Also
extendedKalmanFilter | particleFilter | unscentedKalmanFilter

More About
• “What Is Online Estimation?” on page 16-2
• “Nonlinear State Estimation Using Unscented Kalman Filter and Particle Filter” on page 16-99
• “Validate Online State Estimation at the Command Line” on page 16-34
• “Troubleshoot Online State Estimation” on page 16-42
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Troubleshoot Online State Estimation
After you perform state estimation of a nonlinear system using linear, extended, or unscented Kalman
filter or particle filter algorithms, you validate the estimation before deploying the code in your
application. If the validation indicates low confidence in the estimation, check the following filter
properties that you specified:

• Initial state and state covariance values — If you find that the measured and estimated outputs of
your system are diverging at the beginning of state estimation, check the initial values that you
specified.

• State transition and measurement functions — Verify that the functions you specify are a good
representation of the nonlinear system. If the true system is continuous-time, to implement the
algorithms, you discretize the state transition and measurement equations and use the discretized
versions. If the state estimation results are not satisfactory, consider decreasing the sample time
used for discretization. Alternatively, try a different discretization method. For an example of how
to discretize a continuous-time state transition function, type edit vdpStateFcn.m at the
command line. Also see, “Nonlinear State Estimation Using Unscented Kalman Filter and Particle
Filter” on page 16-99.

• Process and measurement noise covariance values — If the difference between estimated and
measured outputs of your system is large, try specifying different values for the process and
measurement noise covariance values.

• Choice of algorithm — If you are using the extended Kalman filter algorithm, you can try the
unscented Kalman filter, or the particle filter algorithm instead. The unscented Kalman filter and
particle filter may capture the nonlinearities in the system better.

To troubleshoot state estimation, you can create multiple versions of the filter with different
properties, perform state estimation, and choose the filter that gives the best validation results.

At the command line, if you want to copy an existing filter object and then modify properties of the
copied object, use the clone command. Do not create additional objects using syntax obj2 = obj.
Any changes made to the properties of the new object created in this way (obj2) also change the
properties of the original object (obj).

See Also
Functions
extendedKalmanFilter | particleFilter | unscentedKalmanFilter

Blocks
Extended Kalman Filter | Particle Filter | Unscented Kalman Filter

More About
• “Validate Online State Estimation at the Command Line” on page 16-34
• “Validate Online State Estimation in Simulink” on page 16-36
• “Generate Code for Online State Estimation in MATLAB” on page 16-39
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Line Fitting with Online Recursive Least Squares Estimation
This example shows how to perform online parameter estimation for line-fitting using recursive
estimation algorithms at the MATLAB command line. You capture the time-varying input-output
behavior of the hydraulic valve of a continuously variable transmission.

Physical System

The system is a continuously variable transmission (CVT) driven by a hydraulic valve, inspired by
reference [1]. The valve pressure is connected to the CVT which allows it to change its speed ratio
and to transmit torque from the engine to the wheels. The input-output behavior of the valve can be
approximated by:

y(t) = k(t)u(t) + b(t) for −b(t)
k(t) < u ≤ 1

Here, t is the current time, y(t) is the valve pressure in bar, u(t) is the unitless input in the range of
[0, 1]. The condition −b

k < u is the dead-band of the valve.

The slope, k(t), and offset, b(t), depend on the system temperature. They vary as the system warms up
from cold start to typical operating temperature. You want to estimate k(t) and b(t) based on noisy
measurements of u(t) and y(t).

Data

The true slope and offset parameters are k(0)=70 and b(0)=-15 at time t=0s. At t=50s the engine
starts. The parameters vary over time until they reach k(950)=50 and b(950)=-13 at t=950s. The
sample time is Ts=0.1s.

The content of the input signal u is critical for parameter estimation. Consider a case where u, and
hence y, is constant. Then there are infinitely many k and b values that satisfy y = k u + b. u(t) must
be persistently exciting the system for successful estimation of k(t) and b(t). In this example, the
input u:

• is zero from t=0s until t=50s.
• has step changes to 0.40, 0.45, 0.50, 0.55, 0.60, 0.55, 0.50, 0.45, 0.40 every 100s, from t=50s until

t=950s.
• a Gaussian random variable with zero mean, 0.02 standard deviation was added at each time step

from t=50s until t=950s to provide extra excitation of system dynamics for identification
purposes.

The output is generated with the aforementioned true values of k(t), b(t) along with the input signal
u(t), using y(t) = k(t) u(t) + b(t) + e(t). e(t), measurement noise, is a Gaussian random variable with
zero mean and standard deviation 0.05.

load LineFittingRLSExample u y k b t;
figure();
subplot(2,1,1);
plot(t,u);
ylabel('Input signal, u, [unitless]');
subplot(2,1,2);
plot(t,y);
ylabel('Valve pressure, y, [bar]');
xlabel('Time [s]');
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Online Parameter Estimation Using Recursive Least Squares

Write the valve input-output model using vector notation:

y(t) = k(t)u(t) + b(t) + e(t)

= [u(t) 1][k(t) b(t)]T + e(t)
= H(t)x(t) + e(t)

where H(t) = [u(t) 1] is the regressors and x = [k(t) b(t)]T is the parameters to be estimated. e(t) is
the unknown noise. You use the recursiveLS estimation command to create a System object for online
parameter estimation. You then use the step command to update the parameter estimates, x(t), at
each time-step based on H(t) and y(t).

You specify the following recursiveLS System Object properties:

• Number of parameters: 2.
• EstimationMethod: 'ForgettingFactor' (default). This method has only one scalar parameter,

ForgettingFactor, which requires limited prior information regarding parameter values.
• ForgettingFactor: 0.95. The parameters are expected to vary over time, hence less than 1.

1
1− λ = 20 is the number of past data samples that influence the estimates most.

• InitialParameters: [70; -15], an initial guess for the parameter values. Optional, but
recommended for reducing initial transients.
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• InitialParameterCovariance: Your estimate of uncertainty in the initial parameter guess. Set it
to a small value, 1% of the absolute value of the initial parameters, if you have confidence in the
initial parameter guesses. Optional but recommended, especially when you specify
InitialParameters. This is only utilized with the ForgettingFactor and KalmanFilter estimation
methods.

X = recursiveLS(2,... % 2=number of estimated parameters
    'EstimationMethod','ForgettingFactor',...
    'ForgettingFactor',0.95,...
    'InitialParameters',[70; -15],...
    'InitialParameterCovariance',[0.7 0.15]);

This example simulates the online operation of the estimator by providing one (y(t),H(t)) pair to the
estimator at a time. Call the step command to update parameters with each new pair. The parameter
adaptation is enabled only when the input u is outside the dead band (u>0.3).

theta = zeros(numel(u),2);
yHat = zeros(numel(u),1);
PHat = zeros(numel(u),2,2);
for kk=1:numel(u)
    % enable parameter estimation only when u is outside the dead-band
    if u(kk)>=0.3 
        X.EnableAdaptation = true();
    else
        X.EnableAdaptation = false();
    end
    [theta(kk,:),yHat(kk)] = step(X,y(kk),[u(kk) 1]); % get estimated parameters and output
    PHat(kk,:,:) = X.ParameterCovariance; % get estimated uncertainty in parameters
    % perform any desired tasks with the parameters
end

Estimated Parameters

The true and estimated parameter values are:

figure();
subplot(2,1,1);
plot(t,theta(:,1),t,k); % Estimated and real slope, respectively
ylabel('Slope');
xlabel('Time');
ylim([49 71]);
legend('Estimated','Real','Location','Best');
subplot(2,1,2);
plot(t,theta(:,2),t,b); % Estimated and real offset, respectively
ylabel('Offset');
xlabel('Time');
ylim([-15.25 -12.75]);
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Validating the Estimated Model

The estimator provides the following two tools to judge the quality of the parameter estimates:

1 Output estimate y(t): The second output argument of the step method is y(t) = H(t)x(t). The
relative and absolute error between y and y are measures of the goodness of the fit.

2 Parameter covariance estimate P(t): This is available with the ForgettingFactor and
KalmanFilter algorithms. It is stored in the ParameterCovarianceMatrix property of the
estimator. The diagonals of P are the estimated variances of the parameters. The lower the
better.

The output measurement and its estimate, as well as the associated absolute and relative errors when
the engine is on are:

engineOn = t>50 & t<950;
figure();
subplot(2,1,1);
absoluteError = y-yHat;
plot(t(engineOn),absoluteError(engineOn));
ylim([-0.15 0.15]);
ylabel('Abs. Error [bar]');
subplot(2,1,2);
relativeError = (y-yHat)./y;
plot(t(engineOn),relativeError(engineOn));
ylim([-0.025 0.025]);
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ylabel('Rel. Error [unitless]');
xlabel('Time [s]');

The absolute errors are about 0.1bar. The relative errors are below 2%. Both quantities are small.

The diagonals of the parameter covariance matrix, scaled by the variance of the residuals y(t)− y(t),
capture the variances of parameter estimates. The square-root of the variances are the standard
deviations of the parameter estimates.

noiseVariance = var(y(engineOn)-yHat(engineOn));
figure();
subplot(2,1,1);
hold on;
plot(t,sqrt(PHat(:,1,1)*noiseVariance));
ylim([0 1]);
ylabel('Std. dev. of slope k');
subplot(2,1,2);
plot(t,sqrt(PHat(:,2,2)*noiseVariance));
ylim([0 1]);
ylabel('Std. dev. of offset b');
xlabel('Time [s]');
hold on;
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The standard deviation of the slope k fluctuates around 0.7. This is small relative to the range of
values of k [50, 70]. This gives confidence in the parameter estimates. The situation is similar with
the offset b, which is in the range [-15 -13].

Note that the parameter standard deviations are also estimates. They are based on the assumption
that the residuals y(t)− y(t) are white. This depends on the estimation method, its associated
parameters, structure of the estimated model, and the input signal u. Differences between the
assumed and the actual model structure, lack of persistent input excitation, or unrealistic estimation
method settings can lead to overly optimistic or pessimistic uncertainty estimates.

Summary

You performed a line fit using recursive least squares to capture the time-varying input-output
behavior of a hydraulic valve. You evaluated the quality of fit by looking at two signals: the error
between estimated and measured system output, and the parameter covariance estimates.

References

[1] Gauthier, Jean-Philippe, and Philippe Micheau. "Regularized RLS and DHOBE: An Adaptive
Feedforward for a Solenoid Valve." Control Systems Technology, IEEE Transactions on 20.5 (2012):
1311-1318

See Also
clone | isLocked | recursiveAR | recursiveARMA | recursiveARMAX | recursiveARX |
recursiveBJ | recursiveLS | recursiveOE | release | reset | step
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Related Examples
• “Perform Online Parameter Estimation at the Command Line” on page 16-21
• “Validate Online Parameter Estimation at the Command Line” on page 16-10
• “Generate Code for Online Parameter Estimation in MATLAB” on page 16-24
• “Online ARX Parameter Estimation for Tracking Time-Varying System Dynamics” on page 16-50
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Online ARX Parameter Estimation for Tracking Time-Varying
System Dynamics

This example shows how to perform online parameter estimation for a time-varying ARX model at the
MATLAB command line. The model parameters are updated at each time step with incoming new
data. This model captures the time-varying dynamics of a linear plant.

Plant

The plant can be represented as:

y(s) = G(s)u(s) + e(s)

Here, G is the transfer function and e is the white-noise. The plant has two operating modes. In the
first operating mode, the transfer function is:

G1(s) = 4500
(s + 5)(s2 + 1 . 2s + 900)

The lightly damped poles in G1(s) have the damping 0.02 and natural frequency 30rad/s. In the
second operating mode, the natural frequency of these poles is 60rad/s. In this mode, the transfer
function is:

G2(s) = 18000
(s + 5)(s2 + 2 . 4s + 3600)

The plant operates in the first mode until t=10s, and then switches to the second mode.

The Bode plots of G1 and G2 are:

wn = 30; % natural frequency of the lightly damped poles
ksi = 0.02; % damping of the poles
G1 = tf(1,conv([1/5 1],[1/wn^2 2*ksi/wn 1])); % plant in mode 1
wn = 60; % natural frequency in the second operating mode
G2 = tf(1,conv([1/5 1],[1/wn^2 2*ksi/wn 1])); % plant in mode 2
bode(G1,G2,{1,125});
legend('G1','G2','Location','Best');
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Online ARX Parameter Estimation

The aim is to estimate the dynamics of the plant during its operation. ARX is a common model
structure used for this purpose. ARX models have the form:

y(t) = B(q)
A(q)u(t) + 1

A(q)e(t)

Here, q−1 is the time-shift operator. The ratio of the polynomials B(q)/A(q) captures the input-output
model (u(t) to y(t)), and 1/A(q) captures the noise model (e(t) to y(t)). You are estimating the
coefficients of the A(q) and B(q) polynomials. e(t) is white noise.

ARX model structure is a good first candidate for estimating linear models. The related estimation
methods have low computational burden, are numerically robust, and have the convexity property.
The convexity property ensures there is no risk of parameter estimation getting stuck at a local
optima. However, ARX model structure does not provide flexibility for noise models.

The lack of flexibility in noise modeling can pose difficulties if the structure of the plant does not
match with the ARX model structure, or if the noise is not white. Two approaches to remedy this issue
are:

1 Data Filtering: If the noise model is not important for your application, you can use data filtering
techniques. For more details, see the 'Filter the Data' section.

2 Different model structures: Use ARMAX, Output-Error, and Box-Jenkins polynomial models for
more flexibility in model structures.
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Select Sample Time

The sample time choice is important for good approximation of the continuous-time plant by a
discrete-time model. A rule of thumb is to choose the sampling frequency as 20 times the dominant
dynamics of the system. The plant has the fastest dominant dynamics at 60rad/s, or about 10Hz. The
sampling frequency is therefore 200Hz.

Ts = 0.005; % [s], Sample time, Ts=1/200

System Excitation

For successful estimation the plant inputs must persistently excite its dynamics. Simple inputs such
as a single step input are typically not sufficient. In this example the plant is driven by a pulse with
amplitude 10 and a period of 1 second. The pulse width is 50% of its period.

Generate plant input and output signals:

t = 0:Ts:20; % Time vector
u = double(rem(t/1,1)-0.5 < 0); % pulse
y = zeros(size(u));
% Store random number generator's states for reproducible results.
sRNG = rng;
rng('default');
% Simulate the mode-switching plant with a zero-order hold.
G1d = c2d(G1,Ts,'zoh');
B1 = G1d.num{1}.'; 
A1 = G1d.den{1}.'; % B1 and A1 corresponds to G1.
G2d = c2d(G2,Ts,'zoh');
B2 = G2d.num{1}.';
A2 = G2d.den{1}.'; % B2 and A2 corresponds to G2.
idx = numel(B2):-1:1;
for ct=(1+numel(B2)):numel(t)
    idx = idx + 1;
    if t(ct)<10 % switch mode after t=10s
        y(ct) = u(idx)*B1-y(idx(2:end))*A1(2:end);
    else
        y(ct) = u(idx)*B2-y(idx(2:end))*A2(2:end);
    end
end
% Add measurement noise
y = y + 0.02*randn(size(y));
% Restore the random number generator's states.
rng(sRNG);

Plot the input-output data:

figure();
subplot(2,1,1);
plot(t,u);
ylabel('Input (u)');
subplot(2,1,2);
plot(t,y);
ylim([-0.2 1.2])
ylabel('Output (y)');
xlabel('Time [s]');
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Filter the Data

The plant has the form:

y(t) = G(q)u(t) + e(t)

where e(t) is the white noise. In contrast, the ARX models have the form

y(t) = B(q)
A(q)u(t) + 1

A(q)e(t)

The estimator will use B(q) and A(q) to approximate G(q). However, note the difference in the noise
models. The plant has white-noise e(t) directly impacting y(t), but the ARX model assumes that a
white noise term filtered by 1/A(q) impacts y(t). This mismatch will negatively affect the estimation.

When the noise model is not of interest, one method to reduce the impact of this mismatch is to use a
data filter. Use a filter F(q) on both u(t) and y(t) to obtain uf (t) = F(q)u(t) and yf (t) = F(q)y(t). Then
use the filtered signals uf (t) and yf (t) in the estimator instead of the plant input u(t) and output y(t).
The choice of data filter lets you reduce the influence of e(t) on the estimation.

The data filter F(q) is typically a low-pass or a band-pass filter based on the frequency range of
importance for the application, and the characteristics of e(t). Here, a 4th order Butterworth low-pass
filter with cutoff frequency 10Hz is used. This is approximately the frequency of the fastest dominant
dynamics in the plant (60rad/s). A low-pass filter is sufficient here because the noise term does not
have low-frequency content.
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% Filter coefficients
Fa = [1 -3.1806 3.8612 -2.1122 0.4383]; % denominator
Fb = [4.1660e-04 1.6664e-03 2.4996e-03 1.6664e-03 4.1660e-04]; % numerator
% Filter the plant input for estimation
uf = filter(Fb,Fa,u);
% Filter the plant output
yf = filter(Fb,Fa,y);

Set Up the Estimation

Use the recursiveARX command for online parameter estimation. The command creates a System
object™ for online parameter estimation of an ARX model structure. Specify the following properties
of the object:

• Model orders: [3 1 0]. na = 3 because the plant has 3 poles. nk = 0 because plant does not have
input delay. nb = 1 corresponds to no zeros in the system. nb was set after a few iterations,
starting from nb=4 which corresponds to three zeros, and hence a proper model. A smaller
number of estimated parameters are desirable and nb=1 yields sufficient results.

• EstimationMethod: 'ForgettingFactor' (default). This method has only one scalar parameter,
ForgettingFactor, which requires limited prior information regarding parameter values.

• ForgettingFactor: 0.995. The forgetting factor, λ, is less than one as the parameters vary over
time. 1

1− λ = 200 is the number of past data samples that influence the estimates most.

X = recursiveARX([3 1 0]); % [na nb nk]
X.ForgettingFactor = 0.995;

Create arrays to store estimation results. These are useful for validating the algorithms.

np = size(X.InitialParameterCovariance,1);
PHat = zeros(numel(u),np,np);
A = zeros(numel(u),numel(X.InitialA));
B = zeros(numel(u),numel(X.InitialB));
yHat = zeros(1,numel(u));

Use the step command to update the parameter values using one set of input-output data at each
time step. This illustrates the online operation of the estimator.

for ct=1:numel(t)
    % Use the filtered output and input signals in the estimator
    [A(ct,:),B(ct,:),yHat(ct)] = step(X,yf(ct),uf(ct));
    PHat(ct,:,:) = X.ParameterCovariance;
end

View the Bode plot of the estimated transfer functions:

G1Hat = idpoly(A(1000,:),B(1000,:),1,1,1,[],Ts); % Model snapshot at t=10s
G2Hat = idpoly(X); % Snapshot of the latest model, at t=20s
G2Hat.Ts = G1d.Ts; % Set the sample time of the snapshot
figure();
bode(G1,G1Hat);
xlim([0.5 120]);
legend('G1','Identified model at t=10s','Location','Best');
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figure();
bode(G2,G2Hat);
xlim([0.5 120]);
legend('G2','Identified model at t=20s','Location','Best');
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Validating the Estimated Model

Use the following techniques to validate the parameter estimation:

1 View output estimate, yhat(t): The third output argument of the step method is the one-step
ahead prediction of the output yhat(t). This is based on current model parameters as well as
current and past input-output measurements. The relative and absolute error between y(t) and
yhat(t) are measures of the goodness of the fit.

2 View the parameter covariance estimate, Phat(t): This is available with the ForgettingFactor
and KalmanFilter estimation methods. It is stored in the ParameterCovarianceMatrix property of
the estimator. The diagonals of Phat(t) are the estimated variances of the parameters. It should
be bounded, and the lower the better.

3 Simulate the estimated time-varying model: Use u(t) and the estimated parameters to
simulate the model to obtain a simulated output, ysim(t). Then compare y(t) and ysim(t). This is a
more strict validation than comparing y(t) and yhat(t) because ysim(t) is generated without the
plant output measurements.

The absolute error yf(t)-yhat(t) and the relative error (yf(t)-yhat(t))/yf(t) are:

figure();
subplot(2,1,1);
plot(t,yf-yHat);
ylabel('Abs. Error');
subplot(2,1,2);
plot(t,(yf-yHat)./yf);
ylim([-0.05 0.05]);
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ylabel('Rel. Error');
xlabel('Time [s]');

The absolute errors are on the order of 1e-3, which is small compared to the measured output signal
itself. The relative error plot at the bottom confirms this, with errors being less than 5% except at the
beginning of the simulation.

The diagonals of the parameter covariance matrix, scaled by the variance of the residuals y(t)-yhat(t),
capture the variances of parameter estimates. The square-root of the variances are the standard
deviations of the parameter estimates. The first three elements on the diagonals are the three
parameters estimated in the A(q) polynomial. The last element is the single parameter in the B(q)
polynomial. Let's look at the first estimated parameter in A(q)

noiseVariance = var(yf-yHat);
X.A(2) % The first estimated parameter. X.A(1) is fixed to 1

ans = -2.8635

sqrt(X.ParameterCovariance(1,1)*noiseVariance)

ans = 0.0175

The standard deviation 0.0175 is small relative to the absolute value of the parameter value 2.86.
This indicates good confidence in the estimated parameter.

figure();
plot(t,sqrt(PHat(:,1,1)*noiseVariance));
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ylabel('Standard deviation estimate for the parameter A(2)')
xlabel('Time [s]');

The uncertainty is small and bounded throughout the estimation. However, note that the parameter
standard deviations are also estimates. They are based on the assumption that the residuals y(t)-
yhat(t) are white. This depends on the estimation method, its associated parameters, the structure of
the estimated model, and the input signal u. Differences between the assumed and the actual model
structure, lack of persistent input excitation, or unrealistic estimation method settings can lead to
overly optimistic or pessimistic uncertainty estimates.

Lastly, simulate the estimated ARX model using the stored history of estimated parameters. This
simulation can also be done simultaneously with the estimation loop for validation during online
operation.

ysim = zeros(size(y));
idx = numel(B2):-1:1;
for ct=(1+numel(B2)):numel(t)
    idx = idx + 1;
    ysim(ct) = u(idx(1))*B(idx(1),:)-ysim(idx(2:end))*A(ct,2:end)';
end
figure();
subplot(2,1,1);
plot(t,y,t,ysim);
ylabel('System Output');
legend('Measured','Estimated','Location','Best');
subplot(2,1,2);
plot(t,y-ysim);
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ylim([-0.5 0.5]);
ylabel('Error, y(t)-ysim(t)');
xlabel('Time [s]');

The error is large initially, but it settles to a smaller value around t=5s for the first operating mode.
The large initial error can be reduced by providing the estimator an initial guess for the model
parameters and initial parameter covariance. When the plant switches to the second mode, the errors
grow initially but settle down as time goes on as well. This gives confidence that the estimated model
parameters are good at capturing the model behavior for the given input signal.

Summary

You performed online parameter estimation for an ARX model. This model captured the dynamics of a
mode-switching plant. You validated the estimated model by looking at the error between estimated,
simulated, measured system outputs as well as the parameter covariance estimates.

See Also
clone | isLocked | recursiveAR | recursiveARMA | recursiveARMAX | recursiveARX |
recursiveBJ | recursiveLS | recursiveOE | release | reset | step

Related Examples
• “Perform Online Parameter Estimation at the Command Line” on page 16-21
• “Validate Online Parameter Estimation at the Command Line” on page 16-10
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• “Generate Code for Online Parameter Estimation in MATLAB” on page 16-24
• “Line Fitting with Online Recursive Least Squares Estimation” on page 16-43
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Online Recursive Least Squares Estimation
This example shows how to implement an online recursive least squares estimator. You estimate a
nonlinear model of an internal combustion engine and use recursive least squares to detect changes
in engine inertia.

Engine Model

The engine model includes nonlinear elements for the throttle and manifold system, and the
combustion system. The model input is the throttle angle and the model output is the engine speed in
rpm.

open_system('iddemo_engine');
sim('iddemo_engine')
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The engine model is set up with a pulse train driving the throttle angle from open to closed. The
engine response is nonlinear, specifically the engine rpm response time when the throttle is open and
closed are different.

At 100 seconds into the simulation an engine fault occurs causing the engine inertia to increase (the
engine inertia, J, is modeled in the iddemo_engine/Vehicle Dynamics block). The inertia change
causes engine response times at open and closed throttle positions to increase. You use online
recursive least squares to detect the inertia change.

open_system('iddemo_engine/trpm')

Estimation Model

The engine model is a damped second order system with input and output nonlinearities to account
for different response times at different throttle positions. Use the recursive least squares block to
identify the following discrete system that models the engine:

Since the estimation model does not explicitly include inertia we expect the  values to change as the
inertia changes. We use the changing  values to detect the inertia change.

The engine has significant bandwidth up to 16Hz. Set the estimator sampling frequency to 2*160Hz
or a sample time of  seconds.

Recursive Least Squares Estimator Block Setup

The  terms in the estimated model are the model regressors and inputs to the
recursive least squares block that estimates the  values. You can implement the regressors as shown
in the iddemo_engine/Regressors block.
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open_system('iddemo_engine/Regressors');

Configure the Recursive Least Squares Estimator block:

• Initial Estimate: None. By default, the software uses a value of 1.

• Number of parameters: 3, one for each  regressor coefficient.

• Parameter Covariance Matrix: 1, the amount of uncertainty in initial guess of 1. Concretely,
treat the estimated parameters as a random variable with variance 1.

• Sample Time: .
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Click Algorithm and Block Options to set the estimation options:

• Estimation Method: Forgetting Factor

• Forgetting Factor: 1-2e-4. Since the estimated  values are expected to change with the inertia,
set the forgetting factor to a value less than 1. Choose  = 1-2e-4 which corresponds to a memory

time constant of  or 15 seconds. A 15 second memory time ensures that significant data
from both the open and closed throttle position are used for estimation as the position is changed
every 10 seconds.

• Select the Output estimation error check box. You use this block output to validate the
estimation.

• Select the Output parameter covariance matrix check box. You use this block output to
validate the estimation.

• Clear the Add enable port check box.

• External reset: None.
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Validating the Estimated Model

The Error output of the Recursive Least Squares Estimator block gives the one-step-ahead
error for the estimated model. This error is less than 5% indicating that for one-step-ahead prediction
the estimated model is accurate.

open_system('iddemo_engine/Error (%)')
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The diagonal of the parameter covariances matrix gives the variances for the  parameters. The 
variance is small relative to the parameter value indicating good confidence in the estimated value. In
contrast, the  variances are large relative to the parameter values indicating a low confidence in
these values.

While the small estimation error and covariances give confidence that the model is being estimated
correctly, it is limited in that the error is a one-step-ahead predictor. A more rigorous check is to use
the estimated model in a simulation model and compare with the actual model output. The
Estimated Model section of the simulink model implements this.

The Regressors1 block is identical to the Regressors block use in the recursive estimator. The
only difference is that the y signal is not measured from the plant but fed back from the output of the
estimated model. The Output of the regressors block is multiplied by estimated  values to give 
an estimate of the engine speed.

open_system('iddemo_engine/trpm Est')
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The estimated model output matches the model output fairly well. The steady-state values are close
and the transient behavior is slightly different but not significantly so. Note that after 100 seconds
when the engine inertia changes the estimated model output differs slightly more from the model
output. This implies that the chosen regressors cannot capture the behavior of the model as well after
the inertia change. This also suggests a change in system behavior.

The estimated model output combined with the low one-step-ahead error and parameter covariances
gives us confidence in the recursive estimator.

Detecting Changes in Engine Inertia

The engine model is setup to introduce an inertia change 100 seconds into the simulation. The
recursive estimator can be used to detect the change in inertia.

The recursive estimator takes around 50 seconds to converge to an initial set of parameter values. To
detect the inertia change we examine the  model coefficient that influences the  term of the
estimated model.

open_system('iddemo_engine/Detect Inertia Change')
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The covariance for , 0.05562, is large relative to the parameter value 0.1246 indicating low
confidence in the estimated value. The time plot of  shows why the covariance is large. Specifically

 is varying as the throttle position varies indicating that the estimated model is not rich enough to
fully capture different rise times at different throttle positions and needs to adjust . However, we
can use this to identify the inertia changes as the average value of  changes as the inertia changes.
You can use a threshold detector on the moving average of the  parameter to detect changes in the
engine inertia.

bdclose('iddemo_engine')
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Online ARMAX Polynomial Model Estimation
This example shows how to implement an online polynomial model estimator. You estimate two
ARMAX models for a nonlinear chemical reaction process. These models capture the behavior of the
process at two operating conditions. The model behavior is identified online and used to adjust the
gains of an adaptive PI controller during system operation.

Continuously Stirred Tank Reactor

A Continuously Stirred Tank Reactor (CSTR) is a common chemical system in the process industry. A
schematic of the CSTR system is:

This is a jacketed diabatic (i.e., nondiabatic) tank reactor described extensively in Bequette's book
"Process Dynamics: Modeling, Analysis and Simulation", published by Prentice-Hall, 1998. The vessel
is assumed to be perfectly mixed, and a single first-order exothermic and irreversible reaction, A -->
B, takes place. The inlet stream of reagent A is fed to the tank at a constant rate. After stirring, the
end product streams out of the vessel at the same rate as reagent A is fed into the tank (the volume in
the reactor tank is constant). Details of the operation of the CSTR and its 2-state nonlinear model
used in this example are explained in the example “Non-Adiabatic Continuous Stirred Tank Reactor:
MATLAB File Modeling with Simulations in Simulink®” on page 13-226.

The inputs of the CSTR model are:

and the outputs (y(t)), which are also the states of the model (x(t)), are:
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The control objective is to maintain the concentration of reagent A,  at the desired level
, which changes over time. The jacket temperature  is manipulated by a PI controller in

order to reject disturbances arising from the inlet feed stream temperature . The input of the PI
controller is the tracking error signal, . The inlet feed stream concentration, ,
is assumed to be constant. The Simulink model iddemo_cstr implements the CSTR plant as the
block CSTR.

open_system('iddemo_cstr');

The  feed temperature input consists of a white noise disturbance on top of a constant offset.
The noise power is 0.0075 [K^2]. This noise level causes up to 2% deviation from the desired

.
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The  signal in this example contains a step change from 1.5 [kgmol/m^3] to 2 [kgmol/m^3] at
time . In addition to this step change,  also contains a white noise perturbation for t in
the [0,200) and [400,600) ranges. The power of this white noise signal is 0.015. The noise power is
adjusted empirically to approximately give a signal-to-noise ratio of 10. Not having sufficient
excitation in the reference signal in closed-loop identification can lead to not having sufficient
information to identify a unique model. The implementation of  is in the iddemo_cstr/CA
Reference block.

Online Estimation for Adaptive Control

It is known from the nonlinear model that the CSTR output  is more sensitive to the control
input  at higher  levels. The Recursive Polynomial Model Estimator block is used to detect
this change in sensitivity. This information is used to adjust the gains of the PI controller as 
varies. The aim is to avoid having a a high gain control loop which may lead to instability.

You estimate a discrete transfer-function from  to  online with the Recursive Polynomial
Model Estimator block. The adaptive control algorithm uses the DC gain of this transfer function. The
tracking error , is divided by the normalized DC gain of the estimated transfer
function. This normalization is done to have a gain of 1 on the tracking error at the initial operating
point, for which the PI controller is designed. For instance, the error signal is divided by 2 if the DC
gain becomes 2 times its original value. This corresponds to dividing the PI controller gains by 2. This
adaptive controller is implemented in iddemo_cstr/Adaptive PI Controller.

Recursive Polynomial Model Estimator Block Inputs

The 'Recursive Polynomial Model Estimator' block is found under the System Identification
Toolbox/Estimators library in Simulink. You use this block to estimate linear models with ARMAX
structure. ARMAX models have the form:

• The Inputs and Output inport of the recursive polynomial model estimator block correspond to
 and  respectively. For the CSTR model  and  are deviations from the jacket temperature

and A concentration trim operating points: , . It is good to
scale  and  to have a peak amplitude of 1 to improve the numerical condition of the estimation
problem. The trim operating points,  and , are not known exactly before system
operation. They are estimated and extracted from the measured signals by using a first-order
moving average filter. These preprocessing filters are implemented in the iddemo_cstr/
Preprocess Tj and iddemo_cstr/Preprocess CA blocks.

open_system('iddemo_cstr/Preprocess Tj');
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• The optional Enable inport of the Recursive Polynomial Model Estimator block controls the
parameter estimation in the block. Parameter estimation is disabled when the Enable signal is
zero. Parameter estimation is enabled for all other values of the Enable signal. In this example
the estimation is disabled for the time intervals  and . During these
intervals the measured input  does not contain sufficient excitation for closed-loop system
identification.

Recursive Polynomial Model Estimator Block Setup

Configure the block parameters to estimate a second-order ARMAX model. In the Model Parameters
tab, specify:

• Model Structure: ARMAX. Choose ARMAX since the current and past values of the disturbances
acting on the system, , are expected to impact the CSTR system output .

• Initial Estimate: None. By default, the software uses a value of 0 for all estimated parameters.

• Number of parameters in A(q) (na): 2. The nonlinear model has 2 states.

• Number of parameters in B(q) (nb): 2.

• Number of parameters in C(q) (nc): 2. The estimated model corresponds to a second order
model since the maximum of na, nb, and nc are 2.

• Input Delay (nk): 1. Like most physical systems, the CSTR system does not have direct
feedthrough. Also, there are no extra time delays between its I/Os.

• Parameter Covariance Matrix: 1e4. Specify a high covariance value because the initial guess
values are highly uncertain.

• Sample Time: 0.1. The CSTR model is known to have a bandwidth of about 0.25Hz. 
chosen such that 1/0.1 is greater than 20 times this bandwidth (5Hz).
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Click Algorithm and Block Options to set the estimation options:

• Estimation Method: Forgetting Factor

• Forgetting Factor: 1-5e-3. Since the estimated parameters are expected to change with the
operating point, set the forgetting factor to a value less than 1. Choose  which

corresponds to a memory time constant of  seconds. A 100 second memory time
ensures that a significant amount data used for identification is coming from the 200 second
identification period at each operating point.

• Select the Output estimation error check box. You use this block output to validate the
estimation.

• Select the Add enable port check box. You only want to adapt the estimated model parameters
when extra noise is injected in the reference port. The parameter estimation n is disabled through
this port when the extra noise is no longer injected.
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• External reset: None.

Recursive Polynomial Model Estimator Block Outputs

At every time step, the recursive polynomial model estimator provides an estimate for , ,
, and the estimation error . The Error outport of the polynomial model estimator block

contains  and is also known as the one-step-ahead prediction error. The Parameters outport of
the block contains the A(q), B(q), and C(q) polynomial coefficients in a bus signal. Given the chosen
polynomial orders ( , , , ) the Parameters bus elements contain:

The estimated parameters in the A(q), B(q), and C(q) polynomials change during simulation as
follows:
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sim('iddemo_cstr');
close_system('iddemo_cstr/Preprocess Tj');
open_system('iddemo_cstr/ABC');

The parameter estimates quickly change from their initial values of 0 due to the high value chosen for
the initial parameter covariance matrix. The parameters in the  and  polynomials approach
their values at  rapidly. However, the parameters in the  polynomial show some
fluctuations. One reason behind these fluctuations is that the disturbance  to CSTR output 
is not fully modelled by the ARMAX structure. The error model  is not important for the control

problem studied here since the  to  relationship is captured by the transfer function .
Therefore, the fluctuation in  is not a concern for this identification and control problem.

The parameter estimates are held constant for  since the estimator block was disabled
for this interval (0 signal to the Enable inport). The parameter estimation is enabled at  when
the CSTR tank starts switching to its new operating point. The parameters of  and  converge
to their new values by , and then held constant by setting the Enable port to 0. The
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convergence of  and  is slower at this operating point. This slow convergence is because of
the smaller eigenvalues of the parameter covariance matrix at t=400 compared to the initial 1e4
values set at t=0. The parameter covariance, which is a measure of confidence in the estimates, is
updated with each time step. The algorithm quickly changed the parameter estimates when the
confidence in estimates were low at t=0. The improved parameter estimates capture the system
behavior better, resulting in smaller one-step-ahead prediction errors and smaller eigenvalues in the
parameter covariance matrix (increased confidence). The system behavior changes in t=400.
However, the block is slower to change the parameter estimates due to the increased confidence in
the estimates. You can use the External Reset option of the Recursive Polynomial Model Estimator
block to provide a new value for parameter covariance at t=400. To see the value of the parameter
covariance, select the Output parameter covariance matrix check box in the Recursive Polynomial
Model Estimator block.

Validating the Estimated Model

The Error output of the Recursive Polynomial Model Estimator block gives the one-step-
ahead error for the estimated model.

close_system('iddemo_cstr/ABC');
open_system('iddemo_cstr/1-Step Ahead Prediction Error');
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The one-step-ahead error is higher when there are no extra perturbations injected in the 
channel for system identification. These higher errors may be caused by the lack of sufficient
information in the  input channel that the estimator block relies on. However, even this higher
error is low and bounded when compared to the measured fluctuations in . This gives
confidence in the estimated parameter values.

A more rigorous check of the estimated model is to simulate the estimated model and compare with
the actual model output. The iddemo_cstr/Time-Varying ARMAX block implements the time-
varying ARMAX model estimated by the Online Polynomial Model Estimator block. The error between
the output of the CSTR system and the estimated time-varying ARMAX model output is:

close_system('iddemo_cstr/1-Step Ahead Prediction Error');
open_system('iddemo_cstr/Simulation Error');

The simulation error is again bounded and low when compared to the fluctuations in the . This
further provides confidence that the estimated linear models are able to predict the nonlinear CSTR
model behavior.

The identified models can be further analyzed in MATLAB. The model estimates for the operating
points  and  can be obtained by looking at the estimated A(q),
B(q), and C(q) polynomials at  and  respectively. Bode plots of these models are:
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Ts = 0.1;
tidx = find(t>=200,1);
P200 = idpoly(AHat(:,:,tidx),BHat(:,:,tidx),CHat(:,:,tidx),1,1,[],Ts);
tidx = find(t>=600,1);
P600 = idpoly(AHat(:,:,tidx),BHat(:,:,tidx),CHat(:,:,tidx),1,1,[],Ts);
bodemag(P200,'b',P600,'r--',{10^-1,20});
legend('Estimated Model at C_A=1.5 [kgmol/m^3]', ...
       'Estimated Model at C_A=2.0 [kgmol/m^3]', ...
       'Location', 'Best');

The estimated model has a higher gain at higher concentration levels. This is in agreement with prior
knowledge about the nonlinear CSTR plant. The transfer function at  has a 
higher gain (double the amplitude) at low frequencies.

Summary

You estimated two ARMAX models to capture the behavior of the nonlinear CSTR plant at two
operating conditions. The estimation was done during closed-loop operation with an adaptive
controller. You looked at two signals to validate the estimation results: One step ahead prediction
errors and the errors between the CSTR plant output and the simulation of the estimation model.
Both of these errors signals were bounded and small compared to the CSTR plant output. This
provided confidence in the estimated ARMAX model parameters.

bdclose('iddemo_cstr');
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Estimate Parameters of System Using Simulink Recursive
Estimator Block

This example shows how to estimate the parameters of a two-parameter system and compare the
measured and estimated outputs.

This example is the Simulink version of the command-line parameter-estimation example provided in
recursiveLS.

The system has two parameters and is represented as:

Here,

•  and  are the real-time input and output data, respectively.
•  and  are the regressors, , of the system.
•  and  are the parameters, , of the system.

Load the data and extract the input, output, and time information.

To directly compare this example with the command-line recursiveLS example, shift the time vector
by one position. This shift synchronizes the Simulink input (time starts at 0) with the command-line
input (time starts at the first sample time).

load iddata3
input = z3.u;
output = z3.y;
time = z3.SamplingInstants-1;

Construct Input and Output signals for Simulink.

input_sig = timeseries(input,time);
output_sig = timeseries(output,time);

Open a preconfigured Simulink model based on the Recursive Least Squares Estimator block. In this
model:

• The input_sig and output_sig blocks import input_sig and output_sig.

• The model constructs the Regressors signal by routing input_sig through a delay-line block,
and then multiplexing the delayed signal with the original signal.

• An Error port provides the estimated error signal. A Sum block subtracts this error from
input_sig to produce the estimated output.

• A Mux block then combines the measured (output_sig) and estimated output signals so that you
can view them together on the scope.

rls = 'ex_RLS_Estimator_Block_sb_inf';
open_system(rls)
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Run the simulation. The Parameter Scope shows the progression of the estimation. The adjacent
Parameter Display displays the final numerical values. The Outputs Scope plots the measured and
estimated outputs together.

sim(rls)
open_system([rls '/Parameter Scope'])
open_system([rls '/Outputs Scope'])
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You can explore other block configurations by modifying the model parameters. For instance,

• Change Estimation Method to see how your algorithm choices affect your results.
• Change History to finite and your Window Length to 30 to apply the sliding-window

algorithm.

See Also
Recursive Least Squares Estimator | Recursive Polynomial Model Estimator | recursiveLS

More About
• “Estimate Parameters of System Using Simulink Recursive Estimator Block” on page 16-79
• “Online Recursive Least Squares Estimation” on page 16-61
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Use Frame-Based Data for Recursive Estimation in Simulink
This example shows how to use frame-based signals with the Recursive Least Squares Estimator
block in Simulink®. Machine interfaces often provide sensor data in frames containing multiple
samples, rather than in individual samples.

The recursive estimation blocks in the System Identification Toolbox™ accept these frames directly
when you set Input Processing to Frame-based.

The blocks use the same estimation algorithms for sample-based and frame-based input processing.
The estimation results are identical. There are some special considerations, however, for working
with frame-based inputs in Simulink, and for visualizing the results.

This example is the frame-based version of the sample-based example in “Estimate Parameters of
System Using Simulink Recursive Estimator Block” on page 16-79. The function reference for
recursiveLS provides the equivalent sample-based command-line example.

System Description

The system has two parameters and is represented as:

Here,

•  and  are the real-time input and output data samples, respectively
•  and  are the parameters .
•  and  are the regressor samples. The regressor array  is the row vector

.

Frame-Based Inputs

Data frames contain multiple data samples stacked in rows, with the last row containing the most
recent data. For this example, each frame contains 10 samples. The observed inputs and outputs
therefore arrive as  and , where  and  are the positions within the
frame for a given time , and are equivalent to  and .

The regressor frame  also uses this stacking. The  element in the upper right corner is the last
sample from the previous input frame.

Open a preconfigured Simulink model based on the Recursive Least Squares Estimator block.

rlsfb = 'ex_RLS_Estimator_Block_fb';
open_system(rlsfb)
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Observed Inputs and Outputs

Load the frame-based input and output signals into the workspace. Each signal consists of 30 frames,
each frame containing ten individual time samples. In this implementation, the sample time is 1
second, and the frame time is 10 seconds.

load iddata3_frames input_sig_frame output_sig_frame

From Workspace blocks import signals that you loaded. In your application, this data may be
arriving directly from your hardware.

Regressors

The model constructs the Regressors frame Hframe in the Construct Regressors subsystem, using
input_sig_frame.

open_system([rlsfb '/Construct Regressors'])

As Frame-Based Inputs described, the frame-based regressor signal consists of the all elements of
the current frame of observed inputs, along with the last sample from the previous frame. The
Selector block extracts the last sample from the observed inputs frame, and the Delay block stores
this value for the next frame step.

Construct Regressors, a MATLAB Function block, constructs the signal Hframe. The first column
of Hframe contains the current input frame. The second column contains the current frame, shifted
by one position. The first element of the second column, representing the oldest sample, is from the
previous observed inputs frame.
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Recursive Least Squares Estimator Block

The block configuration includes frame-based input processing with a sample time of 10.

Error Visualization

The Error port provides the prediction errors in vector-valued frame , where  is the
position within the frame at a given time  and is equivalent to . These prediction errors
can be compared to observed outputs frame  in multiple ways. This example compares
the 2-norms of these vectors. An error vector with a small norm relative to the observed outputs norm
suggests successful estimation. The scope displays a plot of the comparison.

Results

Run the simulation. The Parameters scope shows the progression of the  and  parameter
estimates. The adjacent Parameter Display displays the current values of  and . The scope
Performance plots the 2-norms of the observed outputs and prediction error frames, as described in
error as it compares with the original measurement signal as described in Error Visualization.

sim(rlsfb)
open_system([rlsfb '/Parameters'])
open_system([rlsfb '/Performance'])
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The Parameters plot shows that parameter estimates converge at approximately T = 150. The
Performance plot shows that the prediction errors are small compared with the observed outputs.
These results suggest a successful estimation. The final parameter estimates in the Parameter display
are identical to those in the command-line and the sample-based Simulink examples linked at the
beginning of this example.

See Also
Recursive Least Squares Estimator | Recursive Polynomial Model Estimator | recursiveLS

More About
• “Recursive Algorithms for Online Parameter Estimation” on page 16-16
• “Estimate Parameters of System Using Simulink Recursive Estimator Block” on page 16-79
• “Online Recursive Least Squares Estimation” on page 16-61
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State Estimation Using Time-Varying Kalman Filter
This example shows how to estimate states of linear systems using time-varying Kalman filters in
Simulink. You use the Kalman Filter block from the System Identification Toolbox/
Estimators library to estimate the position and velocity of a ground vehicle based on noisy position
measurements such as GPS sensor measurements. The plant model in Kalman filter has time-varying
noise characteristics.

Introduction

You want to estimate the position and velocity of a ground vehicle in the north and east directions.
The vehicle can move freely in the two-dimensional space without any constraints. You design a multi-
purpose navigation and tracking system that can be used for any object and not just a vehicle.

 and  are the vehicle's east and north positions from the origin,  is the vehicle
orientation from east and  is the steering angle of the vehicle.  is the continuous-time variable.

The Simulink model consists of two main parts: Vehicle model and the Kalman filter. These are
explained further in the following sections.

open_system('ctrlKalmanNavigationExample');

16 Online Estimation

16-88



Vehicle Model

The tracked vehicle is represented with a simple point-mass model:

where the vehicle states are:

the vehicle parameters are:

and the control inputs are:

The longitudinal dynamics of the model ignore tire rolling resistance. The lateral dynamics of the
model assume that the desired steering angle can be achieved instantaneously and ignore the yaw
moment of inertia.

 State Estimation Using Time-Varying Kalman Filter

16-89



The car model is implemented in the ctrlKalmanNavigationExample/Vehicle Model
subsystem. The Simulink model contains two PI controllers for tracking the desired orientation and
speed for the car in the ctrlKalmanNavigationExample/Speed And Orientation Tracking
subsystem. This allows you to specify various operating conditions for the car and test the Kalman
filter performance.

Kalman Filter Design

Kalman filter is an algorithm to estimate unknown variables of interest based on a linear model. This
linear model describes the evolution of the estimated variables over time in response to model initial
conditions as well as known and unknown model inputs. In this example, you estimate the following
parameters/variables:

where

The  terms denote velocities and not the derivative operator.  is the discrete-time index. The model
used in the Kalman filter is of the form:

where  is the state vector,  is the measurements,  is the process noise, and  is the measurement
noise. Kalman filter assumes that  and  are zero-mean, independent random variables with known
variances , , and . Here, the A, G, and C matrices are:

where 

16 Online Estimation

16-90



The third row of A and G model the east velocity as a random walk: . In

reality, position is a continuous-time variable and is the integral of velocity over time . The
first row of the A and G represent a discrete approximation to this kinematic relationship:

. The second and fourth rows of the A and G represent
the same relationship between the north velocity and position.

The C matrix represents that only position measurements are available. A position sensor, such as
GPS, provides these measurements at the sample rate of 1Hz. The variance of the measurement noise
, the R matrix, is specified as . Since R is specified as a scalar, the Kalman filter block

assumes that the matrix R is diagonal, its diagonals are 50 and is of compatible dimensions with y. If
the measurement noise is Gaussian, R=50 corresponds to 68% of the position measurements being
within  or the actual position in the east and north directions. However, this assumption is
not necessary for the Kalman filter.

The elements of  capture how much the vehicle velocity can change over one sample time Ts. The
variance of the process noise w, the Q matrix, is chosen to be time-varying. It captures the intuition
that typical values of  are smaller when velocity is large. For instance, going from 0 to 10m/s is
easier than going from 10 to 20m/s. Concretely, you use the estimated north and east velocities and a
saturation function to construct Q[n]:

The diagonals of Q model the variance of w inversely proportional to the square of the estimated
velocities. The saturation function prevents Q from becoming too large or small. The coefficient 250 is
obtained from a least squares fit to 0-5, 5-10, 10-15, 15-20, 20-25m/s acceleration time data for a
generic vehicle. Note that the diagonal Q choice represents a naive assumption that the velocity
changes in the north and east direction are uncorrelated.

Kalman Filter Block Inputs and Setup

The 'Kalman Filter' block is in the System Identification Toolbox/Estimators library in
Simulink. It is also in Control System Toolbox library. Configure the block parameters for
discrete-time state estimation. Specify the following Filter Settings parameters:

• Time domain: Discrete-time. Choose this option to estimate discrete-time states.

• Select the Use current measurement y[n] to improve xhat[n] check box. This implements the
"current estimator" variant of the discrete-time Kalman filter. This option improves the estimation
accuracy and is more useful for slow sample times. However, it increases the computational cost.
In addition, this Kalman filter variant has direct feedthrough, which leads to an algebraic loop if
the Kalman filter is used in a feedback loop that does not contain any delays (the feedback loop
itself also has direct feedthrough). The algebraic loop can further impact the simulation speed.

Click the Options tab to set the block inport and outport options:
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• Unselect the Add input port u check box. There are no known inputs in the plant model.

• Select the Output state estimation error covariance Z check box. The Z matrix provides
information about the filter's confidence in the state estimates.

Click Model Parameters to specify the plant model and noise characteristics:

• Model source: Individual A, B, C, D matrices.

• A: A. The A matrix is defined earlier in this example.

• C: C. The C matrix is defined earlier in this example.

• Initial Estimate Source: Dialog

• Initial states x[0]: 0. This represents an initial guess of 0 for the position and velocity estimates
at t=0s.

• State estimation error covariance P[0]: 10. Assume that the error between your initial guess
x[0] and its actual value is a random variable with a standard deviation .
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• Select the Use G and H matrices (default G=I and H=0) check box to specify a non-default G
matrix.

• G: G. The G matrix is defined earlier in this example.

• H: 0. The process noise does not impact the measurements y entering the Kalman filter block.

• Unselect the Time-invariant Q check box. The Q matrix is time-varying and is supplied through
the block inport Q. The block uses a time-varying Kalman filter due to this setting. You can select
this option to use a time-invariant Kalman filter. A time-invariant Kalman filter performs slightly
worse for this problem, but is easier to design and has a lower computational cost.

• R: R. This is the covariance of the measurement noise . The R matrix is defined earlier in this
example.

• N: 0. Assume that there is no correlation between process and measurement noises.

• Sample time (-1 for inherited): Ts, which is defined earlier in this example.
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Results

Test the performance of the Kalman filter by simulating a scenario where the vehicle makes the
following maneuvers:

• At t = 0 the vehicle is at ,  and is stationary.

• Heading east, it accelerates to 25m/s. It decelerates to 5m/s at t=50s.

• At t = 100s, it turns toward north and accelerates to 20m/s.

• At t = 200s, it makes another turn toward west. It accelerates to 25m/s.

• At t = 260s, it decelerates to 15m/s and makes a constant speed 180 degree turn.

Simulate the Simulink model. Plot the actual, measured and Kalman filter estimates of vehicle
position.

sim('ctrlKalmanNavigationExample');

figure;
% Plot results and connect data points with a solid line.
plot(x(:,1),x(:,2),'bx',...
    y(:,1),y(:,2),'gd',...
    xhat(:,1),xhat(:,2),'ro',...
    'LineStyle','-');
title('Position');
xlabel('East [m]');
ylabel('North [m]');
legend('Actual','Measured','Kalman filter estimate','Location','Best');
axis tight;
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The error between the measured and actual position as well as the error between the Kalman filter
estimate and actual position is:

% East position measurement error [m]
n_xe = y(:,1)-x(:,1);
% North position measurement error [m]
n_xn = y(:,2)-x(:,2);
% Kalman filter east position error [m]
e_xe = xhat(:,1)-x(:,1);
% Kalman filter north position error [m]
e_xn = xhat(:,2)-x(:,2);

figure;
% East Position Errors
subplot(2,1,1);
plot(t,n_xe,'g',t,e_xe,'r');
ylabel('Position Error - East [m]');
xlabel('Time [s]');
legend(sprintf('Meas: %.3f',norm(n_xe,1)/numel(n_xe)),sprintf('Kalman f.: %.3f',norm(e_xe,1)/numel(e_xe)));
axis tight;
% North Position Errors
subplot(2,1,2);
plot(t,y(:,2)-x(:,2),'g',t,xhat(:,2)-x(:,2),'r');
ylabel('Position Error - North [m]');
xlabel('Time [s]');
legend(sprintf('Meas: %.3f',norm(n_xn,1)/numel(n_xn)),sprintf('Kalman f: %.3f',norm(e_xn,1)/numel(e_xn)));
axis tight;
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The plot legends show the position measurement and estimation error (  and )
normalized by the number of data points. The Kalman filter estimates have about 25% percent less
error than the raw measurements.

The actual velocity in the east direction and its Kalman filter estimate is shown below in the top plot.
The bottom plot shows the estimation error.

e_ve = xhat(:,3)-x(:,3); % [m/s] Kalman filter east velocity error
e_vn = xhat(:,4)-x(:,4); % [m/s] Kalman filter north velocity error
figure;
% Velocity in east direction and its estimate
subplot(2,1,1);
plot(t,x(:,3),'b',t,xhat(:,3),'r');
ylabel('Velocity - East [m]');
xlabel('Time [s]');
legend('Actual','Kalman filter','Location','Best');
axis tight;
subplot(2,1,2);
% Estimation error
plot(t,e_ve,'r');
ylabel('Velocity Error - East [m]');
xlabel('Time [s]');
legend(sprintf('Kalman filter: %.3f',norm(e_ve,1)/numel(e_ve)));
axis tight;
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The legend on the error plot shows the east velocity estimation error  normalized by the
number of data points.

The Kalman filter velocity estimates track the actual velocity trends correctly. The noise levels
decrease when the vehicle is traveling at high velocities. This is in line with the design of the Q
matrix. The large two spikes are at t=50s and t=200s. These are the times when the car goes through
sudden deceleration and a sharp turn, respectively. The velocity changes at those instants are much
larger than the predictions from the Kalman filter, which is based on its Q matrix input. After a few
time-steps, the filter estimates catch up with the actual velocity.

Summary

You estimated the position and velocity of a vehicle using the Kalman filter block in Simulink. The
process noise dynamics of the model were time-varying. You validated the filter performance by
simulating various vehicle maneuvers and randomly generated measurement noise. The Kalman filter
improved the position measurements and provided velocity estimates for the vehicle.

bdclose('ctrlKalmanNavigationExample');
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Nonlinear State Estimation Using Unscented Kalman Filter and
Particle Filter

This example shows how to use the unscented Kalman filter and particle filter algorithms for
nonlinear state estimation for the van der Pol oscillator.

This example also uses the Signal Processing Toolbox™.

Introduction

System Identification Toolbox™ offers three commands for nonlinear state estimation:

• extendedKalmanFilter: First-order, discrete-time extended Kalman filter
• unscentedKalmanFilter: Discrete-time unscented Kalman filter
• particleFilter: Discrete-time particle filter

A typical workflow for using these commands is as follows:

1 Model your plant and sensor behavior.
2 Construct and configure the extendedKalmanFilter, unscentedKalmanFilter or

particleFilter object.
3 Perform state estimation by using the predict and correct commands with the object.
4 Analyze results to gain confidence in filter performance
5 Deploy the filter on your hardware. You can generate code for these filters using MATLAB

Coder™.

This example first uses the unscentedKalmanFilter command to demonstrate this workflow. Then
it demonstrates the use of particleFilter.

Plant Modeling and Discretization

The unscented Kalman filter (UKF) algorithm requires a function that describes the evolution of
states from one time step to the next. This is typically called the state transition function.
unscentedKalmanFilter supports the following two function forms:

1 Additive process noise: x[k] = f (x[k− 1], u[k− 1]) + w[k− 1]
2 Non-additive process noise: x[k] = f (x[k− 1], w[k− 1], u[k− 1])

Here f(..) is the state transition function, x is the state, w is the process noise. u is optional and
represents additional inputs to f, for instance system inputs or parameters. u can be specified as zero
or more function arguments. Additive noise means that the state and process noise is related linearly.
If the relationship is nonlinear, use the second form. When you create the unscentedKalmanFilter
object, you specify f(..) and also whether the process noise is additive or non-additive.

The system in this example is the van der Pol oscillator with mu=1. This 2-state system is described
with the following set of nonlinear ordinary differential equations (ODE):

ẋ1 = x2

ẋ2 = (1− x1
2)x2− x1
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Denote this equation as ẋ = fc(x), where x = [x1; x2]. The process noise w does not appear in the
system model. You can assume it is additive for simplicity.

unscentedKalmanFilter requires a discrete-time state transition function, but the plant model is
continuous-time. You can use a discrete-time approximation to the continuous-time model. Euler
discretization is one common approximation method. Assume that your sample time is Ts, and denote
the continuous-time dynamics you have as ẋ = fc(x). Euler discretization approximates the derivative

operator as ẋ ≈ x[k + 1]− x[k]
Ts

. The resulting discrete-time state-transition function is:

x[k + 1] = x[k] + fc(x[k]) Ts
= f (x[k])

The accuracy of this approximation depends on the sample time Ts. Smaller Ts values provide better
approximations. Alternatively, you can use a different discretization method. For instance, higher
order Runge-Kutta family of methods provide a higher accuracy at the expense of more computational
cost, given a fixed sample time Ts.

Create this state-transition function and save it in a file named vdpStateFcn.m. Use the sample time
Ts = 0 . 05s. You provide this function to the unscentedKalmanFilter during object construction.

type vdpStateFcn

function x = vdpStateFcn(x) 
% vdpStateFcn Discrete-time approximation to van der Pol ODEs for mu = 1. 
% Sample time is 0.05s.
%
% Example state transition function for discrete-time nonlinear state
% estimators.
%
% xk1 = vdpStateFcn(xk)
%
% Inputs:
%    xk - States x[k]
%
% Outputs:
%    xk1 - Propagated states x[k+1]
%
% See also extendedKalmanFilter, unscentedKalmanFilter

%   Copyright 2016 The MathWorks, Inc.

%#codegen

% The tag %#codegen must be included if you wish to generate code with 
% MATLAB Coder.

% Euler integration of continuous-time dynamics x'=f(x) with sample time dt
dt = 0.05; % [s] Sample time
x = x + vdpStateFcnContinuous(x)*dt;
end

function dxdt = vdpStateFcnContinuous(x)
%vdpStateFcnContinuous Evaluate the van der Pol ODEs for mu = 1
dxdt = [x(2); (1-x(1)^2)*x(2)-x(1)];
end
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Sensor Modeling

unscentedKalmanFilter also needs a function that describes how the model states are related to
sensor measurements. unscentedKalmanFilter supports the following two function forms:

1 Additive measurement noise: y[k] = h(x[k], u[k]) + v[k]
2 Non-additive measurement noise: y[k] = h(x[k], v[k], u[k])

h(..) is the measurement function, v is the measurement noise. u is optional and represents additional
inputs to h, for instance system inputs or parameters. u can be specified as zero or more function
arguments. You can add additional system inputs following the u term. These inputs can be different
than the inputs in the state transition function.

For this example, assume you have measurements of the first state x1 within some percentage error:

y[k] = x1[k] (1 + v[k])

This falls into the category of non-additive measurement noise because the measurement noise is not
simply added to a function of states. You want to estimate both x1 and x2 from the noisy
measurements.

Create this state transition function and save it in a file named
vdpMeasurementNonAdditiveNoiseFcn.m. You provide this function to the unscented during object
construction.

type vdpMeasurementNonAdditiveNoiseFcn

function yk = vdpMeasurementNonAdditiveNoiseFcn(xk,vk)
% vdpMeasurementNonAdditiveNoiseFcn Example measurement function for discrete
% time nonlinear state estimators with non-additive measurement noise.
%
% yk = vdpNonAdditiveMeasurementFcn(xk,vk)
%
% Inputs:
%    xk - x[k], states at time k
%    vk - v[k], measurement noise at time k
%
% Outputs:
%    yk - y[k], measurements at time k
%
% The measurement is the first state with multiplicative noise
%
% See also extendedKalmanFilter, unscentedKalmanFilter

%   Copyright 2016 The MathWorks, Inc.

%#codegen

% The tag %#codegen must be included if you wish to generate code with 
% MATLAB Coder.

yk = xk(1)*(1+vk);
end

Unscented Kalman Filter Construction

Construct the filter by providing function handles to the state transition and measurement functions,
followed by your initial state guess. The state transition model has additive noise. This is the default
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setting in the filter, hence you do not need to specify it. The measurement model has non-additive
noise, which you must specify through setting the HasAdditiveMeasurementNoise property of the
object as false. This must be done during object construction. If your application has non-additive
process noise in the state transition function, specify the HasAdditiveProcessNoise property as
false.

% Your initial state guess at time k, utilizing measurements up to time k-1: xhat[k|k-1]
initialStateGuess = [2;0]; % xhat[k|k-1]
% Construct the filter
ukf = unscentedKalmanFilter(...
    @vdpStateFcn,... % State transition function
    @vdpMeasurementNonAdditiveNoiseFcn,... % Measurement function
    initialStateGuess,...
    'HasAdditiveMeasurementNoise',false);

Provide your knowledge of the measurement noise covariance

R = 0.2; % Variance of the measurement noise v[k]
ukf.MeasurementNoise = R;

The ProcessNoise property stores the process noise covariance. It is set to account for model
inaccuracies and the effect of unknown disturbances on the plant. We have the true model in this
example, but discretization introduces errors. This example did not include any disturbances for
simplicity. Set it to a diagonal matrix with less noise on the first state, and more on the second state
to reflect the knowledge that the second state is more impacted by modeling errors.

ukf.ProcessNoise = diag([0.02 0.1]);

Estimation Using predict and correct Commands

In your application, the measurement data arriving from your hardware in real-time are processed by
the filters as they arrive. This operation is demonstrated in this example by generating a set of
measurement data first, and then feeding it to the filter one step at a time.

Simulate the van der Pol oscillator for 5 seconds with the filter sample time 0.05 [s] to generate the
true states of the system.

T = 0.05; % [s] Filter sample time
timeVector = 0:T:5;
[~,xTrue]=ode45(@vdp1,timeVector,[2;0]);

Generate the measurements assuming that a sensor measures the first state, with a standard
deviation of 45% error in each measurement.

rng(1); % Fix the random number generator for reproducible results
yTrue = xTrue(:,1);
yMeas = yTrue .* (1+sqrt(R)*randn(size(yTrue))); % sqrt(R): Standard deviation of noise

Pre-allocate space for data that you will analyze later

Nsteps = numel(yMeas); % Number of time steps
xCorrectedUKF = zeros(Nsteps,2); % Corrected state estimates
PCorrected = zeros(Nsteps,2,2); % Corrected state estimation error covariances
e = zeros(Nsteps,1); % Residuals (or innovations)

Perform online estimation of the states x using the correct and predict commands. Provide
generated data to the filter one time step at a time.
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for k=1:Nsteps
    % Let k denote the current time.
    %
    % Residuals (or innovations): Measured output - Predicted output
    e(k) = yMeas(k) - vdpMeasurementFcn(ukf.State); % ukf.State is x[k|k-1] at this point
    % Incorporate the measurements at time k into the state estimates by
    % using the "correct" command. This updates the State and StateCovariance
    % properties of the filter to contain x[k|k] and P[k|k]. These values
    % are also produced as the output of the "correct" command.
    [xCorrectedUKF(k,:), PCorrected(k,:,:)] = correct(ukf,yMeas(k));
    % Predict the states at next time step, k+1. This updates the State and
    % StateCovariance properties of the filter to contain x[k+1|k] and
    % P[k+1|k]. These will be utilized by the filter at the next time step.
    predict(ukf);
end

Unscented Kalman Filter Results and Validation

Plot the true and estimated states over time. Also plot the measured value of the first state.

figure();
subplot(2,1,1);
plot(timeVector,xTrue(:,1),timeVector,xCorrectedUKF(:,1),timeVector,yMeas(:));
legend('True','UKF estimate','Measured')
ylim([-2.6 2.6]);
ylabel('x_1');
subplot(2,1,2);
plot(timeVector,xTrue(:,2),timeVector,xCorrectedUKF(:,2));
ylim([-3 1.5]);
xlabel('Time [s]');
ylabel('x_2');
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The top plot shows the true, estimated, and the measured value of the first state. The filter utilizes
the system model and noise covariance information to produce an improved estimate over the
measurements. The bottom plot shows the second state. The filter is successful in producing a good
estimate.

The validation of unscented and extended Kalman filter performance is typically done using extensive
Monte Carlo simulations. These simulations should test variations of process and measurement noise
realizations, plant operating under various conditions, initial state and state covariance guesses. The
key signal of interest used for validating the state estimation is the residuals (or innovations). In this
example, you perform residual analysis for a single simulation. Plot the residuals.

figure();
plot(timeVector, e);
xlabel('Time [s]');
ylabel('Residual (or innovation)');
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The residuals should have:

1 Small magnitude
2 Zero mean
3 No autocorrelation, except at zero lag

The mean value of the residuals is:

mean(e)

ans = -0.0012

This is small relative to the magnitude of the residuals. The autocorrelation of the residuals can be
calculated with the xcorr function in the Signal Processing Toolbox.

[xe,xeLags] = xcorr(e,'coeff'); % 'coeff': normalize by the value at zero lag
% Only plot non-negative lags
idx = xeLags>=0;
figure();
plot(xeLags(idx),xe(idx));
xlabel('Lags');
ylabel('Normalized correlation');
title('Autocorrelation of residuals (innovation)');
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The correlation is small for all lags except 0. The mean correlation is close to zero, and the
correlation does not show any significant non-random variations. These characteristics increase
confidence in filter performance.

In reality the true states are never available. However, when performing simulations, you have access
to real states and can look at the errors between estimated and true states. These errors must satisfy
similar criteria to the residual:

1 Small magnitude
2 Variance within filter error covariance estimate
3 Zero mean
4 Uncorrelated.

First, look at the error and the 1σ uncertainty bounds from the filter error covariance estimate.

eStates = xTrue-xCorrectedUKF;
figure();
subplot(2,1,1);
plot(timeVector,eStates(:,1),...               % Error for the first state
    timeVector, sqrt(PCorrected(:,1,1)),'r', ... % 1-sigma upper-bound
    timeVector, -sqrt(PCorrected(:,1,1)),'r');   % 1-sigma lower-bound
xlabel('Time [s]');
ylabel('Error for state 1');
title('State estimation errors');
subplot(2,1,2);
plot(timeVector,eStates(:,2),...               % Error for the second state
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    timeVector,sqrt(PCorrected(:,2,2)),'r', ...  % 1-sigma upper-bound
    timeVector,-sqrt(PCorrected(:,2,2)),'r');    % 1-sigma lower-bound
xlabel('Time [s]');
ylabel('Error for state 2');
legend('State estimate','1-sigma uncertainty bound',...
    'Location','Best');

The error bound for state 1 approaches 0 at t=2.15 seconds because of the sensor model
(MeasurementFcn). It has the form x1[k] * (1 + v[k]). At t=2.15 seconds the true and estimated states
are near zero, which implies the measurement error in absolute terms is also near zero. This is
reflected in the state estimation error covariance of the filter.

Calculate what percentage of the points are beyond the 1-sigma uncertainty bound.

distanceFromBound1 = abs(eStates(:,1))-sqrt(PCorrected(:,1,1));
percentageExceeded1 = nnz(distanceFromBound1>0) / numel(eStates(:,1));
distanceFromBound2 = abs(eStates(:,2))-sqrt(PCorrected(:,2,2));
percentageExceeded2 = nnz(distanceFromBound2>0) / numel(eStates(:,2));
[percentageExceeded1 percentageExceeded2]

ans = 1×2

    0.1386         0

The first state estimation errors exceed the 1σ uncertainty bound approximately 14% of the time
steps. Less than 30% of the errors exceeding the 1-sigma uncertainty bound implies good estimation.
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This criterion is satisfied for both states. The 0% percentage for the second state means that the filter
is conservative: most likely the combined process and measurement noises are too high. Likely a
better performance can be obtained by tuning these parameters.

Calculate the mean autocorrelation of state estimation errors. Also plot the autocorrelation.

mean(eStates)

ans = 1×2

   -0.0103    0.0201

[xeStates1,xeStatesLags1] = xcorr(eStates(:,1),'coeff'); % 'coeff': normalize by the value at zero lag
[xeStates2,xeStatesLags2] = xcorr(eStates(:,2),'coeff'); % 'coeff'
% Only plot non-negative lags
idx = xeStatesLags1>=0;
figure();
subplot(2,1,1);
plot(xeStatesLags1(idx),xeStates1(idx));
xlabel('Lags');
ylabel('For state 1');
title('Normalized autocorrelation of state estimation error');
subplot(2,1,2);
plot(xeStatesLags2(idx),xeStates2(idx));
xlabel('Lags');
ylabel('For state 2');
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The mean value of the errors is small relative to the value of the states. The autocorrelation of state
estimation errors shows little non-random variations for small lag values, but these are much smaller
than the normalized peak value 1. Combined with the fact that the estimated states are accurate, this
behavior of the residuals can be considered as satisfactory results.

Particle Filter Construction

Unscented and extended Kalman filters aim to track the mean and covariance of the posterior
distribution of the state estimates by different approximation methods. These methods may not be
sufficient if the nonlinearities in the system are severe. In addition, for some applications, just
tracking the mean and covariance of the posterior distribution of the state estimates may not be
sufficient. Particle filters can address these problems by tracking the evolution of many state
hypotheses (particles) over time, at the expense of higher computational cost. The computational cost
and estimation accuracy increases with the number of particles.

The particleFilter command in System Identification Toolbox implements a discrete-time particle
filter algorithm. This section walks you through constructing a particle filter for the same van der Pol
oscillator used earlier in this example, and highlights the similarities and differences with the
unscented Kalman filter.

The state transition function you provide to particleFilter must perform two tasks. One,
sampling the process noise from any distribution appropriate for your system. Two, calculating the
time propagation of all particles (state hypotheses) to the next step, including the effect of process
noise you calculated in step one.

type vdpParticleFilterStateFcn

function particles = vdpParticleFilterStateFcn(particles) 
% vdpParticleFilterStateFcn Example state transition function for particle
%                           filter
%
% Discrete-time approximation to van der Pol ODEs for mu = 1. 
% Sample time is 0.05s.
%
% predictedParticles = vdpParticleFilterStateFcn(particles)
%
% Inputs:
%    particles - Particles at current time. Matrix with dimensions
%                [NumberOfStates NumberOfParticles] matrix
%
% Outputs:
%    predictedParticles - Predicted particles for the next time step
%
% See also particleFilter

%   Copyright 2017 The MathWorks, Inc.

%#codegen

% The tag %#codegen must be included if you wish to generate code with 
% MATLAB Coder.

[numberOfStates, numberOfParticles] = size(particles);
    
% Time-propagate each particle
%
% Euler integration of continuous-time dynamics x'=f(x) with sample time dt
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dt = 0.05; % [s] Sample time
for kk=1:numberOfParticles
    particles(:,kk) = particles(:,kk) + vdpStateFcnContinuous(particles(:,kk))*dt;
end

% Add Gaussian noise with variance 0.025 on each state variable
processNoise = 0.025*eye(numberOfStates);
particles = particles + processNoise * randn(size(particles));
end

function dxdt = vdpStateFcnContinuous(x)
%vdpStateFcnContinuous Evaluate the van der Pol ODEs for mu = 1
dxdt = [x(2); (1-x(1)^2)*x(2)-x(1)];
end

There are differences between the state transition function you supply to unscentedKalmanFilter
and particleFilter. The state transition function you used for unscented Kalman filter just
described propagation of one state hypothesis to the next time step, instead of a set of hypotheses. In
addition, the process noise distribution was defined in ProcessNoise property of the
unscentedKalmanFilter, just by its covariance. Particle filter can consider arbitrary distributions
that may require more statistical properties to be defined. This arbitrary distribution and its
parameters are fully defined in the state transition function you provide to the particleFilter.

The measurement likelihood function you provide to particleFilter must also perform two tasks.
One, calculating measurement hypotheses from particles. Two, calculating the likelihood of each
particle from the sensor measurement and the hypotheses calculated in step one.

type vdpExamplePFMeasurementLikelihoodFcn

function likelihood = vdpExamplePFMeasurementLikelihoodFcn(particles,measurement)
% vdpExamplePFMeasurementLikelihoodFcn Example measurement likelihood function
%
% The measurement is the first state.
%
% likelihood = vdpParticleFilterMeasurementLikelihoodFcn(particles, measurement)
%
% Inputs:
%    particles - NumberOfStates-by-NumberOfParticles matrix that holds 
%                the particles
%
% Outputs:
%    likelihood - A vector with NumberOfParticles elements whose n-th
%                 element is the likelihood of the n-th particle
%
% See also extendedKalmanFilter, unscentedKalmanFilter

%   Copyright 2017 The MathWorks, Inc.

%#codegen

% The tag %#codegen must be included if you wish to generate code with 
% MATLAB Coder.

% Validate the sensor measurement
numberOfMeasurements = 1; % Expected number of measurements
validateattributes(measurement, {'double'}, {'vector', 'numel', numberOfMeasurements}, ...
    'vdpExamplePFMeasurementLikelihoodFcn', 'measurement');
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% The measurement is first state. Get all measurement hypotheses from particles
predictedMeasurement = particles(1,:);

% Assume the ratio of the error between predicted and actual measurements
% follow a Gaussian distribution with zero mean, variance 0.2
mu = 0; % mean
sigma = 0.2 * eye(numberOfMeasurements); % variance

% Use multivariate Gaussian probability density function, calculate
% likelihood of each particle
numParticles = size(particles,2);
likelihood = zeros(numParticles,1);
C = det(2*pi*sigma) ^ (-0.5);
for kk=1:numParticles
    errorRatio = (predictedMeasurement(kk)-measurement)/predictedMeasurement(kk);
    v = errorRatio-mu;
    likelihood(kk) = C * exp(-0.5 * (v' / sigma * v) );
end
end

Now construct the filter, and initialize it with 1000 particles around the mean [2; 0] with 0.01
covariance. The covariance is small because you have high confidence in your guess [2; 0].

pf = particleFilter(@vdpParticleFilterStateFcn,@vdpExamplePFMeasurementLikelihoodFcn);
initialize(pf, 1000, [2;0], 0.01*eye(2));

Optionally, pick the state estimation method. This is set by the StateEstimationMethod property
of particleFilter, which can take the value 'mean' (default) or 'maxweight'. When
StateEstimationMethod is 'mean', the object extracts a weighted mean of the particles from the
Particles and Weights properties as the state estimate. 'maxweight' corresponds to choosing
the particle (state hypothesis) with the maximum weight value in Weights as the state estimate.
Alternatively, you can access Particles and Weights properties of the object and extract your state
estimate via an arbitrary method of your choice.

pf.StateEstimationMethod

ans = 
'mean'

particleFilter lets you specify various resampling options via its ResamplingPolicy and
ResamplingMethod properties. This example uses the default settings in the filter. See the
particleFilter documentation for further details on resampling.

pf.ResamplingMethod

ans = 
'multinomial'

pf.ResamplingPolicy

ans = 
  particleResamplingPolicy with properties:

                TriggerMethod: 'ratio'
             SamplingInterval: 1
    MinEffectiveParticleRatio: 0.5000
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Start the estimation loop. This represents measurements arriving over time, step by step.

% Estimate
xCorrectedPF = zeros(size(xTrue));
for k=1:size(xTrue,1)
    % Use measurement y[k] to correct the particles for time k
    xCorrectedPF(k,:) = correct(pf,yMeas(k)); % Filter updates and stores Particles[k|k], Weights[k|k]
    % The result is x[k|k]: Estimate of states at time k, utilizing
    % measurements up to time k. This estimate is the mean of all particles
    % because StateEstimationMethod was 'mean'.
    %
    % Now, predict particles at next time step. These are utilized in the
    % next correct command
    predict(pf); % Filter updates and stores Particles[k+1|k]
end

Plot the state estimates from particle filter:

figure();
subplot(2,1,1);
plot(timeVector,xTrue(:,1),timeVector,xCorrectedPF(:,1),timeVector,yMeas(:));
legend('True','Particlte filter estimate','Measured')
ylim([-2.6 2.6]);
ylabel('x_1');
subplot(2,1,2);
plot(timeVector,xTrue(:,2),timeVector,xCorrectedPF(:,2));
ylim([-3 1.5]);
xlabel('Time [s]');
ylabel('x_2');
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The top plot shows the true value, particle filter estimate, and the measured value of the first state.
The filter utilizes the system model and noise information to produce an improved estimate over the
measurements. The bottom plot shows the second state. The filter is successful in producing a good
estimate.

The validation of the particle filter performance involves performing statistical tests on residuals,
similar to those that were performed earlier in this example for unscented Kalman filter results.

Summary

This example has shown the steps of constructing and using an unscented Kalman filter and a particle
filter for state estimation of a nonlinear system. You estimated states of a van der Pol oscillator from
noisy measurements, and validated the estimation performance.

See Also
extendedKalmanFilter | particleFilter | unscentedKalmanFilter

More About
• “Extended and Unscented Kalman Filter Algorithms for Online State Estimation” on page 16-27
• “Validate Online State Estimation at the Command Line” on page 16-34
• “Troubleshoot Online State Estimation” on page 16-42
• “Generate Code for Online State Estimation in MATLAB” on page 16-39
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External Websites
• Understanding Kalman Filters: Nonlinear State Estimators — MATLAB Video Series
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Estimate States of Nonlinear System with Multiple, Multirate
Sensors

This example shows how to perform nonlinear state estimation in Simulink™ for a system with
multiple sensors operating at different sample rates. The Extended Kalman Filter block in System
Identification Toolbox™ is used to estimate the position and velocity of an object using GPS and radar
measurements.

Introduction

The toolbox has three Simulink blocks for nonlinear state estimation:

• Extended Kalman Filter: Implements the first-order discrete-time extended Kalman filter
algorithm.

• Unscented Kalman Filter: Implements the discrete-time unscented Kalman filter algorithm.
• Particle Filter: Implements a discrete-time particle filter algorithm.

These blocks support state estimation using multiple sensors operating at different sample rates. A
typical workflow for using these blocks is as follows:

1 Model your plant and sensor behavior using MATLAB or Simulink functions.
2 Configure the parameters of the block.
3 Simulate the filter and analyze results to gain confidence in filter performance.
4 Deploy the filter on your hardware. You can generate code for these filters using Simulink

Coder™ software.

This example uses the Extended Kalman Filter block to demonstrate the first two steps of this
workflow. The last two steps are briefly discussed in the Next Steps section. The goal in this example
is to estimate the states of an object using noisy measurements provided by a radar and a GPS sensor.
The states of the object are its position and velocity, which are denoted as xTrue in the Simulink
model.

If you are interested in the Particle Filter block, please see the example "Parameter and State
Estimation in Simulink Using Particle Filter Block".

addpath(fullfile(matlabroot,'examples','ident','main')) % add example data
open_system('multirateEKFExample');

 Estimate States of Nonlinear System with Multiple, Multirate Sensors

16-115



Plant Modeling

The extended Kalman filter (EKF) algorithm requires a state transition function that describes the
evolution of states from one time step to the next. The block supports the following two function
forms:

• Additive process noise: 
• Nonadditive process noise: 

Here f(..) is the state transition function, x is the state, and w is the process noise. u is optional, and
represents additional inputs to f, for instance system inputs or parameters. Additive noise means that
the next state  and process noise  are related linearly. If the relationship is nonlinear, use
the nonadditive form.

The function f(...) can be a MATLAB Function that comply with the restrictions of MATLAB Coder™,
or a Simulink Function block. After you create f(...), you specify the function name and whether the
process noise is additive or nonadditive in the Extended Kalman Filter block.

In this example, you are tracking the north and east positions and velocities of an object on a 2-
dimensional plane. The estimated quantities are:

Here  is the discrete-time index. The state transition equation used is of the nonadditive form
, where  is the state vector, and  is the process noise. The filter assumes

that  is a zero-mean, independent random variable with known variance . The A and G
matrices are:

16 Online Estimation

16-116



where  is the sample time. The third row of A and G model the east velocity as a random walk:
. In reality, position is a continuous-time variable and is the integral of

velocity over time . The first row of A and G represent a discrete approximation to this
kinematic relationship: . The second and fourth rows of
A and G represent the same relationship between the north velocity and position. This state transition
model is linear, but the radar measurement model is nonlinear. This nonlinearity necessitates the use
of a nonlinear state estimator such as the extended Kalman filter.

In this example you implement the state transition function using a Simulink Function block. To do so,

• Add a Simulink Function block to your model from the Simulink/User-Defined
Functions library

• Click on the name shown on the Simulink Function block. Edit the function name, and add or
remove input and output arguments, as necessary. In this example the name for the state
transition function is stateTransitionFcn. It has one output argument (xNext) and two input
arguments (x, w).

• Though it is not required in this example, you can use any signals from the rest of your Simulink
model in the Simulink Function. To do so, add Inport blocks from the Simulink/Sources
library. Note that these are different than the ArgIn and ArgOut blocks that are set through the
signature of your function (xNext = stateTransitionFcn(x, w)).

• In the Simulink Function block, construct your function utilizing Simulink blocks.
• Set the dimensions for the input and output arguments x, w, and xNext in the Signal Attributes

tab of the ArgIn and ArgOut blocks. The data type and port dimensions must be consistent with
the information you provide in the Extended Kalman Filter block.
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Analytical Jacobian of the state transition function is also implemented in this example. Specifying the
Jacobian is optional. However, this reduces the computational burden, and in most cases increases
the state estimation accuracy. Implement the Jacobian function as a Simulink function because the
state transition function is a Simulink function.

open_system('multirateEKFExample/Simulink Function - State Transition Jacobian');

Sensor modeling - Radar

The Extended Kalman Filter block also needs a measurement function that describes how the states
are related to measurements. The following two function forms are supported:

• Additive measurement noise: 
• Nonadditive measurement noise: 

Here h(..) is the measurement function, and v is the measurement noise. u is optional, and represents
additional inputs to h, for instance system inputs or parameters. These inputs can differ from the
inputs in the state transition function.
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In this example a radar located at the origin measures the range and angle of the object at 20 Hz.
Assume that both of the measurements have about 5% noise. This can be modeled by the following
measurement equation:

Here  and  are the measurement noise terms, each with variance 0.05^2. That is, most of
the measurements have errors less than 5%. The measurement noise is nonadditive because  and

 are not simply added to the measurements, but instead they depend on the states x. In this
example, the radar measurement equation is implemented using a Simulink Function block.

open_system('multirateEKFExample/Simulink Function - Radar Measurements');

Sensor modeling - GPS

A GPS measures the east and north positions of the object at 1 Hz. Hence, the measurement equation
for the GPS sensor is:

Here  and  are measurement noise terms with the covariance matrix [10^2 0; 0 10^2]. That
is, the measurements are accurate up to approximately 10 meters, and the errors are uncorrelated.
The measurement noise is additive because the noise terms affect the measurements  linearly.

Create this function, and save it in a file named gpsMeasurementFcn.m. When the measurement
noise is additive, you must not specify the noise terms in the function. You provide this function name
and measurement noise covariance in the Extended Kalman Filter block.

type gpsMeasurementFcn

function y = gpsMeasurementFcn(x)
% gpsMeasurementFcn GPS measurement function for state estimation
%
% Assume the states x are:
%   [EastPosition; NorthPosition; EastVelocity; NorthVelocity]
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%#codegen

% The %#codegen tag above is needed is you would like to use MATLAB Coder to 
% generate C or C++ code for your filter

y = x([1 2]); % Position states are measured
end

Filter Construction

Configure the Extended Kalman Filter block to perform the estimation. You specify the state
transition and measurement function names, initial state and state error covariance, and process and
measurement noise characteristics.

In the System Model tab of the block dialog, specify the following parameters:

State Transition

1 Specify the state transition function, stateTransitionFcn, in Function. Since you have the
Jacobian of this function, select Jacobian, and specify the Jacobian function,
stateTransitionJacobianFcn.

2 Select Nonadditive in the Process Noise drop-down list because you explicitly stated how the
process noise impacts the states in your function.

3 Specify the process noise covariance as [0.2 0; 0 0.2]. As explained in the Plant Modeling
section of this example, process noise terms define the random walk of the velocities in each
direction. The diagonal terms approximately capture how much the velocities can change over
one sample time of the state transition function. The off-diagonal terms are set to zero, which is a
naive assumption that velocity variations in the north and east directions are uncorrelated.

Initialization

1 Specify your best initial state estimate in Initial state. In this example, specify [100; 100; 0; 0].
2 Specify your confidence in your state estimate guess in Initial covariance. In this example,

specify 10. The software interprets this value as the true state values are likely to be within
 of your initial estimate. You can specify a separate value for each state by setting Initial

covariance as a vector. You can specify cross-correlations in this uncertainty by specifying it as
a matrix.

Since there are two sensors, click Add Measurement to specify a second measurement function.

Measurement 1

1 Specify the name of your measurement function, radarMeasurementFcn, in Function.
2 Select Nonadditive in the Measurement Noise drop-down list because you explicitly stated

how the process noise impacts the measurements in your function.
3 Specify the measurement noise covariance as [0.05^2 0; 0 0.05^2] per the discussion in the

Sensor Modeling - Radar section.

Measurement 2

1 Specify the name of your measurement function, gpsMeasurementFcn, in Function.
2 This sensor model has additive noise. Therefore, specify the GPS measurement noise as

Additive in the Measurement Noise drop-down list.
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3 Specify the measurement noise covariance as [100 0; 0 100].

In the Multirate tab, since the two sensors are operating at different sample rates, perform the
following configuration:
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1 Select Enable multirate operation.
2 Specify the state transition sample time. The state transition sample time must be the smallest,

and all measurement sample times must be an integer multiple of the state transition sample
time. Specify State Transition sample time as 0.05, the sample time of the fastest measurement.
Though not required in this example, it is possible to have a smaller sample time for state
transition than all measurements. This means there will be some sample times without any
measurements. For these sample times the filter generates state predictions using the state
transition function.

3 Specify the Measurement 1 sample time (Radar) as 0.05 seconds and Measurement 2 (GPS) as
1 seconds.

Simulation and Results

Test the performance of the Extended Kalman filter by simulating a scenario where the object travels
in a square pattern with the following maneuvers:

• At t = 0, the object starts at 
• It heads north at  until t = 20 seconds.
• It heads east at  between t = 20 and t = 45 seconds.
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• It heads south at  between t = 45 and t = 85 seconds.
• It heads west at  between t = 85 and t = 185 seconds.

Generate the true state values corresponding to this motion:

Ts = 0.05; % [s] Sample rate for the true states
[t, xTrue] = generateTrueStates(Ts); % Generate position and velocity profile over 0-185 seconds

Simulate the model. For instance, look at the actual and estimated velocities in the east direction:

sim('multirateEKFExample');
open_system('multirateEKFExample/Scope - East Velocity');

The plot shows the true velocity in the east direction, and its extended Kalman filter estimates. The
filter successfully tracks the changes in velocity. The multirate nature of the filter is most apparent in
the time range t = 20 to 30 seconds. The filter makes large corrections every second (GPS sample
rate), while the corrections due to radar measurements are visible every 0.05 seconds.
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Next Steps

1 Validate the state estimation: The validation of unscented and extended Kalman filter
performance is typically done using extensive Monte Carlo simulations. For more information,
see “Validate Online State Estimation in Simulink” on page 16-36.

2 Generate code: The Unscented and Extended Kalman Filter blocks support C and C++ code
generation using Simulink Coder™ software. The functions you provide to these blocks must
comply with the restrictions of MATLAB Coder™ software (if you are using MATLAB functions to
model your system) and Simulink Coder software (if you are using Simulink Function blocks to
model your system).

Summary

This example has shown how to use the Extended Kalman Filter block in System Identification
Toolbox. You estimated position and velocity of an object from two different sensors operating at
different sampling rates.

close_system('multirateEKFExample', 0);
rmpath(fullfile(matlabroot,'examples','ident','main')) % remove example data

See Also
Extended Kalman Filter | Particle Filter | Unscented Kalman Filter

More About
• “Extended and Unscented Kalman Filter Algorithms for Online State Estimation” on page 16-27
• “Validate Online State Estimation in Simulink” on page 16-36
• “Troubleshoot Online State Estimation” on page 16-42
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Parameter and State Estimation in Simulink Using Particle
Filter Block

This example demonstrates the use of Particle Filter block in System Identification Toolbox™. A
discrete-time transfer function parameter estimation problem is reformulated and recursively solved
as a state estimation problem.

Introduction

The System Identification Toolbox has three Simulink blocks for nonlinear state estimation:

• Particle Filter: Implements a discrete-time particle filter algorithm.
• Extended Kalman Filter: Implements the first-order discrete-time extended Kalman filter

algorithm.
• Unscented Kalman Filter: Implements the discrete-time unscented Kalman filter algorithm.

These blocks support state estimation using multiple sensors operating at different sample rates. A
typical workflow for using these blocks is as follows:

1 Model your plant and sensor behavior using MATLAB or Simulink functions.
2 Configure the parameters of the block.
3 Simulate the filter and analyze results to gain confidence in filter performance.
4 Deploy the filter on your hardware. You can generate code for these filters using Simulink

Coder™ software.

This example uses the Particle Filter block to demonstrate the first two steps of this workflow. The
last two steps are briefly discussed in the Next Steps section. The goal in this example is to estimate
the parameters of a discrete-time transfer function (an output-error model) recursively, where the
model parameters are updated at each time step as new information arrives.

If you are interested in the Extended Kalman Filter, see the example "Estimate States of Nonlinear
System with Multiple, Multirate Sensors". The use of Unscented Kalman Filter follows similar steps to
Extended Kalman Filter.

Add the example file folder to the MATLAB path.

addpath(fullfile(matlabroot,'examples','ident','main'));

Plant Modeling

Most state estimation algorithms rely on a plant model (state transition function) that describe the
evolution of plant states from one time step to the next. This function is typically denoted as

 where x is the states, w is the process noise, u is the optional additional
inputs, for instance system inputs or parameters. The particle filter block requires you to provide this
function in a slightly different syntax, . The differences are:

• Particle filter works by following the trajectories of many state hypotheses (particles), and the
block passes all state hypotheses to your function at once. Concretely, if your state vector  has 
elements and you choose  particles to use,  has the dimensions  where each column is
a state hypothesis.
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• You calculate the impact of process noise  on the state hypotheses  in your function
. The block does not make any assumptions on the probability distribution of the process

noise , and does not need  as an input.

The function  can be a MATLAB Function that comply with the restrictions of MATLAB
Coder™, or a Simulink Function block. After you create , you specify the function name in the
Particle Filter block.

In this example, you are reformulating a discrete-time transfer function parameter estimation
problem as a state estimation problem. This transfer function may be representing the dynamics of a
discrete-time process, or it may be representing some continuous-time dynamics coupled with a
signal reconstructor such as zero-order hold. Assume that you are interested in estimating the
parameters of a first-order discrete-time transfer function:

Here  is the plant output,  is the plant input,  is the measurement noise,  is the time-

delay operator so that . Parametrize the transfer function as , where  and
 are parameters to be estimated. The transfer function and the parameters can be represented in

the necessary state-space form in multiple ways, by choice of the state vector. One choice is
 where the second and third states represent the parameter estimates. Then

the transfer function can be equivalently written as

The measurement noise term  is handled in sensor modeling. In this example, you implement the
expression above in a MATLAB Function, in a vectorized form for computational efficiency:

type pfBlockStateTransitionFcnExample

function xNext = pfBlockStateTransitionFcnExample(x,u)
% pfBlockStateTransitionFcnExample State transition function for particle
%                                  filter, for estimating parameters of a 
%                                  SISO, first order, discrete-time transfer 
%                                  function model
%
% Inputs:
%    x - Particles, a NumberOfStates-by-NumberOfParticles matrix
%    u - System input, a scalar 
%
% Outputs:
%    xNext - Predicted particles, with the same dimensions as input x

% Implement the state-transition function
%    xNext = [x(1)*x(2) + x(3)*u; 
%             x(2); 

16 Online Estimation

16-126



%             x(3)];
% in vectorized form (for all particles).
xNext = x;
xNext(1,:) = bsxfun(@times,x(1,:),-x(2,:)) + x(3,:)*u;

% Add a small process noise (relative to expected size of each state), to
% increase particle diversity
xNext = xNext + bsxfun(@times,[1; 1e-2; 1e-1],randn(size(xNext)));
end

Sensor modeling

The Particle Filter block requires you to provide a measurement likelihood function that calculates
the likelihood (probability) of each state hypothesis. This function has the form

.  is an  element vector, where  is the number of particles you
choose.  element in  is the likelihood of the  particle (column) in .  is the sensor
measurement.  is an optional input argument, which can differ from the inputs of the state
transition function.

The sensor measures the first state in this example. This example assumes that the errors between
the actual and predicted measurements are distributed according to a Gaussian distribution, but any
arbitrary probability distribution or some other method can be used to calculate the likelihoods. You
create , and specify the function name in the Particle Filter block.

type pfBlockMeasurementLikelihoodFcnExample;

function likelihood = pfBlockMeasurementLikelihoodFcnExample(particles, measurement)
% pfBlockMeasurementLikelihoodFcnExample Measurement likelihood function for particle filter
%
% The measurement is the first state
%
% Inputs:
%    particles   - A NumberOfStates-by-NumberOfParticles matrix
%    measurement - System output, a scalar
%
% Outputs:
%    likelihood - A vector with NumberOfParticles elements whose n-th
%                 element is the likelihood of the n-th particle

%#codegen

% Predicted measurement
yHat = particles(1,:);

% Calculate likelihood of each particle based on the error between actual
% and predicted measurement
%
% Assume error is distributed per multivariate normal distribution with
% mean value of zero, variance 1. Evaluate the corresponding probability
% density function
e = bsxfun(@minus, yHat, measurement(:)'); % Error
numberOfMeasurements = 1;
mu = 0; % Mean
Sigma = eye(numberOfMeasurements); % Variance
measurementErrorProd = dot((e-mu), Sigma \ (e-mu), 1);
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c = 1/sqrt((2*pi)^numberOfMeasurements * det(Sigma));
likelihood = c * exp(-0.5 * measurementErrorProd);
end

Filter Construction

Configure the Particle Filter block for estimation. You specify the state transition and measurement
likelihood function names, number of particles, and the initial distribution of these particles.

In the System Model tab of the block dialog, specify the following parameters:

State Transition

1 Specify the state transition function, pfBlockStateTransitionFcnExample, in Function.
When you enter the function name and click Apply, the block detects that your function has an
extra input, , and creates the input port StateTransitionFcnInputs. You connect your system
input to this port.

Initialization

1 Specify 10000 in Number of particles. Higher number of particles typically correspond to
better estimation, at increased computational cost.

2 Specify Gaussian in Distribution to get an initial set of particles from a multivariate Gaussian
distribution. Then specify [0; 0; 0] in Mean because you have three states and this is your
best guess. Specify diag([10 5 100]) in Covariance to specify a large variance (uncertainty)
in your guess for the third state, and smaller variance for the first two. It is critical that this
initial set of particles are spread wide enough (large variance) to cover the potential true state.

Measurement 1

1 Specify the name of your measurement likelihood function,
pfBlockMeasurementLikelihoodFcnExample, in Function.

Sample Time

1 At the bottom of the block dialog, enter 1 in Sample time. If you have a different sample time
among state transition and measurement likelihood functions, or if you have multiple sensors
with different sample times, these can be configured in the Block outputs, Multirate tab.
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The particle filter involves deleting the particles with low likelihoods and seeding new particles using
the ones with higher likelihoods. This is controlled by the options under the Resampling group. This
example uses the default settings.

By default, the block only outputs the mean of the state hypotheses, weighted by their likelihoods. To
see all the particles, weights, or to choose a different method of extracting a state estimate, check out
the options in the Block outputs, Multirate tab.
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Simulation and Results

For a simple test, the true plant model is simulated with white noise inputs. The inputs and the noisy
measurements from the plant are fed to the Particle Filter block. The following Simulink model
represents this setup.

open_system('pfBlockExample')

Simulate the system and compare the estimated and true parameters:

sim('pfBlockExample')
open_system('pfBlockExample/Parameter Estimates')

16 Online Estimation

16-130



The plot shows the true numerator and denominator parameters, and their particle filter estimates.
The estimates approximately converge to the true values after 10 time steps. Convergence is
obtained even though the initial state guess was far from the true values.

Troubleshooting

A few potential implementation issues and troubleshooting ideas are listed here, in case the particle
filter is not performing as expected for your application.

Troubleshooting of the particle filter is typically performed by looking into the set of particles and
their weights, which can be obtained by choosing Output all particles and Output all weights in
the Block outputs, Multirate tab of the block dialog.

The first sanity check is to ensure that the state transition and measurement likelihood functions
capture the behavior of your system reasonably well. If you have a simulation model for your system
(and hence access to the true state in simulation), you can try initializing the filter with the true state.
Then you can validate if the state transition function calculates the time-propagation of the true state
accurately, and if the measurement likelihood function is calculating a high likelihood for these
particles.
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Initial set of particles is important. Ensure that at least some of the particles have high likelihood at
the beginning of your simulation. If the true state is outside the initial spread of state hypotheses, the
estimates can be inaccurate or even diverge.

If the state estimation accuracy is fine initially, but deteriorating over time, the issue may be particle
degeneracy or particle impoverishment [2]. Particle degeneracy occurs when the particles are
distributed too widely, while particle impoverishment occurs because of particles clumping together
after resampling. Particle degeneracy leads to particle impoverishment as a result of direct
resampling. The addition of artificial process noise in the state-transition function used in this
example is one practical approach. There is a large collection of literature on resolving these issues
and based on your application more systematic approaches may be available. [1], [2] are two
references that can be helpful.

Next Steps

1 Validate the state estimation: Once the filter is performing as expected in a simulation, typically
the performance is further validated using extensive Monte Carlo simulations. For more
information, see “Validate Online State Estimation in Simulink” on page 16-36. You can use the
options under Randomness group in the Particle Filter block dialog to facilitate these
simulations.

2 Generate code: The Particle Filter block supports C and C++ code generation using Simulink
Coder™ software. The functions you provide to this block must comply with the restrictions of
MATLAB Coder™ software (if you are using MATLAB functions to model your system) and
Simulink Coder software (if you are using Simulink Function blocks to model your system).

Summary

This example has shown how to use the Particle Filter block in System Identification Toolbox. You
estimated the parameters of a discrete-time transfer function recursively, where the parameters are
updated at each time step as new information arrives.

close_system('pfBlockExample',0)

Remove the example file folder from the MATLAB path.

rmpath(fullfile(matlabroot,'examples','ident','main'));

References

[1] Simon, Dan. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley &
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See Also
Extended Kalman Filter | Particle Filter | Unscented Kalman Filter

More About
• “Validate Online State Estimation in Simulink” on page 16-36
• “Troubleshoot Online State Estimation” on page 16-42
• “Estimate States of Nonlinear System with Multiple, Multirate Sensors” on page 16-115
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Model Analysis

• “Validating Models After Estimation” on page 17-2
• “Supported Model Plots” on page 17-4
• “Plot Models in the System Identification App” on page 17-5
• “Simulate and Predict Identified Model Output” on page 17-6
• “Simulation and Prediction in the App” on page 17-15
• “Simulation and Prediction at the Command Line” on page 17-19
• “Compare Simulated Output with Measured Validation Data” on page 17-23
• “Forecast Multivariate Time Series” on page 17-25
• “What Is Residual Analysis?” on page 17-40
• “How to Plot Residuals in the App” on page 17-43
• “How to Plot Residuals at the Command Line” on page 17-44
• “Examine Model Residuals” on page 17-45
• “Impulse and Step Response Plots” on page 17-48
• “Plot Impulse and Step Response Using the System Identification App” on page 17-50
• “Plot Impulse and Step Response at the Command Line” on page 17-53
• “Frequency Response Plots” on page 17-54
• “Plot Bode Plots Using the System Identification App” on page 17-57
• “Plot Bode and Nyquist Plots at the Command Line” on page 17-59
• “Noise Spectrum Plots” on page 17-61
• “Plot the Noise Spectrum Using the System Identification App” on page 17-63
• “Plot the Noise Spectrum at the Command Line” on page 17-65
• “Pole and Zero Plots” on page 17-66
• “Reducing Model Order Using Pole-Zero Plots” on page 17-68
• “Model Poles and Zeros Using the System Identification App” on page 17-69
• “Plot Poles and Zeros at the Command Line” on page 17-70
• “Analyzing MIMO Models” on page 17-71
• “Customize Response Plots Using the Response Plots Property Editor” on page 17-75
• “Compute Model Uncertainty” on page 17-90
• “Troubleshooting Model Estimation” on page 17-92
• “Next Steps After Getting an Accurate Model” on page 17-95
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Validating Models After Estimation

Ways to Validate Models
You can use the following approaches to validate models:

• Comparing simulated or predicted model output to measured output.

See “Simulate and Predict Identified Model Output” on page 17-6.

To simulate identified models in the Simulink environment, see “Simulate Identified Model in
Simulink” on page 20-5.

• Analyzing autocorrelation and cross-correlation of the residuals with input.

See “What Is Residual Analysis?” on page 17-40.
• Analyzing model response. For more information, see the following:

• “Impulse and Step Response Plots” on page 17-48
• “Frequency Response Plots” on page 17-54

For information about the response of the noise model, see “Noise Spectrum Plots” on page 17-
61.

• Plotting the poles and zeros of the linear parametric model.

For more information, see “Pole and Zero Plots” on page 17-66.
• Comparing the response of nonparametric models, such as impulse-, step-, and frequency-

response models, to parametric models, such as linear polynomial models, state-space model, and
nonlinear parametric models.

Note Do not use this comparison when feedback is present in the system because feedback
makes nonparametric models unreliable. To test if feedback is present in the system, use the
advice command on the data.

• Compare models using Akaike Information Criterion or Akaike Final Prediction Error.

For more information, see the aic and fpe reference page.
• Plotting linear and nonlinear blocks of Hammerstein-Wiener and nonlinear ARX models.

Displaying confidence intervals on supported plots helps you assess the uncertainty of model
parameters. For more information, see “Compute Model Uncertainty” on page 17-90.

Data for Model Validation
For plots that compare model response to measured response and perform residual analysis, you
designate two types of data sets: one for estimating the models (estimation data), and the other for
validating the models (validation data). Although you can designate the same data set to be used for
estimating and validating the model, you risk over-fitting your data. When you validate a model using
an independent data set, this process is called cross-validation.

17 Model Analysis

17-2



Note Validation data should be the same in frequency content as the estimation data. If you
detrended the estimation data, you must remove the same trend from the validation data. For more
information about detrending, see “Handling Offsets and Trends in Data” on page 2-81.
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Supported Model Plots
The following table summarizes the types of supported model plots.

Plot Type Supported Models Learn More
Model Output All linear and nonlinear models “Simulate and Predict Identified

Model Output” on page 17-6
Residual Analysis All linear and nonlinear models “What Is Residual Analysis?” on

page 17-40
Transient Response • All linear parametric models

• Correlation analysis
(nonparametric) models

• For nonlinear models, only
step response.

“Impulse and Step Response
Plots” on page 17-48

Frequency Response All linear models “Frequency Response Plots” on
page 17-54

Noise Spectrum • All linear parametric models
• Spectral analysis

(nonparametric) models

“Noise Spectrum Plots” on page
17-61

Poles and Zeros All linear parametric models “Pole and Zero Plots” on page
17-66

Nonlinear ARX Nonlinear ARX models only Nonlinear ARX Plots on page
11-37

Hammerstein-Wiener Hammerstein-Wiener models
only

Hammerstein-Wiener Plots on
page 12-22

See Also

Related Examples
• “Plot Models in the System Identification App” on page 17-5
• “Compare Simulated Output with Measured Validation Data” on page 17-23

More About
• “Validating Models After Estimation” on page 17-2
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Plot Models in the System Identification App
To create one or more plots of your models, select the corresponding check box in the Model Views
area of the System Identification app. An active model icon has a thick line in the icon, while an
inactive model has a thin line. Only active models appear on the selected plots.

To include or exclude a model on a plot, click the corresponding icon in the System Identification app.
Clicking the model icon updates any plots that are currently open.

For example, in the following figure, Model output is selected. In this case, the models n4s3 is not
included on the plot because only arxqs is active.

Plots Include Only Active Models

To close a plot, clear the corresponding check box in the System Identification app.

Tip To get information about a specific plot, select a help topic from the Help menu in the plot
window.

See Also

Related Examples
• “Interpret the Model Output Plot” on page 17-15
• “Change Model Output Plot Settings” on page 17-16
• “Working with Plots” on page 21-8
• “Compare Simulated Output with Measured Validation Data” on page 17-23
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Simulate and Predict Identified Model Output
You identify a model so that you can accurately compute a dynamic system response to an input.
There are two ways of generating an identified model response:

• Simulation computes the model response using input data and initial conditions.
• Prediction computes the model response at some specified amount of time in the future using the

current and past values of measured input and output values, as well as initial conditions.

In system identification, the goal is to create a realistic dynamic system model that can then be used
or handed off for an application goal. In this context, the main roles of simulation and prediction
within the System Identification Toolbox are to provide tools for model identification, and also for
choosing, tuning, and validating these models.

You can:

• Identify your model in a manner that minimizes either prediction (prediction focus) or simulation
error (simulation focus)

• Visualize your model response in comparison with other models and with data measurements
• Validate your model by comparing its response with measured input/output data that was not used

for the original model estimation

Your choice of simulation or prediction approach depends on what your application needs are, but
also where you are in the system identification workflow:

• When you are identifying your models, a one-step prediction focus generally produces the best
results. This advantage is because, by using both input and output measurements, one-step
prediction accounts for the nature of the disturbances. Accounting for disturbances provides the
most statistically optimal results.

• When you are validating your models, simulation usually provides the more perceptive approach
for assessing how your model will perform under a wide range of conditions. Your application may
drive prediction-based validation as well, however. For example, if you plan to use your model for
control design, you can validate the model by predicting its response over a time horizon that
represents the dominating time constants of the model.

You can work in either the time domain or the frequency domain, and remain consistent with the
domain of the input/output data. For frequency-domain data, the simulation results are products of
the Fourier transform of the input and frequency function of the model. Because frequency-response
model identification ignores noise dynamics, simulation focus and one-step prediction focus yield the
same identified model. For validation in the frequency domain, use simulation.

For examples, see:

• “Compare Predicted and Simulated Response of Identified Model to Measured Data” on page 17-
9
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• “Compare Models Identified with Prediction and with Simulation Focus” on page 17-12

What are Simulation and Prediction?
You can get a more detailed understanding of the differences between simulation and prediction by
applying these techniques to a simple first-order system.

Simulation

Simulation means computing the model response using input data and initial conditions. The time
samples of the model response match the time samples of the input data used for simulation. In other
words, given inputs u(t1, … ,tN), the simulation generates y(t1, … ,tN). The following diagram
illustrates this flow.

For a continuous-time system, simulation means solving a differential equation. For a discrete-time
system, simulation means directly applying the model equations.

For example, consider a dynamic model described by a first-order difference equation that uses a
sample time of 1 second:

y(t+1) = ay(t) + bu(t),

where y is the output and u is the input.

This system is equivalent to the following block diagram.

Suppose that your model identification provides you with estimated parameter values of a = 0.9 and b
= 1.5. Then the equation becomes:

y(t+1) = 0.9y(t) + 1.5u(t).

Now suppose that you want to compute the values y(1), y(2), y(3),... for given input values u(0) = 2,
u(1) = 1, u(2) = 4,… Here, y(1) is the value of output at the first sampling instant. Using initial
condition of y(0) = 0, the values of y(t) for times t = 1, 2, and 3 can be computed as:

y(1) = 0.9y(0) + 1.5u(0) =(0.9)(0) + (1.5)(2) = 3

y(2) = 0.9y(1) + 1.5u(1) =(0.9)(3) + (1.5)(1) = 4.2

y(3) = 0.9y(2) + 1.5u(2) =(0.9)(4.2) + (1.5)(4) = 9.78

Prediction

Prediction means projecting the model response k steps ahead into the future using the current and
past values of measured input and output values. k is called the prediction horizon, and corresponds

 Simulate and Predict Identified Model Output

17-7



to predicting output at time kTs, where Ts is the sample time. In other words, given measured inputs
um(t1, … ,tN+k) and measured outputs ym(t1, … ,tN) , the prediction generates yp(tN+k).

For example, suppose that you use sensors to measure the input signal um(t) and output signal ym(t) of
the physical system described in the previous first-order equation. The equation becomes:

yp(t+1) = aym(t) + bum(t),

where y is the output and u is the input.

The predictor version of the previous simulation block diagram is:

At the 10th sampling instant (t = 10), the measured output ym(10) is 16 mm and the corresponding
input um(10) is 12 N. Now, you want to predict the value of the output at the future time t = 11. Using
the previous equation, the predicted output yp is:

yp(11) = 0.9ym(10) + 1.5um(10)

Hence, the predicted value of future output y(11) at time t = 10 is:

yp(11) = 0.9*16 + 1.5*12 = 32.4

In general, to predict the model response k steps into the future (k≥1) from the current time t, you
must know the inputs up to time t+k and outputs up to time t:

yp(t+k) = f(um(t+k),um(t+k–1),...,um(t),um(t–1),...,um(0),
                ym(t),ym(t–1),ym(t–2),...,ym(0))

um(0) and ym(0) are the initial states. f() represents the predictor, which is a dynamic model whose
form depends on the model structure.

The one-step-ahead predictor from the previous example, yp of the model y(t) + ay(t–1) = bu(t) is:

yp(t+1) = –ayp(t) + bum(t+1)

In this simple one-step predictor case, the newest prediction is based only on measurements. For
multiple-step predictors, the dynamic model propagates states internally, using the previous
predicted states in addition to the inputs. Each predicted output therefore arises from a combination
of the measured input and outputs and the previous predicted outputs.

You can set k to any positive integer value up to the number of measured data samples. If you set k to
∞, then no previous outputs are used in the prediction computation, and prediction returns the same
result as simulation. If you set k to an integer greater than the number of data samples, predict sets
k to Inf and issues a warning. If your intent is to perform a prediction in a time range beyond the
last instant of measured data, use forecast.
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For an example showing prediction and simulation in MATLAB, see “Compare Predicted and
Simulated Response of Identified Model to Measured Data” on page 17-9.

Limitations on Prediction

Not all models support a predictive approach. For the previous dynamic model,

H(z) = 1
1 + az−1 , the structure

supports use of past data. This support does not exist in models of Output-Error (OE) structure (H(z)
= 1). There is no information in past outputs that can be used for predicting future output values. In
these cases, prediction and simulation coincide. Even models that generally do use past information
can still have OE structure in special cases. State-space models (idss) have OE structure when K=0.
Polynomial models (idpoly) also have OE structure, when a=c=d=1. In these special cases,
prediction and simulation are equivalent, and the disturbance model is fixed to 1.

Compare Predicted and Simulated Response of Identified Model to
Measured Data
This example shows how to visualize both the predicted model response and the simulated model
response of an identified linear model.

Identify a third-order state-space model using the input/output measurements in z1.

load iddata1 z1;
sys = ssest(z1,3);

sys is a continuous-time identified state-space (idss) model. Here, sys is identified using the
default 1-step prediction focus, which minimizes the 1-step prediction error. This focus generally
provides the best overall model.

Now use compare to plot the predicted response. For this example, set the prediction horizon kstep
to 10 steps, and use compare to plot the predicted response against the original measurement data.
This setting of kstep specifies that each response point is 10 steps in the future with respect to the
measurement data used to predict that point.

kstep = 10;
figure
compare(z1,sys,kstep)
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In this plot, each data point represents the predicted output associated with output measurement
data that was taken at least 10 steps earlier. For instance, the point at t=15 seconds is based on
measurements taken at or prior to t=5 seconds.

The plot illustrates the differences between the model response and the original data. The percentage
in the legend is the NRMSE fitness value. It represents how closely the predicted model output
matches the data.

To improve your results, you can reduce the prediction horizon.

kstep = 5;
figure
compare(z1,sys,kstep)
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The NRMSE fitness value has improved from the fitness value obtained in the 10-step case. In an
actual application, there are various factors that influence how small the prediction horizon can be.
These include time constants and application look-ahead requirements.

You can view the simulated response for comparison, rather than the predicted response, by using
the kstep default for compare, which is Inf. With simulation, the response computation uses only
the input data, not the measured output data.

figure
compare(z1,sys)
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The simulated and the 10-step predicted responses yield similar overall fit percentages.

To change display options in the plot, right-click the plot to access the context menu. For example, to
plot the error between the predicted output and measured output, select Error Plot from the context
menu.

Compare Models Identified with Prediction and with Simulation Focus
This example shows how to identify models with prediction focus and with simulation focus. Compare
the responses of prediction-focus and simulation-focus models against the original estimation data,
and against validation data that was not used for estimation.

When you identify a model, the algorithm uses the 'Focus' option to determine whether to minimize
prediction error or simulation error. The default is 'prediction'. You can change this by changing
the 'Focus' option to 'simulation'.

Load the measurement data z1, and divide it into two halves z1e and z1v. One half is used for the
model identification, and the other half for the model validation.

load iddata1 z1;
%z1e = z1(1:150); %To avoid ordqz stall
%z1v = z1(151:300);
z1e = z1(1:155);
z1v = z1(156:300);
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Identify a third-order state-space model sys_pf using the input/output measurements in z1e. Use
the default option 'Focus' option for this model, which is 'prediction'.

sys_pf = ssest(z1e,3);

sys_pf is a continuous-time identified state-space (idss) model.

Using the same set of measurement data, identify a second state-space model sys_sf which sets
'Focus' to 'simulation'.

opt = ssestOptions('Focus','simulation');
sys_sf = ssest(z1e,3,opt);

Use the compare function to simulate the response to both identified models.

figure
compare(z1e,sys_pf,sys_sf)

The model identified with predictive focus has a higher NRMSE fit value than the model identified
with simulation focus.

Now perform a comparison against the validation data. This comparison shows how well the model
performs with conditions that were not part of its identification.

figure
compare(z1v,sys_pf,sys_sf)
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The fit values for both models improve. However, the model with prediction focus remains higher
than the model with simulation focus.

See Also
compare | forecast | predict | sim

Related Examples
• “Simulation and Prediction in the App” on page 17-15
• “Simulation and Prediction at the Command Line” on page 17-19
• “Simulate Identified Model in Simulink” on page 20-5
• “Estimate Initial Conditions for Simulating Identified Models” on page 20-26
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Simulation and Prediction in the App

How to Plot Simulated and Predicted Model Output
To create a model output plot for parametric linear and nonlinear models in the System Identification
app, select the Model output check box in the Model Views area. By default, this operation
estimates the initial states from the data and plots the output of selected models for comparison.

To include or exclude a model on the plot, click the corresponding model icon in the System
Identification app. Active models display a thick line inside the Model Board icon.

To learn how to interpret the model output plot, see “Interpret the Model Output Plot” on page 17-
15.

To change plot settings, see “Change Model Output Plot Settings” on page 17-16.

For general information about creating and working with plots, see “Working with Plots” on page 21-
8.

Interpret the Model Output Plot
The following figure shows a sample Model Output plot, created in the System Identification app.

The model output plot shows different information depending on the domain of the input-output
validation data, as follows:

• For time-domain validation data, the plot shows simulated or predicted model output.
• For frequency-domain data, the plot shows the amplitude of the model response to the frequency-

domain input signal. The model response is equal to the product of the Fourier transform of the
input and the model frequency function.
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• For frequency-response data, the plot shows the amplitude of the model frequency response.

For linear models, you can estimate a model using time-domain data, and then validate the model
using frequency domain data. For nonlinear models, you can only use time-domain data for both
estimation and validation.

The right side of the plot displays the percentage of the output that the model reproduces (Best Fit),
computed using the following equation:

Best Fit = 1− y − y
y − y × 100

In this equation, y is the measured output, y  is the simulated or predicted model output, and y is the
mean of y. 100% corresponds to a perfect fit, and 0% indicates that the fit is no better than guessing
the output to be a constant (y = y).

Because of the definition of Best Fit, it is possible for this value to be negative. A negative best fit is
worse than 0% and can occur for the following reasons:

• The estimation algorithm failed to converge.
• The model was not estimated by minimizing y − y . Best Fit can be negative when you minimized

1-step-ahead prediction during the estimation, but validate using the simulated output y .
• The validation data set was not preprocessed in the same way as the estimation data set.

Change Model Output Plot Settings
The following table summarizes the Model Output plot settings.
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Model Output Plot Settings
Action Command
Display confidence intervals.

Note Confidence intervals are only available for
simulated model output of linear models.
Confidence internal are not available for
nonlinear ARX and Hammerstein-Wiener models.

See “Definition: Confidence Interval” on page 17-
17.

• To display the dashed lines on either side of
the nominal model curve, select Options >
Show confidence intervals. Select this
option again to hide the confidence intervals.

• To change the confidence value, select
Options > Set % confidence level, and
choose a value from the list.

• To enter your own confidence level, select
Options > Set confidence level > Other.
Enter the value as a probability (between 0
and 1) or as the number of standard
deviations of a Gaussian distribution.

Change between simulated output or predicted
output.

Note Prediction is only available for time-domain
validation data.

• Select Options > Simulated output or
Options > k step ahead predicted output.

• To change the prediction horizon, select
Options > Set prediction horizon, and
select the number of samples.

• To enter your own prediction horizon, select
Options > Set prediction horizon > Other.
Enter the value in terms of the number of
samples.

Display the actual output values (Signal plot), or
the difference between model output and
measured output (Error plot).

Select Options > Signal plot or Options >
Error plot.

(Time-domain validation data only)
Set the time range for model output and the time
interval for which the Best Fit value is
computed.

Select Options > Customized time span for fit
and enter the minimum and maximum time
values. For example:

[1 20]

(Multiple-output system only)
Select a different output.

Select the output by name in the Channel menu.

Definition: Confidence Interval
The confidence interval corresponds to the range of output values with a specific probability of being
the actual output of the system. The toolbox uses the estimated uncertainty in the model parameters
to calculate confidence intervals and assumes the estimates have a Gaussian distribution.

For example, for a 95% confidence interval, the region around the nominal curve represents the
range of values that have a 95% probability of being the true system response. You can specify the
confidence interval as a probability (between 0 and 1) or as the number of standard deviations of a
Gaussian distribution. For example, a probability of 0.99 (99%) corresponds to 2.58 standard
deviations.

Note The calculation of the confidence interval assumes that the model sufficiently describes the
system dynamics and the model residuals pass independence tests.
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In the app, you can display a confidence interval on the plot to gain insight into the quality of a linear
model. To learn how to show or hide confidence interval, see “Change Model Output Plot Settings” on
page 17-16.

See Also

Related Examples
• “Simulation and Prediction at the Command Line” on page 17-19

More About
• “Simulate and Predict Identified Model Output” on page 17-6
• “Simulate Identified Model in Simulink” on page 20-5
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Simulation and Prediction at the Command Line

Simulation and Prediction Commands

Note If you estimated a linear model from detrended data and want to simulate or predict the output
at the original operation conditions, use retrend to add trend data back into the simulated or
predicted output.

Command Description Example
compare Determine how closely the

simulated model response
matches the measured output
signal.

Plots simulated or predicted
output of one or more models
on top of the measured
output. You should use an
independent validation data
set as input to the model.

To plot five-step-ahead predicted output of
the model mod against the validation data
data, use the following command:

compare(data,mod,5)

Note Omitting the third argument
assumes an infinite horizon and results in
the comparison of the simulated response
to the input data.

sim Simulate and plot the model
output only.

To simulate the response of the model
model using input data data, use the
following command:

sim(model,data)

predict Predict and plot the model
output only.

To perform one-step-ahead prediction of
the response for the model model and
input data data, use the following
command:

predict(model,data,1)

Use the following syntax to compute k-
step-ahead prediction of the output signal
using model m:

yhat = predict(m,[y u],k)

predict computes the prediction results
only over the time range of data. It does
not forecast results beyond the available
data range.
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Command Description Example
forecast Forecast a time series into the

future.
To forecast the value of a time series in an
arbitrary number of steps into the future,
use the following command:

forecast(model,past_data,K)

Here, model is a time series model,
past_data is a record of the observed
values of the time series, and K is the
forecasting horizon.

Initial Conditions in Simulation and Prediction
The process of computing simulated and predicted responses over a time range starts by using the
initial conditions to compute the first few output values. The sim, forecast, and predict
commands provide options and default settings for handling initial conditions.

Simulation: Default initial conditions are zero for all model types except the idnlgrey model,
whose default initial conditions are the internal model initial states (model property x0). You can
specify other initial conditions using the InitialCondition simulation option. For more
information on simulation options, see simOptions.

Use the compare command to validate models by simulation because its algorithm estimates the
initial states of a model to optimize the model fit to a given data set. You can also use compare to
return the estimated initial conditions for follow-on simulation and comparison with the same data
set. These initial conditions can be in the form of an initial state vector (state-space models) or an
initialCondition object (transfer function or polynomial models.)

If you are using sim to validate the quality of the identified model, you need to use the input signal
from the validation data set and also account for initial condition effects. The simulated and the
measured responses differ in the first few samples if the validation data set output contains initial
condition effects that are not captured when you simulate the model. To minimize this difference,
estimate the initial state values or the initialCondition model from the data using either
findstates (state-space models) or compare (all LTI models) and specify these initial states using
the InitialCondition simulation option (see simOptions). For example, compute the initial
states that optimize the fit of the model m to the output data in z:

% Estimate the initial states
X0est = findstates(m,z);
% Simulate the response using estimated initial states
opt = simOptions('InitialCondition',X0est);
sim(m,z.InputData,opt)

For an example of obtaining and using initialCondition models, see “Apply Initial Conditions
when Simulating Identified Linear Models” on page 20-45.

Prediction: Default initial conditions depend on the type of model. You can specify other initial
conditions using the InitialCondition option (see predictOptions). For example, compute the
initial states that optimize the 1-step-ahead predicted response of the model m to the output data z:

opt = predictOptions('InitialCondition','estimate');
[Yp,IC] = predict(m,z,1,opt);
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This command returns the estimated initial conditions as the output argument IC. For information
about other ways to specify initial states, see the predictOptions reference page.

Simulate a Continuous-Time State-Space Model
This example shows how to simulate a continuous-time state-space model using a random binary
input u and a sample time of 0.1 s.

Consider the following state-space model:

ẋ =
−1 1
−0 . 5 0

x +
1

0 . 5
u +

0 . 5
0 . 5

e

y = 1 0 x + e

where e is Gaussian white noise with variance 7.

Create a continuous-time state-space model.

A = [-1 1; -0.5 0];
B = [1;0.5]; 
C = [1 0];
D = 0;
K = [0.5;0.5];
% Ts = 0 indicates continuous time
model_ss = idss(A,B,C,D,K,'Ts',0,'NoiseVariance',7);

Create a random binary input.

u = idinput(400,'rbs',[0 0.3]);

Create an iddata object with empty output to represent just the input signal.

data = iddata([],u);
data.ts = 0.1;

Simulate the output using the model

opt = simOptions('AddNoise',true); 
y = sim(model_ss,data,opt);

Simulate Model Output with Noise
This example shows how you can create input data and a model, and then use the data and the model
to simulate output data.

In this example, you create the following ARMAX model with Gaussian noise e:

y(t)− 1 . 5y(t − 1) + 0 . 7y(t − 2) =
u(t − 1) + 0 . 5u(t − 2) + e(t)− e(t − 1) + 0 . 2e(t − 1)

Then, you simulate output data with random binary input u.

Create an ARMAX model.

m_armax = idpoly([1 -1.5 0.7],[0 1 0.5],[1 -1 0.2]);
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Create a random binary input.

u = idinput(400,'rbs',[0 0.3]);

Simulate the output data.

opt = simOptions('AddNoise',true);
y = sim(m_armax,u,opt);

The 'AddNoise' option specifies to include in the simulation the Gaussian noise e present in the
model. Set this option to false (default behavior) to simulate the noise-free response to the input u ,
which is equivalent to setting e to zero.

See Also
compare | forecast | predict | sim

Related Examples
• “Compare Simulated Output with Measured Validation Data” on page 17-23
• “Forecast Multivariate Time Series” on page 17-25
• “Simulation and Prediction in the App” on page 17-15

More About
• “Simulate and Predict Identified Model Output” on page 17-6
• “Simulate Identified Model in Simulink” on page 20-5
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Compare Simulated Output with Measured Validation Data
This example shows how to validate an estimated model by comparing the simulated model output
with measured data that was not used for the original estimation.

Load the data, and divide it into sections for estimation and for validation.

load iddata1;
ze = z1(1:150); 
zv = z1(151:300);

Estimate an ARMAX model, using the estimation data set ze.

m = armax(ze,[2 3 1 0]);

You can see how well the model performs against the original estimation data by using compare.

figure
compare(ze,m);

The legend shows the NRMSE fit percentage value.

Now, compare simulated model output with the measured data in the validation data set zv.

figure
compare(zv,m);
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The model performs similarly against the validation data as it did against the original estimation data.
It has a slightly higher fit value. This consistency is an indication of a valid model.

See Also

Related Examples
• “Simulation and Prediction at the Command Line” on page 17-19
• “Forecast Multivariate Time Series” on page 17-25

More About
• “Simulate and Predict Identified Model Output” on page 17-6
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Forecast Multivariate Time Series
This example shows how to perform multivariate time series forecasting of data measured from
predator and prey populations in a prey crowding scenario. The predator-prey population-change
dynamics are modeled using linear and nonlinear time series models. Forecasting performance of
these models is compared.

Data Description

The data is a bivariate time series consisting of 1-predator 1-prey populations (in thousands) collected
10 times a year for 20 years. For more information about the data, see “Three Ecological Population
Systems: MATLAB and C MEX-File Modeling of Time-Series” on page 13-156.

Load the time series data.

load PredPreyCrowdingData
z = iddata(y,[],0.1,'TimeUnit','years','Tstart',0);

z is an iddata object containing two output signals, y1 and y2, which refer to the predator and prey
populations, respectively. The OutputData property of z contains the population data as a 201-by-2
matrix, such that z.OutputData(:,1) is the predator population and z.OutputData(:,2) is the
prey population.

Plot the data.

plot(z)
title('Predator-Prey Population Data')
ylabel('Population (thousands)')
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The data exhibits a decline in predator population due to crowding.

Use the first half as estimation data for identifying time series models.

ze = z(1:120);

Use the remaining data to search for model orders, and to validate the forecasting results.

zv = z(121:end);

Estimate a Linear Model

Model the time series as a linear, autoregressive process. Linear models can be created in polynomial
form or state-space form using commands such as ar (for scalar time series only), arx, armax,
n4sid and ssest. Since the linear models do not capture the data offsets (non-zero conditional
mean), first detrend the data.

[zed, Tze] = detrend(ze, 0);
[zvd, Tzv] = detrend(zv, 0);

Identification requires specification of model orders. For polynomial models, you can find suitable
orders using the arxstruc command. Since arxstruc works only on single-output models, perform
the model order search separately for each output.

na_list = (1:10)';
V1 = arxstruc(zed(:,1,:),zvd(:,1,:),na_list);
na1 = selstruc(V1,0);
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V2 = arxstruc(zed(:,2,:),zvd(:,2,:),na_list);
na2 = selstruc(V2,0);

The arxstruc command suggests autoregressive models of orders 7 and 8, respectively.

Use these model orders to estimate a multi-variance ARMA model where the cross terms have been
chosen arbitrarily.

na = [na1 na1-1; na2-1 na2];
nc = [na1; na2];
sysARMA = armax(zed,[na nc])

sysARMA =
Discrete-time ARMA model:                                                 
  Model for output "y1": A(z)y_1(t) = - A_i(z)y_i(t) + C(z)e_1(t)         
                                                                          
    A(z) = 1 - 0.885 z^-1 - 0.1493 z^-2 + 0.8089 z^-3 - 0.2661 z^-4       
                                 - 0.9487 z^-5 + 0.8719 z^-6 - 0.2896 z^-7
                                                                          
                                                                          
    A_2(z) = 0.3433 z^-1 - 0.2802 z^-2 - 0.04949 z^-3 + 0.1018 z^-4       
                                              - 0.02683 z^-5 - 0.2416 z^-6
                                                                          
                                                                          
    C(z) = 1 - 0.4534 z^-1 - 0.4127 z^-2 + 0.7874 z^-3 + 0.298 z^-4       
                                 - 0.8684 z^-5 + 0.6106 z^-6 + 0.3616 z^-7
                                                                          
  Model for output "y2": A(z)y_2(t) = - A_i(z)y_i(t) + C(z)e_2(t)                
                                                                                 
    A(z) = 1 - 0.5826 z^-1 - 0.4688 z^-2 - 0.5949 z^-3 - 0.0547 z^-4             
                  + 0.5062 z^-5 + 0.4024 z^-6 - 0.01544 z^-7 - 0.1766 z^-8       
                                                                                 
                                                                                 
    A_1(z) = 0.2386 z^-1 + 0.1564 z^-2 - 0.2249 z^-3 - 0.2638 z^-4 - 0.1019 z^-5 
                                              - 0.07821 z^-6 + 0.2982 z^-7       
                                                                                 
                                                                                 
    C(z) = 1 - 0.1717 z^-1 - 0.09877 z^-2 - 0.5289 z^-3 - 0.24 z^-4              
                 + 0.06555 z^-5 + 0.2217 z^-6 - 0.05765 z^-7 - 0.1824 z^-8       
                                                                                 
Sample time: 0.1 years
  
Parameterization:
   Polynomial orders:   na=[7 6;7 8]   nc=[7;8]
   Number of free coefficients: 43
   Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                  
Estimated using ARMAX on time domain data "zed".         
Fit to estimation data: [89.85;90.97]% (prediction focus)
FPE: 3.814e-05, MSE: 0.007533                            

Compute a 10-step-ahead (1 year) predicted output to validate the model over the time span of the
estimation data. Since the data was detrended for estimation, you need to specify those offsets for
meaningful predictions.

predOpt = predictOptions('OutputOffset',Tze.OutputOffset');
yhat1 = predict(sysARMA,ze,10, predOpt);
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The predict command predicts the response over the time span of measured data and is a tool for
validating the quality of an estimated model. The response at time t is computed using measured
values at times t = 0, ..., t-10.

Plot the predicted response and the measured data.

plot(ze,yhat1)
title('10-step predicted response compared to measured data')

Note, the generation of predicted response and plotting it with the measured data, can be automated
using the compare command.

compareOpt = compareOptions('OutputOffset',Tze.OutputOffset');
compare(ze,sysARMA,10,compareOpt)
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The plot generated using compare also shows the normalized root mean square (NRMSE) measure of
goodness of fit in percent form.

After validating the data, forecast the output of the model sysARMA 100 steps (10 years) beyond the
estimation data, and calculate output standard deviations.

forecastOpt = forecastOptions('OutputOffset',Tze.OutputOffset');
[yf1,x01,sysf1,ysd1] = forecast(sysARMA, ze, 100, forecastOpt);

yf1 is the forecasted response, returned as an iddata object. yf1.OutputData contains the
forecasted values.

sysf1 is a system similar to sysARMA but is in state-space form. Simulation of sysf1 using the sim
command, with initial conditions, x01, reproduces the forecasted response, yf1.

ysd1 is the matrix of standard deviations. It measures the uncertainty is forecasting owing to the
effect of additive disturbances in the data (as measured by sysARMA.NoiseVariance), parameter
uncertainty (as reported by getcov(sysARMA)) and uncertainties associated with the process of
mapping past data to the initial conditions required for forecasting (see data2state).

Plot the measured, predicted, and forecasted output for model sysARMA.

t = yf1.SamplingInstants;
te = ze.SamplingInstants;
t0 = z.SamplingInstants;
subplot(1,2,1);
plot(t0,z.y(:,1),...
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   te,yhat1.y(:,1),...
   t,yf1.y(:,1),'m',...
   t,yf1.y(:,1)+ysd1(:,1),'k--', ...
   t,yf1.y(:,1)-ysd1(:,1), 'k--')
xlabel('Time (year)');
ylabel('Predator population, in thousands');
subplot(1,2,2);
plot(t0,z.y(:,2),...
   te,yhat1.y(:,2),...
   t,yf1.y(:,2),'m',...
   t,yf1.y(:,2)+ysd1(:,2),'k--', ...
   t,yf1.y(:,2)-ysd1(:,2),'k--')
% Make the figure larger.
fig = gcf;
p = fig.Position;
fig.Position = [p(1),p(2)-p(4)*0.2,p(3)*1.4,p(4)*1.2];
xlabel('Time (year)');
ylabel('Prey population, in thousands');
legend({'Measured','Predicted','Forecasted','Forecast Uncertainty (1 sd)'},...
   'Location','best')

The plots show that forecasting using a linear ARMA model (with added handling of offsets) worked
somewhat and the results showed high uncertainty compared to the actual populations over the 12-20
years time span. This indicates that the population change dynamics might be nonlinear.
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Estimate a Nonlinear Black-Box Model

Fit a nonlinear black-box model to the estimation data. You do not require prior knowledge about the
equations governing the estimation data. A linear-in-regressor form of Nonlinear ARX model will be
estimated.

Create a nonlinear ARX model with 2 outputs and no inputs.

sysNLARX = idnlarx([1 1;1 1],[],'Ts',0.1,'TimeUnit','years');

sysNLARX is a first order nonlinear ARX model that uses no nonlinear function; it predicts the model
response using a weighted sum of its first-order regressors.

getreg(sysNLARX)

ans = 2x1 cell
    {'y1(t-1)'}
    {'y2(t-1)'}

To introduce a nonlinearity function, add polynomial regressors to the model.

Create regressors up to power 2, and include cross terms (products of standard regressors listed
above). Add those regressors to the model as custom regressors.

R = polyreg(sysNLARX,'MaxPower',2,'CrossTerm','on');
sysNLARX.CustomRegressors = R;
getreg(sysNLARX)

ans = 5x1 cell
    {'y1(t-1)'         }
    {'y2(t-1)'         }
    {'y1(t-1).^2'      }
    {'y1(t-1).*y2(t-1)'}
    {'y2(t-1).^2'      }

Estimate the coefficients (the regressor weightings and the offset) of the model using estimation data,
ze.

sysNLARX = nlarx(ze,sysNLARX)

sysNLARX = 
Nonlinear multivariate time series model with 2 outputs
  Outputs: y1, y2

Regressors:
  1. Linear regressors in variables y1, y2
  2. Custom regressor: y1(t-1).^2
  3. Custom regressor: y1(t-1).*y2(t-1)
  4. Custom regressor: y2(t-1).^2
  List of all regressors

 All model outputs are linear in their regressors.
Sample time: 0.1 years

Status:                                                  
Estimated using NLARX on time domain data "ze".          
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Fit to estimation data: [88.34;88.91]% (prediction focus)
FPE: 3.265e-05, MSE: 0.01048

Compute a 10-step-ahead predicted output to validate the model.

yhat2 = predict(sysNLARX,ze,10);

Forecast the output of the model 100 steps beyond the estimation data.

yf2 = forecast(sysNLARX,ze,100);

The standard deviations of the forecasted response are not computed for nonlinear ARX models. This
data is unavailable because the parameter covariance information is not computed during estimation
of these models.

Plot the measured, predicted, and forecasted outputs.

t = yf2.SamplingInstants;
subplot(1,2,1);
plot(t0,z.y(:,1),...
   te,yhat2.y(:,1),...
   t,yf2.y(:,1),'m')
xlabel('Time (year)');
ylabel('Predator population (thousands)');
subplot(1,2,2);
plot(t0,z.y(:,2),...
   te,yhat2.y(:,2),...
   t,yf2.y(:,2),'m')
legend('Measured','Predicted','Forecasted')
xlabel('Time (year)');
ylabel('Prey population (thousands)');
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The plots show that forecasting using a nonlinear ARX model gave better forecasting results than
using a linear model. Nonlinear black-box modeling did not require prior knowledge about the
equations governing the data.

Note that to reduce the number of regressors, you can pick an optimal subset of (transformed)
variables using principal component analysis (see pca) or feature selection (see sequentialfs) in
the Statistics and Machine Learning Toolbox™.

If you have prior knowledge of the system dynamics, you can fit the estimation data using a nonlinear
grey-box model.

Estimate a Nonlinear Grey-Box Model

Knowledge about the nature of the dynamics can help improve the model quality and thus the
forecasting accuracy. For the predator-prey dynamics, the changes in the predator (y1) and prey (y2)
population can be represented as:

ẏ1(t) = p1 * y1(t) + p2 * y2(t) * y1(t)

ẏ2(t) = p3 * y2(t)− p4 * y1(t) * y2(t)− p5 * y2(t)2

For more information about the equations, see “Three Ecological Population Systems: MATLAB and C
MEX-File Modeling of Time-Series” on page 13-156.

Construct a nonlinear grey-box model based on these equations.
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Specify a file describing the model structure for the predator-prey system. The file specifies the state
derivatives and model outputs as a function of time, states, inputs, and model parameters. The two
outputs (predator and prey populations) are chosen as states to derive a nonlinear state-space
description of the dynamics.

FileName = 'predprey2_m';

Specify the model orders (number of outputs, inputs, and states)

Order = [2 0 2];

Specify the initial values for the parameters p1, p2, p3, p4, and p5, and indicate that all parameters are
to be estimated. Note that the requirement to specify initial guesses for parameters did not exist
when estimating the black box models sysARMA and sysNLARX.

Parameters = struct('Name',{'Survival factor, predators' 'Death factor, predators' ...
   'Survival factor, preys' 'Death factor, preys' ...
   'Crowding factor, preys'}, ...
   'Unit',{'1/year' '1/year' '1/year' '1/year' '1/year'}, ...
   'Value',{-1.1 0.9 1.1 0.9 0.2}, ...
   'Minimum',{-Inf -Inf -Inf -Inf -Inf}, ...
   'Maximum',{Inf Inf Inf Inf Inf}, ...
   'Fixed',{false false false false false});

Similarly, specify the initial states of the model, and indicate that both initial states are to be
estimated.

InitialStates = struct('Name',{'Predator population' 'Prey population'}, ...
   'Unit',{'Size (thousands)' 'Size (thousands)'}, ...
   'Value',{1.8 1.8}, ...
   'Minimum', {0 0}, ...
   'Maximum',{Inf Inf}, ...
   'Fixed',{false false});

Specify the model as a continuous-time system.

Ts = 0;

Create a nonlinear grey-box model with specified structure, parameters, and states.

sysGrey = idnlgrey(FileName,Order,Parameters,InitialStates,Ts,'TimeUnit','years');

Estimate the model parameters.

sysGrey = nlgreyest(ze,sysGrey);
present(sysGrey)

                                                                                                      
sysGrey =                                                                                             
Continuous-time nonlinear grey-box model defined by 'predprey2_m' (MATLAB file):                      
                                                                                                      
   dx/dt = F(t, x(t), p1, ..., p5)                                                                    
    y(t) = H(t, x(t), p1, ..., p5) + e(t)                                                             
                                                                                                      
 with 0 input(s), 2 state(s), 2 output(s), and 5 free parameter(s) (out of 5).                        
                                                                                                      
 States:                                        Initial value                                         
    x(1)  Predator population(t) [Size (thou..]   xinit@exp1   2.01325   (estimated) in [0, Inf]      

17 Model Analysis

17-34



    x(2)  Prey population(t) [Size (thou..]       xinit@exp1   1.99687   (estimated) in [0, Inf]      
 Outputs:                                                                                             
    y(1)  y1(t)                                                                                       
    y(2)  y2(t)                                                                                       
 Parameters:                                    Value  Standard Deviation                             
    p1   Survival factor, predators [1/year]     -0.995895      0.0125269   (estimated) in [-Inf, Inf]
    p2   Death factor, predators [1/year]          1.00441      0.0129368   (estimated) in [-Inf, Inf]
    p3   Survival factor, preys [1/year]           1.01234      0.0135413   (estimated) in [-Inf, Inf]
    p4   Death factor, preys [1/year]              1.01909      0.0121026   (estimated) in [-Inf, Inf]
    p5   Crowding factor, preys [1/year]          0.103244      0.0039285   (estimated) in [-Inf, Inf]
                                                                                                      
Status:                                                                                               
Termination condition: Change in cost was less than the specified tolerance..                         
Number of iterations: 6, Number of function evaluations: 7                                            
                                                                                                      
Estimated using Solver: ode45; Search: lsqnonlin on time domain data "ze".                            
Fit to estimation data: [91.21;92.07]%                                                                
FPE: 8.613e-06, MSE: 0.005713                                                                         
More information in model's "Report" property.                                                        

Compute a 10-step-ahead predicted output to validate the model.

yhat3 = predict(sysGrey,ze,10);

Forecast the output of the model 100 steps beyond the estimation data, and calculate output standard
deviations.

[yf3,x03,sysf3,ysd3] = forecast(sysGrey,ze,100);

Plot the measured, predicted, and forecasted outputs.

t = yf3.SamplingInstants;
subplot(1,2,1);
plot(t0,z.y(:,1),...
   te,yhat3.y(:,1),...
   t,yf3.y(:,1),'m',...
   t,yf3.y(:,1)+ysd3(:,1),'k--', ...
   t,yf3.y(:,1)-ysd3(:,1),'k--')
xlabel('Time (year)');
ylabel('Predator population (thousands)');
subplot(1,2,2);
plot(t0,z.y(:,2),...
   te,yhat3.y(:,2),...
   t,yf3.y(:,2),'m',...
   t,yf3.y(:,2)+ysd3(:,2),'k--', ...
   t,yf3.y(:,2)-ysd3(:,2),'k--')

legend('Measured','Predicted','Forecasted','Forecast uncertainty (1 sd)')
xlabel('Time (years)');
ylabel('Prey population (thousands)');
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The plots show that forecasting using a nonlinear grey-box model gave good forecasting results and
low forecasting output uncertainty.

Compare Forecasting Performance

Compare the forecasted response obtained from the identified models, sysARMA, sysNLARX, and
sysGrey. The first two are discrete-time models and sysGrey is a continuous-time model.

clf
plot(z,yf1,yf2,yf3)
legend({'Measured','Linear ARMA','Nonlinear AR','Nonlinear Grey-Box'})
title('Forecasted Responses')
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Forecasting with a nonlinear ARX model gave better results than forecasting with a linear model.
Inclusion of the knowledge of the dynamics in the nonlinear grey-box model further improved the
reliability of the model and therefore the forecasting accuracy.

Note that the equations used in grey-box modeling are closely related to the polynomial regressors
used by the Nonlinear ARX model. If you approximate the derivatives in the governing equations by
first-order differences, you will get equations similar to:

y1(t) = s1 * y1(t − 1) + s2 * y1(t − 1) * y2(t − 1)

y2(t) = s3 * y2(t − 1)− s4 * y1(t − 1) * y2(t − 1)− s5 * y2(t − 1)2

Where, s1, . . . , s5 are some parameters related to the original parameters p1, . . . , p5 and to the
sample time used for differencing. These equations suggest that only 2 regressors are needed for the
first output (y1(t-1) and *y1(t-1)*y2(t-1)) and 3 for the second output when constructing the Nonlinear
ARX model. Even in absence of such prior knowledge, linear-in-regressor model structures employing
polynomial regressors remain a popular choice in practice.

Forecast the values using the nonlinear grey-box model over 200 years.

[yf4,~,~,ysd4] = forecast(sysGrey, ze, 2000);

Plot the latter part of the data (showing 1 sd uncertainty)
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t = yf4.SamplingInstants;
N = 700:2000;
subplot(1,2,1);
plot(t(N), yf4.y(N,1), 'm',...
   t(N), yf4.y(N,1)+ysd4(N,1), 'k--', ...
   t(N), yf4.y(N,1)-ysd4(N,1), 'k--')
xlabel('Time (year)');
ylabel('Predator population (thousands)');
ax = gca;
ax.YLim = [0.8 1];
ax.XLim = [82 212];
subplot(1,2,2);
plot(t(N),yf4.y(N,2),'m',...
   t(N),yf4.y(N,2)+ysd4(N,2),'k--', ...
   t(N),yf4.y(N,2)-ysd4(N,2),'k--')
legend('Forecasted population','Forecast uncertainty (1 sd)')
xlabel('Time (years)');
ylabel('Prey population (thousands)');
ax = gca;
ax.YLim = [0.9 1.1];
ax.XLim = [82 212];
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The plot show that the predatory population is forecasted to reach a steady-state of approximately
890 and the prey population is forecasted to reach 990.

See Also

Related Examples
• “Introduction to Forecasting of Dynamic System Response” on page 14-33
• “Simulation and Prediction at the Command Line” on page 17-19
• “Identify Time Series Models at the Command Line” on page 14-12
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What Is Residual Analysis?
Residuals are differences between the one-step-predicted output from the model and the measured
output from the validation data set. Thus, residuals represent the portion of the validation data not
explained by the model.

Residual analysis consists of two tests: the whiteness test and the independence test.

According to the whiteness test criteria, a good model has the residual autocorrelation function
inside the confidence interval of the corresponding estimates, indicating that the residuals are
uncorrelated.

According to the independence test criteria, a good model has residuals uncorrelated with past
inputs. Evidence of correlation indicates that the model does not describe how part of the output
relates to the corresponding input. For example, a peak outside the confidence interval for lag k
means that the output y(t) that originates from the input u(t-k) is not properly described by the
model.

Your model should pass both the whiteness and the independence tests, except in the following cases:

• For output-error (OE) models and when using instrumental-variable (IV) methods, make sure that
your model shows independence of e and u, and pay less attention to the results of the whiteness
of e.

In this case, the modeling focus is on the dynamics G and not the disturbance properties H.
• Correlation between residuals and input for negative lags, is not necessarily an indication of an

inaccurate model.

When current residuals at time t affect future input values, there might be feedback in your
system. In the case of feedback, concentrate on the positive lags in the cross-correlation plot
during model validation.

Supported Model Types
You can validate parametric linear and nonlinear models by checking the behavior of the model
residuals. For a description of residual analysis, see “What Residual Plots Show for Different Data
Domains” on page 17-40.

Note Residual analysis plots are not available for frequency response (FRD) models. For time-series
models, you can only generate model-output plots for parametric models using time-domain time-
series (no input) measured data.

What Residual Plots Show for Different Data Domains
Residual analysis plots show different information depending on whether you use time-domain or
frequency-domain input-output validation data.

For time-domain validation data, the plot shows the following two axes:

• Autocorrelation function of the residuals for each output
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• Cross-correlation between the input and the residuals for each input-output pair

Note For time-series models, the residual analysis plot does not provide any input-residual
correlation plots.

For frequency-domain validation data, the plot shows the following two axes:

• Estimated power spectrum of the residuals for each output
• Transfer-function amplitude from the input to the residuals for each input-output pair

For linear models, you can estimate a model using time-domain data, and then validate the model
using frequency domain data. For nonlinear models, the System Identification Toolbox product
supports only time-domain data.

The following figure shows a sample Residual Analysis plot, created in the System Identification app.

Displaying the Confidence Interval
The confidence interval corresponds to the range of residual values with a specific probability of
being statistically insignificant for the system. The toolbox uses the estimated uncertainty in the
model parameters to calculate confidence intervals and assumes the estimates have a Gaussian
distribution.

For example, for a 95% confidence interval, the region around zero represents the range of residual
values that have a 95% probability of being statistically insignificant. You can specify the confidence
interval as a probability (between 0 and 1) or as the number of standard deviations of a Gaussian
distribution. For example, a probability of 0.99 (99%) corresponds to 2.58 standard deviations.

You can display a confidence interval on the plot in the app to gain insight into the quality of the
model. To learn how to show or hide confidence interval, see the description of the plot settings in
“How to Plot Residuals in the App” on page 17-43.
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Note If you are working in the System Identification app, you can specify a custom confidence
interval. If you are using the resid command, the confidence interval is fixed at 99%.

See Also

Related Examples
• “How to Plot Residuals in the App” on page 17-43
• “Examine Model Residuals” on page 17-45
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How to Plot Residuals in the App
To create a residual analysis plot for parametric linear and nonlinear models in the System
Identification app, select the Model resids check box in the Model Views area. For general
information about creating and working with plots, see “Working with Plots” on page 21-8.

To include or exclude a model on the plot, click the corresponding model icon in the System
Identification app. Active models display a thick line inside the Model Board icon.

The following table summarizes the Residual Analysis plot settings.

Residual Analysis Plot Settings

Action Command
Display confidence intervals around
zero.

Note Confidence internal are not
available for nonlinear ARX and
Hammerstein-Wiener models.

• To display the dashed lines on either side of the nominal
model curve, select Options > Show confidence
intervals. Select this option again to hide the confidence
intervals.

• To change the confidence value, select Options > Set %
confidence level and choose a value from the list.

• To enter your own confidence level, select Options > Set
confidence level > Other. Enter the value as a
probability (between 0 and 1) or as the number of
standard deviations of a Gaussian distribution.

Change the number of lags (data
samples) for which to compute
autocorrelation and cross-correlation
functions.

Note For frequency-domain
validation data, increasing the
number of lags increases the
frequency resolution of the residual
spectrum and the transfer function.

• Select Options > Number of lags and choose the value
from the list.

• To enter your own lag value, select Options > Set
confidence level > Other. Enter the value as the number
of data samples.

(Multiple-output system only)
Select a different input-output pair.

Select the input-output by name in the Channel menu.

See Also

Related Examples
• “How to Plot Residuals at the Command Line” on page 17-44
• “Examine Model Residuals” on page 17-45

More About
• “What Is Residual Analysis?” on page 17-40
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How to Plot Residuals at the Command Line
The following table summarizes commands that generate residual-analysis plots for linear and
nonlinear models. For detailed information about this command, see the corresponding reference
page.

Note Apply pe and resid to one model at a time.

Command Description Example
pe Computes and plots model prediction

errors.
To plot the prediction errors for the
model model using data data, type
the following command:

pe(model,data)

resid Performs whiteness and independence
tests on model residuals, or prediction
errors. Uses validation data input as
model input.

To plot residual correlations for the
model model using data data, type
the following command:

resid(data,model)

See Also

Related Examples
• “How to Plot Residuals in the App” on page 17-43
• “Examine Model Residuals” on page 17-45

More About
• “What Is Residual Analysis?” on page 17-40
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Examine Model Residuals
This example shows how you can use residual analysis to evaluate model quality.

Creating Residual Plots
1 To load the sample System Identification app session that contains estimated models, type the

following command in the MATLAB Command Window:

systemIdentification('dryer2_linear_models')
2 To generate a residual analysis plot, select the Model resids check box in the System

Identification app.

This opens an empty plot.
3 In the System Identification app window, click each parametric model icon to display it on the

Residual Analysis plot. Do not click the nonparametric model spad, as residual analysis plots are
not available for this model.

Description of the Residual Plot Axes
The top axes show the autocorrelation of residuals for the output (whiteness test). The horizontal
scale is the number of lags, which is the time difference (in samples) between the signals at which the
correlation is estimated. The horizontal dashed lines on the plot represent the confidence interval of
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the corresponding estimates. Any fluctuations within the confidence interval are considered to be
insignificant. Six of the models —arxqs, n4s3, arx223, tf1,ss1, and amx2222 — produce residuals
that enter outside the confidence interval. A good model should have a residual autocorrelation
function within the confidence interval, indicating that the residuals are uncorrelated.

The bottom axes show the cross-correlation of the residuals with the input. A good model should have
residuals uncorrelated with past inputs (independence test). Evidence of correlation indicates that
the model does not describe how the output is formed from the corresponding input. For example,
when there is a peak outside the confidence interval for lag k, this means that the contribution to the
output y(t) that originates from the input u(t-k) is not properly described by the model. The models
arxqs and amx2222 extend beyond the confidence interval and do not perform as well as the other
models.

Validating Models Using Analyzing Residuals
To remove models with poor performance from the Residual Analysis plot, click the model icons
arxqs, n4s3, arx223, tf1, ss1, and amx2222 in the System Identification app.

The Residual Analysis plot now includes only the two models that pass the residual tests: arx692 and
amx3322.

The plots for these models fall primarily within the confidence intervals, although the amx3322 plot
shows some excursions slightly outside of the boundaries. If these excursions are acceptable, it is
reasonable to pick the amx3322 model because it is a simpler low-order model. If the excursions are
not acceptable, you can use the arx392 model instead.
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See Also

Related Examples
• “How to Plot Residuals in the App” on page 17-43
• “How to Plot Residuals at the Command Line” on page 17-44

More About
• “What Is Residual Analysis?” on page 17-40

 Examine Model Residuals

17-47



Impulse and Step Response Plots
Supported Models
You can plot the simulated response of a model using impulse and step signals as the input for all
linear parametric models and correlation analysis (nonparametric) models.

You can also create step-response plots for nonlinear models. These step and impulse response plots,
also called transient response plots, provide insight into the characteristics of model dynamics,
including peak response and settling time.

Note For frequency-response models, impulse- and step-response plots are not available. For
nonlinear models, only step-response plots are available.

Examples

“Plot Impulse and Step Response Using the System Identification App” on page 17-50

“Plot Impulse and Step Response at the Command Line” on page 17-53

How Transient Response Helps to Validate Models
Transient response plots provide insight into the basic dynamic properties of the model, such as
response times, static gains, and delays.

Transient response plots also help you validate how well a linear parametric model, such as a linear
ARX model or a state-space model, captures the dynamics. For example, you can estimate an impulse
or step response from the data using correlation analysis (nonparametric model), and then plot the
correlation analysis result on top of the transient responses of the parametric models.

Because nonparametric and parametric models are derived using different algorithms, agreement
between these models increases confidence in the parametric model results.

What Does a Transient Response Plot Show?
Transient response plots show the value of the impulse or step response on the vertical axis. The
horizontal axis is in units of time you specified for the data used to estimate the model.

The impulse response of a dynamic model is the output signal that results when the input is an
impulse. That is, u(t) is zero for all values of t except at t=0, where u(0)=1. In the following difference
equation, you can compute the impulse response by setting y(-T)=y(-2T)=0, u(0)=1, and u(t>0)=0.

y(t)− 1.5y(t − T) + 0.7y(t − 2T) =
       0.9u(t) + 0.5u(t − T)

The step response is the output signal that results from a step input, where u(t<0)=0 and u(t>0)=1.

If your model includes a noise model, you can display the transient response of the noise model
associated with each output channel. For more information about how to display the transient
response of the noise model, see “Plot Impulse and Step Response Using the System Identification
App” on page 17-50.
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The following figure shows a sample Transient Response plot, created in the System Identification
app.

Displaying the Confidence Interval
In addition to the transient-response curve, you can display a confidence interval on the plot. To learn
how to show or hide confidence interval, see the description of the plot settings in “Plot Impulse and
Step Response Using the System Identification App” on page 17-50.

The confidence interval corresponds to the range of response values with a specific probability of
being the actual response of the system. The toolbox uses the estimated uncertainty in the model
parameters to calculate confidence intervals and assumes the estimates have a Gaussian distribution.

For example, for a 95% confidence interval, the region around the nominal curve represents the
range where there is a 95% chance that it contains the true system response. You can specify the
confidence interval as a probability (between 0 and 1) or as the number of standard deviations of a
Gaussian distribution. For example, a probability of 0.99 (99%) corresponds to 2.58 standard
deviations.

Note The calculation of the confidence interval assumes that the model sufficiently describes the
system dynamics and the model residuals pass independence tests.
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Plot Impulse and Step Response Using the System
Identification App

To create a transient analysis plot in the System Identification app, select the Transient resp check
box in the Model Views area. For general information about creating and working with plots, see
“Working with Plots” on page 21-8.

To include or exclude a model on the plot, click the corresponding model icon in the System
Identification app. Active models display a thick line inside the Model Board icon.

The following table summarizes the Transient Response plot settings.
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Transient Response Plot Settings

Action Command
Display step response for linear or nonlinear
model.

Select Options > Step response.

Display impulse response for linear model. Select Options > Impulse response.

Note Not available for nonlinear models.
Display the confidence interval.

Note Only available for linear models.

• To display the dashed lines on either side of the
nominal model curve, select Options > Show
confidence intervals. Select this option again to
hide the confidence intervals.

• To change the confidence value, select Options >
Set % confidence level, and choose a value from
the list.

• To enter your own confidence level, select Options
> Set confidence level > Other. Enter the value
as a probability (between 0 and 1) or as the number
of standard deviations of a Gaussian distribution.

Change time span over which the impulse or
step response is calculated. For a scalar time
span T, the resulting response is plotted from
-T/4 to T.

Note To change the time span of models you
estimated using correlation analysis models,
select Estimate > Correlation models and
reestimate the model using a new time span.

• Select Options > Time span (time units), and
choose a new time span in units of time you
specified for the model.

• To enter your own time span, select Options >
Time span (time units) > Other, and enter the
total response duration.

• To use the time span based on model dynamics,
type [] or default.

The default time span is computed based on the
model dynamics and might be different for different
models. For nonlinear models, the default time
span is 10.

Toggle between line plot or stem plot.

Tip Use a stem plot for displaying impulse
response.

Select Style > Line plot or Style > Stem plot.

(Multiple-output system only)

Select an input-output pair to view the noise
spectrum corresponding to those channels.

Select the output by name in the Channel menu.

If the plotted models include a noise model, you can
display the transient response properties associated
with each output channel. The name of the channel
has the format e@OutputName, where OutputName is
the name of the output channel corresponding to the
noise model.
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Action Command
(Step response for nonlinear models only)

Set level of the input step.

Note For multiple-input models, the input-
step level applies only to the input channel
you selected to display in the plot.

Select Options > Step Size, and then chose from two
options:

• 0–>1 sets the lower level to 0 and the upper level
to 1.

• Other opens the Step Level dialog box, where you
enter the values for the lower and upper level
values.

More About

“Impulse and Step Response Plots” on page 17-48
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Plot Impulse and Step Response at the Command Line
You can plot impulse- and step-response plots using the impulseplot and stepplot commands,
respectively. If you want to fetch the response data, use impulse and step instead.

All plot commands have the same basic syntax, as follows:

• To plot one model, use the syntax command(model).
• To plot several models, use the syntax command(model1,model2,...,modelN).

In this case, command represents any of the plotting commands.

To display confidence intervals for a specified number of standard deviations, use the following
syntax:

h = impulseplot(model);
showConfidence(h,sd);

where h is the plot handle returned by impulseplot. You could also use the plot handle returned by
stepplot. sd is the number of standard deviations of a Gaussian distribution. For example, a
confidence value of 99% for the nominal model curve corresponds to 2.58 standard deviations.

Alternatively, you can turn on the confidence region view interactively by right-clicking on the plot
and selecting Characteristics > Confidence Region. Use the plot property editor to specify the
number of standard deviations.

The following table summarizes commands that generate impulse- and step-response plots. For
detailed information about each command, see the corresponding reference page.

Command Description Example
impulse,impulseplot Plot impulse response for

idpoly, idproc, idtf, idss,
and idgrey model objects.

Note Does not support
nonlinear models.

To plot the impulse response of the model
sys, type the following command:

impulse(sys)

step,stepplot Plots the step response of all
linear and nonlinear models.

To plot the step response of the model
sys, type the following command:

step(sys)

To specify the step level offset (u0) and
amplitude (A) for a model:

opt = stepDataOptions;
opt.InputOffset = u0; 
opt.StepAmplitude = A; 

step(sys,opt)

More About

“Impulse and Step Response Plots” on page 17-48
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Frequency Response Plots

What Is Frequency Response?
Frequency response plots show the complex values of a transfer function as a function of frequency.

In the case of linear dynamic systems, the transfer function G is essentially an operator that takes the
input u of a linear system to the output y:

y = Gu

For a continuous-time system, the transfer function relates the Laplace transforms of the input U(s)
and output Y(s):

Y(s) = G(s)U(s)

In this case, the frequency function G(iw) is the transfer function evaluated on the imaginary axis
s=iw.

For a discrete-time system sampled with a time interval T, the transfer function relates the Z-
transforms of the input U(z) and output Y(z):

Y(z) = G(z)U(z)

In this case, the frequency function G(eiwT) is the transfer function G(z) evaluated on the unit circle.
The argument of the frequency function G(eiwT) is scaled by the sample time T to make the frequency
function periodic with the sampling frequency 2π T.

Examples

“Plot Bode Plots Using the System Identification App” on page 17-57

“Plot Bode and Nyquist Plots at the Command Line” on page 17-59

How Frequency Response Helps to Validate Models
You can plot the frequency response of a model to gain insight into the characteristics of linear model
dynamics, including the frequency of the peak response and stability margins. Frequency-response
plots are available for all linear models.

Note Frequency-response plots are not available for nonlinear models. In addition, Nyquist plots do
not support time-series models that have no input.

The frequency response of a linear dynamic model describes how the model reacts to sinusoidal
inputs. If the input u(t) is a sinusoid of a certain frequency, then the output y(t) is also a sinusoid of
the same frequency. However, the magnitude of the response is different from the magnitude of the
input signal, and the phase of the response is shifted relative to the input signal.

Frequency response plots provide insight into linear systems dynamics, such as frequency-dependent
gains, resonances, and phase shifts. Frequency response plots also contain information about
controller requirements and achievable bandwidths. Finally, frequency response plots can also help

17 Model Analysis

17-54



you validate how well a linear parametric model, such as a linear ARX model or a state-space model,
captures the dynamics.

One example of how frequency-response plots help validate other models is that you can estimate a
frequency response from the data using spectral analysis (nonparametric model), and then plot the
spectral analysis result on top of the frequency response of the parametric models. Because
nonparametric and parametric models are derived using different algorithms, agreement between
these models increases confidence in the parametric model results.

What Does a Frequency-Response Plot Show?
System Identification app supports the following types of frequency-response plots for linear
parametric models, linear state-space models, and nonparametric frequency-response models:

• Bode plot of the model response. A Bode plot consists of two plots. The top plot shows the
magnitude G  by which the transfer function G magnifies the amplitude of the sinusoidal input.
The bottom plot shows the phase φ = argG by which the transfer function shifts the input. The
input to the system is a sinusoid, and the output is also a sinusoid with the same frequency.

• Plot of the disturbance model, called noise spectrum. This plot is the same as a Bode plot of the
model response, but it shows the output power spectrum of the noise model instead. For more
information, see “Noise Spectrum Plots” on page 17-61.

• (Only in the MATLAB Command Window)
Nyquist plot. Plots the imaginary versus the real part of the transfer function.

The following figure shows a sample Bode plot of the model dynamics, created in the System
Identification app.

Displaying the Confidence Interval
In addition to the frequency-response curve, you can display a confidence interval on the plot. To
learn how to show or hide confidence interval, see the description of the plot settings in “Plot Bode
Plots Using the System Identification App” on page 17-57
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The confidence interval corresponds to the range of response values with a specific probability of
being the actual response of the system. The toolbox uses the estimated uncertainty in the model
parameters to calculate confidence intervals and assumes the estimates have a Gaussian distribution.

For example, for a 95% confidence interval, the region around the nominal curve represents the
range where there is a 95% chance that it contains the true system response. You can specify the
confidence interval as a probability (between 0 and 1) or as the number of standard deviations of a
Gaussian distribution. For example, a probability of 0.99 (99%) corresponds to 2.58 standard
deviations.
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Plot Bode Plots Using the System Identification App
To create a frequency-response plot for linear models in the System Identification app, select the
Frequency resp check box in the Model Views area. For general information about creating and
working with plots, see “Working with Plots” on page 21-8.

To include or exclude a model on the plot, click the corresponding model icon in the System
Identification app. Active models display a thick line inside the Model Board icon.

The following table summarizes the Frequency Function plot settings.
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Frequency Function Plot Settings

Action Command
Display the confidence interval. • To display the dashed lines on either side of the nominal

model curve, select Options > Show confidence
intervals. Select this option again to hide the confidence
intervals.

• To change the confidence value, select Options > Set %
confidence level, and choose a value from the list.

• To enter your own confidence level, select Options > Set
confidence level > Other. Enter the value as a
probability (between 0 and 1) or as the number of
standard deviations of a Gaussian distribution.

Change the frequency values for
computing the noise spectrum.

The default frequency vector is 128
linearly distributed values, greater
than zero and less than or equal to the
Nyquist frequency.

Select Options > Frequency range and specify a new
frequency vector in units of rad/s.

Enter the frequency vector using any one of following
methods:

• MATLAB expression, such as [1:100]*pi/100 or
logspace(-3,-1,200). Cannot contain variables in the
MATLAB workspace.

• Row vector of values, such as [1:.1:100]

Note To restore the default frequency vector, enter [].
Change frequency units between hertz
and radians per second.

Select Style > Frequency (Hz) or Style > Frequency
(rad/s).

Change frequency scale between
linear and logarithmic.

Select Style > Linear frequency scale or Style > Log
frequency scale.

Change amplitude scale between
linear and logarithmic.

Select Style > Linear amplitude scale or Style > Log
amplitude scale.

(Multiple-output system only)
Select an input-output pair to view the
noise spectrum corresponding to
those channels.

Note You cannot view cross spectra
between different outputs.

Select the output by name in the Channel menu.

More About

“Frequency Response Plots” on page 17-54
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Plot Bode and Nyquist Plots at the Command Line
You can plot Bode and Nyquist plots for linear models using the bode and nyquist commands. If you
want to customize the appearance of the plot, or turn on the confidence region programmatically, use
bodeplot, and nyquistplot instead.

All plot commands have the same basic syntax, as follows:

• To plot one model, use the syntax command(model).
• To plot several models, use the syntax command(model1,model2,...,modelN).

In this case, command represents any of the plotting commands.

To display confidence intervals for a specified number of standard deviations, use the following
syntax:

h=command(model);
showConfidence(h,sd)

where sd is the number of standard deviations of a Gaussian distribution and command is
bodeplotor nyquistplot. For example, a confidence value of 99% for the nominal model curve
corresponds to 2.58 standard deviations.

The following table summarizes commands that generate Bode and Nyquist plots for linear models.
For detailed information about each command and how to specify the frequency values for computing
the response, see the corresponding reference page.

Command Description Example
bode and bodeplot Plots the magnitude and

phase of the frequency
response on a logarithmic
frequency scale.

Note Does not support time-
series models.

To create the bode plot of the model,
sys, use the following command:

bode(sys)

nyquist and nyquistplot Plots the imaginary versus
real part of the transfer
function.

Note Does not support time-
series models.

To plot the frequency response of the
model, sys, use the following command:

nyquist(sys)

spectrum and
spectrumplot

Plots the disturbance spectra
of input-output models and
output spectra of time series
models.

To plot the output spectrum of a time
series model, sys, with 1 standard
deviation confidence region, use the
following command:

showConfidence(spectrumplot(sys));
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More About

“Frequency Response Plots” on page 17-54
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Noise Spectrum Plots

Supported Models
When you estimate the noise model of your linear system, you can plot the spectrum of the estimated
noise model. Noise-spectrum plots are available for all linear parametric models and spectral analysis
(nonparametric) models.

Note For nonlinear models and correlation analysis models, noise-spectrum plots are not available.
For time-series models, you can only generate noise-spectrum plots for parametric and spectral-
analysis models.

Examples

“Plot the Noise Spectrum Using the System Identification App” on page 17-63

“Plot the Noise Spectrum at the Command Line” on page 17-65

What Does a Noise Spectrum Plot Show?
The general equation of a linear dynamic system is given by:

y(t) = G(z)u(t) + v(t)

In this equation, G is an operator that takes the input to the output and captures the system
dynamics, and v is the additive noise term. The toolbox treats the noise term as filtered white noise,
as follows:

v(t) = H(z)e(t)

where e(t) is a white-noise source with variance λ.

The toolbox computes both H and λ during the estimation of the noise model and stores these
quantities as model properties. The H(z) operator represents the noise model.

Whereas the frequency-response plot shows the response of G, the noise-spectrum plot shows the
frequency-response of the noise model H.

For input-output models, the noise spectrum is given by the following equation:

Φv(ω) = λ H eiω 2

For time-series models (no input), the vertical axis of the noise-spectrum plot is the same as the
dynamic model spectrum. These axes are the same because there is no input for time series and
y = He.

Note You can avoid estimating the noise model by selecting the Output-Error model structure or by
setting the DisturbanceModel property value to 'None' for a state space model. If you choose to
not estimate a noise model for your system, then H and the noise spectrum amplitude are equal to 1
at all frequencies.
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Displaying the Confidence Interval
In addition to the noise-spectrum curve, you can display a confidence interval on the plot. To learn
how to show or hide confidence interval, see the description of the plot settings in “Plot the Noise
Spectrum Using the System Identification App” on page 17-63.

The confidence interval corresponds to the range of power-spectrum values with a specific probability
of being the actual noise spectrum of the system. The toolbox uses the estimated uncertainty in the
model parameters to calculate confidence intervals and assumes the estimates have a Gaussian
distribution.

For example, for a 95% confidence interval, the region around the nominal curve represents the
range where there is a 95% chance that the true response belongs.. You can specify the confidence
interval as a probability (between 0 and 1) or as the number of standard deviations of a Gaussian
distribution. For example, a probability of 0.99 (99%) corresponds to 2.58 standard deviations.

Note The calculation of the confidence interval assumes that the model sufficiently describes the
system dynamics and the model residuals pass independence tests.
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Plot the Noise Spectrum Using the System Identification App
To create a noise spectrum plot for parametric linear models in the app, select the Noise spectrum
check box in the Model Views area. For general information about creating and working with plots,
see “Working with Plots” on page 21-8.

To include or exclude a model on the plot, click the corresponding model icon in the System
Identification app. Active models display a thick line inside the Model Board icon.

The following figure shows a sample Noise Spectrum plot.

The following table summarizes the Noise Spectrum plot settings.
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Noise Spectrum Plot Settings

Action Command
Display the confidence interval. • To display the dashed lines on either side of the nominal model

curve, select Options > Show confidence intervals. Select
this option again to hide the confidence intervals.

• To change the confidence value, select Options > Set %
confidence level, and choose a value from the list.

• To enter your own confidence level, select Options > Set
confidence level > Other. Enter the value as a probability
(between 0 and 1) or as the number of standard deviations of a
Gaussian distribution.

Change the frequency values for
computing the noise spectrum.

The default frequency vector is
128 linearly distributed values,
greater than zero and less than
or equal to the Nyquist
frequency.

Select Options > Frequency range and specify a new frequency
vector in units of radians per second.

Enter the frequency vector using any one of following methods:

• MATLAB expression, such as [1:100]*pi/100 or
logspace(-3,-1,200). Cannot contain variables in the
MATLAB workspace.

• Row vector of values, such as [1:.1:100]

Tip To restore the default frequency vector, enter [].
Change frequency units between
hertz and radians per second.

Select Style > Frequency (Hz) or Style > Frequency (rad/s).

Change frequency scale between
linear and logarithmic.

Select Style > Linear frequency scale or Style > Log
frequency scale.

Change amplitude scale between
linear and logarithmic.

Select Style > Linear amplitude scale or Style > Log
amplitude scale.

(Multiple-output system only)
Select an input-output pair to
view the noise spectrum
corresponding to those channels.

Note You cannot view cross
spectra between different
outputs.

Select the output by name in the Channel menu.

More About

“Noise Spectrum Plots” on page 17-61
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Plot the Noise Spectrum at the Command Line
To plot the disturbance spectrum of an input-output model or the output spectrum of a time series
model, use spectrum. To customize such plots, or to turn on the confidence region view
programmatically for such plots, use spectrumplot instead.

To determine if your estimated noise model is good enough, you can compare the output spectrum of
the estimated noise-model H to the estimated output spectrum of v(t). To compute v(t), which
represents the actual noise term in the system, use the following commands:

ysimulated = sim(m,data);
v = ymeasured-ysimulated;

ymeasured is data.y. v is the noise term v(t), as described in “What Does a Noise Spectrum Plot
Show?” on page 17-61 and corresponds to the difference between the simulated response
ysimulated and the actual response ymeasured.

To compute the frequency-response model of the actual noise, use spa:

V = spa(v);

The toolbox uses the following equation to compute the noise spectrum of the actual noise:

Φv(ω) = ∑
τ = −∞

∞
Rv τ e−iωτ

The covariance function Rv is given in terms of E, which denotes the mathematical expectation, as
follows:

Rv τ = Ev t v t − τ

To compare the parametric noise-model H to the (nonparametric) frequency-response estimate of the
actual noise v(t), use spectrum:

spectrum(V,m)

If the parametric and the nonparametric estimates of the noise spectra are different, then you might
need a higher-order noise model.

More About

“Noise Spectrum Plots” on page 17-61
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Pole and Zero Plots
Supported Models
You can create pole-zero plots of linear identified models. To study the poles and zeros of the noise
component of an input-output model or a time series model, use noise2meas to first extract the
noise model as an independent input-output model, whose inputs are the noise channels of the
original model.

For examples of creating pole-zero plots, see “Model Poles and Zeros Using the System Identification
App” on page 17-69 and “Plot Poles and Zeros at the Command Line” on page 17-70.

What Does a Pole-Zero Plot Show?
The following figure shows a sample pole-zero plot of the model with confidence intervals. x indicate
poles and o indicate zeros.

The general equation of a linear dynamic system is given by:

y(t) = G(z)u(t) + v(t)

In this equation, G is an operator that takes the input to the output and captures the system
dynamics, and v is the additive noise term.

The poles of a linear system are the roots of the denominator of the transfer function G. The poles
have a direct influence on the dynamic properties of the system. The zeros are the roots of the
numerator of G. If you estimated a noise model H in addition to the dynamic model G, you can also
view the poles and zeros of the noise model.

Zeros and the poles are equivalent ways of describing the coefficients of a linear difference equation,
such as the ARX model. Poles are associated with the output side of the difference equation, and
zeros are associated with the input side of the equation. The number of poles is equal to the number
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of sampling intervals between the most-delayed and least-delayed output. The number of zeros is
equal to the number of sampling intervals between the most-delayed and least-delayed input. For
example, there two poles and one zero in the following ARX model:

y(t)− 1.5y(t − T) + 0.7y(t − 2T) =
       0.9u(t) + 0.5u(t − T)

Displaying the Confidence Interval
You can display a confidence interval for each pole and zero on the plot. To learn how to show or hide
confidence interval, see “Model Poles and Zeros Using the System Identification App” on page 17-69
and “Plot Poles and Zeros at the Command Line” on page 17-70.

The confidence interval corresponds to the range of pole or zero values with a specific probability of
being the actual pole or zero of the system. The toolbox uses the estimated uncertainty in the model
parameters to calculate confidence intervals and assumes the estimates have a Gaussian distribution.

For example, for a 95% confidence interval, the region around the nominal pole or zero value
represents the range of values that have a 95% probability of being the true system pole or zero
value. You can specify the confidence interval as a probability (between 0 and 1) or as the number of
standard deviations of a Gaussian distribution. For example, a probability of 0.99 (99%) corresponds
to 2.58 standard deviations.

You can use pole-zero plots to evaluate whether it might be useful to reduce model order. When
confidence intervals for a pole-zero pair overlap, this overlap indicates a possible pole-zero
cancellation. For more information, see “Reducing Model Order Using Pole-Zero Plots” on page 17-
68.

See Also

More About
• “Model Poles and Zeros Using the System Identification App” on page 17-69
• “Plot Poles and Zeros at the Command Line” on page 17-70
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Reducing Model Order Using Pole-Zero Plots
You can use pole-zero plots of linear identified models to evaluate whether it might be useful to
reduce model order. When confidence intervals for a pole-zero pair overlap, this overlap indicates a
possible pole-zero cancellation.

For example, you can use the following syntax to plot a 1-standard deviation confidence interval
around model poles and zeros.

showConfidence(iopzplot(model))

If poles and zeros overlap, try estimating a lower order model.

Always validate model output and residuals to see if the quality of the fit changes after reducing
model order. If the plot indicates pole-zero cancellations, but reducing model order degrades the fit,
then the extra poles probably describe noise. In this case, you can choose a different model structure
that decouples system dynamics and noise. For example, try ARMAX, Output-Error, or Box-Jenkins
polynomial model structures with an A or F polynomial of an order equal to that of the number of
uncanceled poles. For more information about estimating linear polynomial models, see “Input-
Output Polynomial Models”.

See Also
iopzplot

More About
• “Pole and Zero Plots” on page 17-66
• “Plot Poles and Zeros at the Command Line” on page 17-70
• “Model Poles and Zeros Using the System Identification App” on page 17-69
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Model Poles and Zeros Using the System Identification App
To create a pole-zero plot for parametric linear models in the System Identification app, select the
Zeros and poles check box in the Model Views area. For general information about creating and
working with plots, see “Working with Plots” on page 21-8.

To include or exclude a model on the plot, click the corresponding model icon in the System
Identification app. Active models display a thick line inside the Model Board icon.

The following table summarizes the Zeros and Poles plot settings.

Zeros and Poles Plot Settings

Action Command
Display the confidence interval. • To display the dashed lines on either side of the nominal pole

and zero values, select Options > Show confidence
intervals. Select this option again to hide the confidence
intervals.

• To change the confidence value, select Options > Set %
confidence level, and choose a value from the list.

• To enter your own confidence level, select Options > Set
confidence level > Other. Enter the value as a probability
(between 0 and 1) or as the number of standard deviations of a
Gaussian distribution.

Show real and imaginary axes. Select Style > Re/Im-axes. Select this option again to hide the
axes.

Show the unit circle. Select Style > Unit circle. Select this option again to hide the
unit circle. The unit circle is useful as a reference curve for
discrete-time models.

(Multiple-output system only)
Select an input-output pair to
view the poles and zeros
corresponding to those channels.

Select the output by name in the Channel menu.

See Also

More About
• “Pole and Zero Plots” on page 17-66
• “Plot Poles and Zeros at the Command Line” on page 17-70
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Plot Poles and Zeros at the Command Line
You can create a pole-zero plot for linear identified models using the iopzmap and iopzplot
commands.

To display confidence intervals for a specified number of standard deviations, use the following
syntax:

h = iopzplot(model); 
showConfidence(h,sd)

where sd is the number of standard deviations of a Gaussian distribution. For example, a confidence
value of 99% for the nominal model curve corresponds to 2.58 standard deviations.

Command Description Example
iopzmap,iopzplot Plots zeros and poles of the

model on the S-plane or Z-plane
for continuous-time or discrete-
time model, respectively.

To plot the poles and zeros of
the model sys, use the
following command:

iopzmap(sys)

See Also

More About
• “Pole and Zero Plots” on page 17-66
• “Model Poles and Zeros Using the System Identification App” on page 17-69
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Analyzing MIMO Models

Overview of Analyzing MIMO Models
If you plot a MIMO system, or an LTI array containing multiple identified linear models, you can use
special features of the right-click menu to group the response plots by input/output (I/O) pairs, or
select individual plots for display. For example, generate a random 3-input, 3-output MIMO system
and then randomly sample it 10 times. Plot the step response for all the models.

sys_mimo=rsample(idss(rss(3,3,3)),10);
step(sys_mimo);

sys_mimo is an array of ten 3-input, 3-output systems.

A set of 9 plots appears, one from each input to each output, for the ten model samples.

Array Selector
If you plot an identified linear model array, Array Selector appears as an option in the right-click
menu. Selecting this option opens the Model Selector for LTI Arrays, shown below.
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You can use this window to include or exclude models within the LTI array using various criteria.

Arrays

Select the LTI array for model selection using the Arrays list.

Selection Criteria

There are two selection criteria. The default, Index into Dimensions, allows you to include or
exclude specified indices of the LTI Array. Select systems from the Selection Criterion Setup
section of the dialog box. Then, Specify whether to show or hide the systems using the pull-down
menu below the Setup lists.

The second criterion is Bound on Characteristics. Selecting this options causes the Model Selector
to reconfigure. The reconfigured window is shown below

Use this option to select systems for inclusion or exclusion in your response plot based on their time
response characteristics. The panel directly above the buttons describes how to set the inclusion or
exclusion criteria based on which selection criteria you select from the reconfigured Selection
Criteria Setup panel.

I/O Grouping for MIMO Models
You can group the plots by inputs, by outputs, or both by selecting I/O Grouping from the right-click
menu, and then selecting Inputs, Outputs, or All.
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For example, if you select Outputs, the step plot reconfigures into 3 plots, grouping all the outputs
together on each plot. Each plot now displays the responses from one of the inputs to all of the MIMO
system’s outputs, for all of the models in the array.

Selecting None returns to the default configuration, where all I/O pairs are displayed individually.

Selecting I/O Pairs
Another way to organize MIMO system information is to choose I/O Selector from the right-click
menu, which opens the I/O Selector window.

This window automatically configures to the number of I/O pairs in your MIMO system. You can
select:

• Any individual plot (only one at a time) by clicking on a button
• Any row or column by clicking on Y(*) or U(*)
• All of the plots by clicking [all]
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Using these options, you can inspect individual I/O pairs, or look at particular I/O channels in detail.

See Also
Linear System Analyzer

More About
• “Model Arrays” (Control System Toolbox)
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Customize Response Plots Using the Response Plots Property
Editor

Opening the Property Editor
After you create a response plot, there are two ways to open the Property Editor:

• Double-click in the plot region.
• Right-click the plot, and select Properties from the context menu.

Before looking at the Property Editor, open a step response plot using these commands.

sys_dc = idtf([1 4],[1 20 5]);
step(sys_dc)

This creates a step plot. Right-click the plot, and select Properties from the context menu. When you
open the Property Editor, squares appear around the step response plot.
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Overview of Response Plots Property Editor
The appearance of the Property Editor dialog box depends on the type of response plot. This figure
shows the Property Editor dialog box for a step response.

The Property Editor for Step Response

In general, you can change the following properties of response plots. Only the Labels and Limits
panes are available when using the Property Editor with Simulink Design Optimization™ software.

• Titles and X- and Y-labels in the Labels pane.
• Numerical ranges of the X and Y axes in the Limits pane.
• Units where applicable (e.g., rad/s to Hertz) in the Units pane.

If you cannot customize units, the Property Editor displays that no units are available for the
selected plot.

• Styles in the Styles pane.

You can show a grid, adjust font properties, such as font size, bold, and italics, and change the
axes foreground color

• Change options where applicable in the Options pane.

These include peak response, settling time, phase and gain margins, etc. Plot options change with
each plot response type. The Property Editor displays only the options that make sense for the
selected response plot. For example, phase and gain margins are not available for step responses.

As you make changes in the Property Editor, they display immediately in the response plot.
Conversely, if you make changes in a plot using right-click menus, the Property Editor for that plot
automatically updates. The Property Editor and its associated plot are dynamically linked.
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Labels Pane
To specify new text for plot titles and axis labels, type the new names in the field next to the label you
want to change. The label changes immediately as you type, so you can see how the new text looks as
you are typing.

Limits Pane
Default values for the axes limits make sure that the maximum and minimum x and y values are
displayed. If you want to override the default settings, change the values in the Limits fields. The
Auto-Scale box automatically clears if you click a different field. The new limits appear immediately
in the response plot.

To re-establish the default values, select the Auto-Scale box again.
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Units Pane
You can use the Units pane to change units in your response plot. The contents of this pane depend
on the response plot associated with the editor. Use the menus to toggle between units.
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Optional Unit Conversions for Response Plots

Response Plot Unit Conversions
Bode and
Bode Magnitude

• Frequency

By default, shows rad/TimeUnit where TimeUnit is the
system time units specified in the TimeUnit property of the
input system.

Frequency Units Options

• 'Hz'
• 'rad/s'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'
• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'

• Frequency scale is logarithmic or linear.
• Magnitude in decibels (dB) or the absolute value
• Phase in degrees or radians
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Response Plot Unit Conversions
Impulse • Time

By default, shows the system time units specified in the
TimeUnit property of the input system.

Time Units Options

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'
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Response Plot Unit Conversions
Nichols Chart • Frequency

By default, shows rad/TimeUnit where TimeUnit is the
system time units specified in the TimeUnit property of the
input system.

Frequency Units Options

• 'Hz'
• 'rad/s'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'
• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'

• Phase in degrees or radians
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Response Plot Unit Conversions
Nyquist Diagram • Frequency

By default, shows rad/TimeUnit where TimeUnit is the
system time units specified in the TimeUnit property of the
input system.

Frequency Units Options

• 'Hz'
• 'rad/s'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'
• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'
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Response Plot Unit Conversions
Pole/Zero Map • Time

By default, shows the system time units specified in the
TimeUnit property of the input system.

Time Units Options

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

• Frequency

By default, shows rad/TimeUnit where TimeUnit is the
system time units specified in the TimeUnit property of the
input system.

Frequency Units Options

• 'Hz'
• 'rad/s'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'
• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
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Response Plot Unit Conversions
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'

Singular Values • Frequency

By default, shows rad/TimeUnit where TimeUnit is the
system time units specified in the TimeUnit property of the
input system.

Frequency Units Options

• 'Hz'
• 'rad/s'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'
• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'

• Frequency scale is logarithmic or linear.
• Magnitude in decibels or the absolute value using logarithmic

or linear scale
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Response Plot Unit Conversions
Step • Time

By default, shows the system time units specified in the
TimeUnit property of the input system.

Time Units Options

• 'nanoseconds'
• 'microseconds'
• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

Style Pane
Use the Style pane to toggle grid visibility and set font preferences and axes foreground colors for
response plots.

You have the following choices:
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• Grid — Activate grids by default in new plots.
• Fonts — Set the font size, weight (bold), and angle (italic) for fonts used in response plot titles,

X/Y-labels, tick labels, and I/O names. Select font sizes from the menus or type any font-size values
in the fields.

• Colors — Specify the color vector to use for the axes foreground, which includes the X-Y axes, grid
lines, and tick labels. Use a three-element vector to represent red, green, and blue (RGB) values.
Vector element values can range from 0 to 1.

If you do not want to specify RGB values numerically, click the Select button to open the Select
Color dialog box.

Options Pane
The Options pane enables you to customize response characteristics for plots. Each response plot
has its own set of characteristics and optional settings. When you change the value in a field, press
Enter on your keyboard to update the response plot.
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Response Characteristic Options for Response Plots

Plot Customizable Feature
Bode Diagram and Bode Magnitude • Magnitude Response

Select lower magnitude limit.
• Phase Response

By default, plots display exact phase. Check Wrap phase to
wrap the phase into the interval [–180º,180º). To wrap
accumulated phase at a different value, enter the value in
the Branch field. For example, entering 0 causes the plot
to wrap the phase into the interval [0º,360º).

Check Adjust phase offsets to keep phase close to a
particular value, within a range of 0º–360º, at a given
frequency.

• Confidence Region for Identified Models

This option is available with System Identification Toolbox.

Specify number of standard deviations for plotting the
response confidence region.

To see the confidence region, right-click the plot, and select
Characteristics > Confidence Region.

Impulse • Response Characteristics

Show settling time within xx% (specify the percentage).
• Confidence Region for Identified Models

These options are available with System Identification
Toolbox.

Display using zero mean interval: For an identified
model with impulse response y and standard deviation Δy,
plot the uncertainty ±Δy as a function of time (default). If
cleared, y±Δy as a function of time is plotted.

Number of standard deviations for display: Specify
number of standard deviations for plotting the uncertainty.

To see the confidence interval, right-click the plot, and
select Characteristics > Confidence Region.
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Plot Customizable Feature
Nichols Chart • Magnitude Response

Select lower magnitude limit.
• Phase Response

By default, plots display exact phase. Check Wrap phase to
wrap the phase into the interval [–180º,180º). To wrap
accumulated phase at a different value, enter the value in
the Branch field. For example, entering 0 causes the plot
to wrap the phase into the interval [0º,360º).

Check Adjust phase offsets to keep phase close to a
particular value, within a range of 0º–360º, at a given
frequency.

Nyquist Diagram • Confidence Region for Identified Models

These options are available with System Identification
Toolbox.

Number of standard deviations for display: Specify
number of standard deviations for plotting the confidence
ellipses.

Display spacing: Specify the frequency spacing of
confidence ellipses. The default is 5, which means that the
confidence ellipses are shown at every fifth frequency
sample.

To see the confidence ellipses, right-click the plot, and
select Characteristics > Confidence Region.

Pole/Zero Map • Confidence Region for Identified Models

This option is available with System Identification Toolbox.

Specify number of standard deviations for displaying the
confidence region characteristic.

To see the confidence region, right-click the plot, and select
Characteristics > Confidence Region.

Singular Values None
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Plot Customizable Feature
Step • Response Characteristics

Show settling time within xx% (specify the percentage).

Show rise time from xx to yy% (specify the percentages)
• Confidence Region for Identified Models

This option is available with System Identification Toolbox.

Specify number of standard deviations for plotting the
response confidence region.

To see the confidence region, right-click the plot, and select
Characteristics > Confidence Region.

Editing Subplots Using the Property Editor
If you create more than one plot in a single figure window, you can edit each plot individually. For
example, the following code creates a figure with two plots, a step and an impulse response with two
randomly selected systems:

subplot(2,1,1)
step(rss(2,1))
subplot(2,1,2)
impulse(rss(1,1))

After the figure window appears, double-click in the upper (step response) plot to activate the
Property Editor. A set of small squares appear around the step response, indicating that it is the
active plot for the editor. To switch to the lower (impulse response) plot, click once in the impulse
response plot region. The set of squares switches to the impulse response, and the Property Editor
updates as well.

See Also

More About
• “Toolbox Preferences Editor” on page 18-2
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Compute Model Uncertainty
Why Analyze Model Uncertainty?
In addition to estimating model parameters, the toolbox algorithms also estimate variability of the
model parameters that result from random disturbances in the output.

Understanding model variability helps you to understand how different your model parameters would
be if you repeated the estimation using a different data set (with the same input sequence as the
original data set) and the same model structure.

When validating your parametric models, check the uncertainty values. Large uncertainties in the
parameters might be caused by high model orders, inadequate excitation, and poor signal-to-noise
ratio in the data.

Note You can get model uncertainty data for linear parametric black-box models, and both linear and
nonlinear grey-box models. Supported model objects include idproc, idpoly, idss, idtf, idgrey,
idfrd, and idnlgrey.

What Is Model Covariance?
Uncertainty in the model is called model covariance.

When you estimate a model, the covariance matrix of the estimated parameters is stored with the
model. Use getcov to fetch the covariance matrix. Use getpvec to fetch the list of parameters and
their individual uncertainties that have been computed using the covariance matrix. The covariance
matrix is used to compute all uncertainties in model output, Bode plots, residual plots, and pole-zero
plots.

Computing the covariance matrix is based on the assumption that the model structure gives the
correct description of the system dynamics. For models that include a disturbance model H, a correct
uncertainty estimate assumes that the model produces white residuals. To determine whether you
can trust the estimated model uncertainty values, perform residual analysis tests on your model. For
more details about residual analysis, see the topics on the “Residual Analysis” page. If your model
passes residual analysis tests, there is a good chance that the true system lies within the confidence
interval and any parameter uncertainties results from random disturbances in the output.

For output-error models, such as transfer function models, state-space with K=0 and polynomial
models of output-error form, with the noise model H fixed to 1, the covariance matrix computation
does not assume white residuals. Instead, the covariance is estimated based on the estimated color of
the residual correlations. This estimation of the noise color is also performed for state-space models
with K=0, which is equivalent to an output-error model.

Types of Model Uncertainty Information
You can view the following uncertainty information from linear and nonlinear grey-box models:

• Uncertainties of estimated parameters.

Type present(model) at the prompt, where model represents the name of a linear or nonlinear
model.
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• Confidence intervals on the linear model plots, including step-response, impulse-response, Bode,
Nyquist, noise spectrum and pole-zero plots.

Confidence intervals are computed based on the variability in the model parameters. For
information about displaying confidence intervals, see “Definition of Confidence Interval for
Specific Model Plots” on page 17-91.

• Covariance matrix of the estimated parameters in linear models and nonlinear grey-box models
using getcov.

• Estimated standard deviations of polynomial coefficients, poles/zeros, or state-space matrices
using idssdata, tfdata, zpkdata, and polydata.

• Simulated output values for linear models with standard deviations using sim.

Call the sim command with output arguments, where the second output argument is the
estimated standard deviation of each output value. For example, type [ysim,ysimsd] =
sim(model,data), where ysim is the simulated output, ysimsd contains the standard
deviations on the simulated output, and data is the simulation data.

• Perform Monte-Carlo analysis using rsample to generate a random sampling of an identified
model in a given confidence region. An array of identified systems of the same structure as the
input system is returned. The parameters of the returned models are perturbed about their
nominal values in a way that is consistent with the parameter covariance.

• Simulate the effect of parameter uncertainties on a model's response using simsd.

Definition of Confidence Interval for Specific Model Plots
You can display the confidence interval on the following plot types:

Plot Type Confidence Interval Corresponds
to the Range of ...

More Information on Displaying
Confidence Interval

Simulated and
Predicted
Output

Output values with a specific
probability of being the actual output
of the system.

Model Output Plots on page 17-17

Residuals Residual values with a specific
probability of being statistically
insignificant for the system.

Residuals Plots on page 17-41

Impulse and
Step

Response values with a specific
probability of being the actual
response of the system.

Impulse and Step Plots on page 17-49

Frequency
Response

Response values with a specific
probability of being the actual
response of the system.

Frequency Response Plots on page 17-55

Noise
Spectrum

Power-spectrum values with a specific
probability of being the actual noise
spectrum of the system.

Noise Spectrum Plots on page 17-62

Poles and
Zeros

Pole or zero values with a specific
probability of being the actual pole or
zero of the system.

Pole-Zero Plots on page 17-62
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Troubleshooting Model Estimation

About Troubleshooting Models
During validation, models can exhibit undesirable characteristics or a poor fit to the validation data.

Use the tips in these sections to help improve your model performance. Some features, such as low
signal-to-noise ratio, varying system properties, or nonstationary disturbances, can produce data for
which a good model fit is not possible.

Model Order Is Too High or Too Low
A poor fit in the Model Output plot can be the result of an incorrect model order. System
identification is largely a trial-and-error process when selecting model structure and model order.
Ideally, you want the lowest-order model that adequately captures the system dynamics. High-order
models are more expensive to compute and result in greater parameter uncertainty.

Start by estimating the model order as described in “Preliminary Step – Estimating Model Orders and
Input Delays” on page 6-8. Use the suggested order as a starting point to estimate the lowest possible
order with different model structures. After each estimation, monitor the Model Output and Residual
Analysis plots, and then adjust your settings for the next estimation.

When a low-order model fits the validation data poorly, estimate a higher-order model to see if the fit
improves. For example, if the Model Output plot shows that a fourth-order model gives poor results,
estimate an eighth-order model. When a higher-order model improves the fit, you can conclude that
higher-order linear models are potentially sufficient for your application.

Use an independent data set to validate your models. If you use the same data set for both estimation
and validation, the fit always improves as you increase the model order and you risk overfitting.
However, if you use an independent data set to validate your model, the fit eventually deteriorates if
the model orders are too high.

Substantial Noise in the System
Substantial noise in your system can result in a poor model fit. The presence of such noise is
indicated when:

• A state-space model produces a better fit than an ARX model. While a state-space structure has
sufficient flexibility to model noise, an ARX structure is unable to independently model noise and
system dynamics. The following ARX model equation shows that A couples the dynamics and the
noise terms by appearing in the denominator of both:

y = B
Au + 1

Ae

• A residual analysis plot shows significant autocorrelation of residuals at nonzero lags. For more
information about residual analysis, see the topics on the “Residual Analysis” page.

To model noise more carefully, use either an ARMAX or the Box-Jenkins model structure, both of
which model the noise and dynamics terms using different polynomials.
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Unstable Models
Unstable Linear Model

You can test whether a linear model is unstable is by examining the pole-zero plot of the model, which
is described in “Pole and Zero Plots” on page 17-66. The stability threshold for pole values differs for
discrete-time and continuous-time models, as follows:

• For stable continuous-time models, the real part of the pole is less than 0.
• For stable discrete-time models, the magnitude of the pole is less than 1.

Note Linear trends in estimation data can cause the identified linear models to be unstable.
However, detrending the model does not guarantee stability.

If your model is unstable, but you believe that your system is stable, you can.

• Force stability during estimation — Set the Focus estimation option to a value that guarantees a
stable model. This setting can result in reduced model quality.

• Allow for some instability — Set the stability threshold advanced estimation option to allow for a
margin of error:

• For continuous-time models, set the value of Advanced.StabilityThreshold.s. The model
is considered stable if the pole on the far right is to the left of s.

• For discrete-time models, set the value of Advanced.StabilityThreshold.z. The model is
considered stable if all of the poles are inside a circle with a radius of z that is centered at the
origin.

For more information about Focus and Advanced.StabilityThreshold, see the various
commands for creating estimation option sets, such as tfestOptions, ssestOptions,
andprocestOptions.

Unstable Nonlinear Models

To test if a nonlinear model is unstable, plot the simulated model output on top of the validation data.
If the simulated output diverges from measured output, the model is unstable. However, agreement
between model output and measured output does not guarantee stability.

When an Unstable Model Is OK

In some cases, an unstable model is still useful. For example, if your system is unstable without a
controller, you can use your model for control design. In this case, you can import the unstable model
into Simulink or Control System Toolbox products.

Missing Input Variables
If modeling noise and trying different model structures and orders still results in a poor fit, try adding
more inputs that can affect the output. Inputs do not need to be control signals. Any measurable
signal can be considered an input, including measurable disturbances.

Include additional measured signals in your input data, and estimate the model again.
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System Nonlinearities
If a linear model shows a poor fit to the validation data, consider whether nonlinear effects are
present in the system.

You can model the nonlinearities by performing a simple transformation on the input signals to make
the problem linear in the new variables. For example, in a heating process with electrical power as
the driving stimulus, you can multiply voltage and current measurements to create a power input
signal.

If your problem is sufficiently complex and you do not have physical insight into the system, try fitting
nonlinear black-box models to your data, see “About Identified Nonlinear Models” on page 11-2.

Nonlinearity Estimator Produces a Poor Fit
For nonlinear ARX and Hammerstein-Wiener models, the Model Output plot does not show a good fit
when the nonlinearity estimator has incorrect complexity.

Specify the complexity of piece-wise-linear, wavelet, sigmoid, and custom networks using the
NumberOfUnits nonlinear estimator property. A higher number of units indicates a more complex
nonlinearity estimator. When using neural networks, specify the complexity using the parameters of
the network object. For more information, see the Deep Learning Toolbox documentation.

To select the appropriate nonlinearity estimator complexity, first validate the output of a low-
complexity model. Next, increase the model complexity and validate the output again. The model fit
degrades when the nonlinearity estimator becomes too complex. This degradation in performance is
only visible if you use independent estimation and validation data sets

See Also

More About
• “Ways to Validate Models” on page 17-2
• “Preliminary Step – Estimating Model Orders and Input Delays” on page 6-8
• “Pole and Zero Plots” on page 17-66
• “What Is Residual Analysis?” on page 17-40
• “Next Steps After Getting an Accurate Model” on page 17-95
• “Estimate Initial Conditions for Simulating Identified Models” on page 20-26
• “Reproduce Command Line or System Identification App Simulation Results in Simulink” on

page 20-15
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Next Steps After Getting an Accurate Model
For linear parametric models, you can perform the following operations:

• Transform between continuous-time and discrete-time representation.

See “Transforming Between Discrete-Time and Continuous-Time Representations” on page 4-15.
• Transform between linear model representations, such as between polynomial, state-space, and

zero-pole representations.

See “Transforming Between Linear Model Representations” on page 4-29.
• Extract numerical data from transfer functions, pole-zero models, and state-space matrices.

See “Extracting Numerical Model Data” on page 4-12.

For nonlinear black-box models (idnlarx and idnlhw objects), you can compute a linear
approximation of the nonlinear model. See “Linear Approximation of Nonlinear Black-Box Models” on
page 11-48.

System Identification Toolbox models in the MATLAB workspace are immediately available to other
MathWorks® products. However, if you used the System Identification app to estimate models, you
must first export the models to the MATLAB workspace.

Tip To export a model from the app, drag the model icon to the To Workspace rectangle.
Alternatively, right-click the model to open the Data/model Info dialog box. Click Export.

If you have the Control System Toolbox software installed, you can import your linear plant model for
control-system design. For more information, see “Using Identified Models for Control Design
Applications” on page 19-2.

Finally, if you have Simulink software installed, you can exchange data between the System
Identification Toolbox software and the Simulink environment. For more information, see “Simulate
Identified Model in Simulink” on page 20-5.
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Toolbox Preferences Editor

Overview of the Toolbox Preferences Editor
The Toolbox Preferences editor allows you to set plot preferences that will persist from session to
session.

Opening the Toolbox Preferences Editor
To open the Toolbox Preferences editor, enter

identpref

at the MATLAB prompt.

Units Pane

Use the Units pane to set preferences for the following:

• Frequency
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The default auto option uses rad/TimeUnit as the frequency units relative to the system time
units, where TimeUnit is the system time units specified in the TimeUnit property of the system
on frequency-domain plots. For multiple systems with different time units, the units of the first
system is used.

For the frequency axis, you can select logarithmic or linear scales.

Other Frequency Units Options

• 'Hz'
• 'rad/s'
• 'rpm'
• 'kHz'
• 'MHz'
• 'GHz'
• 'rad/nanosecond'
• 'rad/microsecond'
• 'rad/millisecond'
• 'rad/minute'
• 'rad/hour'
• 'rad/day'
• 'rad/week'
• 'rad/month'
• 'rad/year'
• 'cycles/nanosecond'
• 'cycles/microsecond'
• 'cycles/millisecond'
• 'cycles/hour'
• 'cycles/day'
• 'cycles/week'
• 'cycles/month'
• 'cycles/year'

• Magnitude — Decibels (dB) or absolute value (abs)
• Phase — Degrees or radians
• Time

The default auto option uses the time units specified in the TimeUnit property of the system on
the time- and frequency-domain plots. For multiple systems with different time units, the units of
the first system is used.

Other Time Units Options

• 'nanoseconds'
• 'microseconds'
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• 'milliseconds'
• 'seconds'
• 'minutes'
• 'hours'
• 'days'
• 'weeks'
• 'months'
• 'years'

Style Pane
Use the Style pane to toggle grid visibility and set font preferences and axes foreground colors for all
plots you create. This figure shows the Style pane.

You have the following choices:

• Grid — Activate grids by default in new plots.
• Fonts — Set the font size, weight (bold), and angle (italic). Select font sizes from the menus or

type any font-size values in the fields.
• Colors — Specify the color vector to use for the axes foreground, which includes the X-Y axes, grid

lines, and tick labels. Use a three-element vector to represent red, green, and blue (RGB) values.
Vector element values can range from 0 to 1.

If you do not want to specify RGB values numerically, click the Select button to open the Select
Colors dialog box.
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Options Pane
The Options pane has selections for time responses and frequency responses. This figure shows the
Options pane with default settings.

For time response plots, the following options are available:

• Show settling time within xx% — Set the threshold of the settling time calculation to any
percentage from 0 to 100%. The default is 2%.

• Specify rise time from xx% to yy%— The standard definition of rise time is the time it takes the
signal to go from 10% to 90% of the final value. Specify any percentages you like (from 0% to
100%), provided that the first value is smaller than the second.

For frequency response plots, the following options are available:

• Only show magnitude above — Specify a lower limit for magnitude values in response plots so
that you can focus on a region of interest.

• Wrap phase — Wrap the phase into the interval [–180º,180º). To wrap accumulated phase at a
different value, enter the value in the Branch field. For example, entering 0 causes the plot to
wrap the phase into the interval [0º,360º).

SISO Tool Pane
The SISO Tool pane has settings for Control System Designer (requires a Control System Toolbox
license). This figure shows the SISO Tool pane with default settings.
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You can make the following selections:

• Compensator Format — Select the time constant, natural frequency, or zero/pole/gain format.
The time constant format is a factorization of the compensator transfer function of the form

K ×
1 + Tz1s 1 + Tz2s
1 + Tp1s 1 + Tp2s

⋯

where K is compensator DC gain, Tz1, Tz2, ..., are the zero time constants, and Tp1, Tp2, ..., are the
pole time constants.

The natural frequency format is

K ×
1 + s/ωz1 1 + s/ωz2
1 + s/ωp1 1 + s/ωp2

⋯

where K is compensator DC gain, ωz1, and ωz2, ... and ωp1, ωp2, ..., are the natural frequencies of
the zeros and poles, respectively.

The zero/pole/gain format is

K ×
s + z1 s + z2
s + p1 s + p2

where K is the overall compensator gain, and z1, z2, ... and p1, p2, ..., are the zero and pole
locations, respectively.

• Bode Options — By default, the Control System Designer shows the plant and sensor poles and
zeros as blue x's and o's, respectively. Clear this box to eliminate the plant's poles and zeros from
the Bode plot. Note that the compensator poles and zeros (in red) will still appear.
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Control Design Applications

• “Using Identified Models for Control Design Applications” on page 19-2
• “Create and Plot Identified Models Using Control System Toolbox Software” on page 19-5
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Using Identified Models for Control Design Applications

How Control System Toolbox Software Works with Identified Models
System Identification Toolbox software integrates with Control System Toolbox software by providing
a plant for control design.

Control System Toolbox software also provides the Linear System Analyzer to extend System
Identification Toolbox functionality for linear model analysis.

Control System Toolbox software supports only linear models. If you identified a nonlinear plant
model using System Identification Toolbox software, you must linearize it before you can work with
this model in the Control System Toolbox software. For more information, see the linapp, idnlarx/
linearize, or idnlhw/linearize reference page.

Note You can only use the System Identification Toolbox software to linearize nonlinear ARX
(idnlarx) and Hammerstein-Wiener (idnlhw) models. Linearization of nonlinear grey-box
(idnlgrey) models is not supported.

Using balred to Reduce Model Order
In some cases, the order of your identified model might be higher than necessary to capture the
dynamics. If you have the Control System Toolbox software, you can use balred to compute a state-
spate model approximation with a reduced model order.

To learn how you can reduce model order using pole-zero plots, see “Reducing Model Order Using
Pole-Zero Plots” on page 17-68.

Compensator Design Using Control System Toolbox Software
After you estimate a plant model using System Identification Toolbox software, you can use Control
System Toolbox software to design a controller for this plant.

System Identification Toolbox models in the MATLAB workspace are immediately available to Control
System Toolbox commands. However, if you used the System Identification app to estimate models,
you must first export the models to the MATLAB workspace. To export a model from the app, drag the
model icon to the To Workspace rectangle. Alternatively, right-click the icon to open the Data/model
Info dialog box. Click Export to export the model.

Control System Toolbox software provides both the Control System Designer and commands for
working at the command line. You can import linear models directly into Control System Designer
using the following command:

controlSystemDesigner(model)

You can also identify a linear model from measured SISO data and tune a PID controller for the
resulting model in the PID Tuner. You can interactively adjust the identified parameters to obtain an
LTI model whose response fits your response data. The PID Tuner automatically tunes a PID
controller for the identified model. You can then interactively adjust the performance of the tuned
control system, and save the identified plant and tuned controller. To access the PID Tuner, enter
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pidTuner at the MATLAB command line. For more information, see “PID Controller Tuning” (Control
System Toolbox).

Converting Models to LTI Objects
You can convert linear identified models into numeric LTI models (ss, tf, zpk) of Control System
Toolbox software.

The following table summarizes the commands for transforming linear state-space and polynomial
models to an LTI object.

Commands for Converting Models to LTI Objects

Command Description Example
frd Convert to frequency-response

representation.
ss_sys = frd(model)

ss Convert to state-space
representation.

ss_sys = ss(model)

tf Convert to transfer-function form. tf_sys = tf(model)

zpk Convert to zero-pole form. zpk_sys = zpk(model)

The following code converts the noise component of a linear identified model, sys, to a numeric
state-space model:

noise_model_ss = idss(sys,'noise');

To convert both the measured and noise components of a linear identified model, sys, to a numeric
state-space model:

model_ss = idss(sys,'augmented');

For more information about subreferencing the dynamic or the noise model, see “Separation of
Measured and Noise Components of Models” on page 4-33.

Viewing Model Response Using the Linear System Analyzer
What Is the Linear System Analyzer?

If you have the Control System Toolbox software, you can plot models in the Linear System Analyzer
from either the System Identification app or the MATLAB Command Window.

The Linear System Analyzer is a graphical user interface for viewing and manipulating the response
plots of linear models.

Note The Linear System Analyzer does not display model uncertainty.

For more information about working with plots in the Linear System Analyzer, see the “Linear System
Analyzer Overview” (Control System Toolbox).
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Displaying Identified Models in the Linear System Analyzer

When the MATLAB software is installed, the System Identification app contains the To LTI Viewer
rectangle. To plot models in the Linear System Analyzer, do one of the following:

• Drag and drop the corresponding icon to the To LTI Viewer rectangle in the System Identification
app.

• Right-click the icon to open the Data/model Info dialog box. Click Show in LTI Viewer to plot the
model in the Linear System Analyzer.

Alternatively, use the following syntax when working at the command line to view a model in the
Linear System Analyzer:

linearSystemAnalyzer(model)

Combining Model Objects
If you have the Control System Toolbox software, you can combine linear model objects, such as
idtf, idgrey, idpoly, idproc, and idss model objects, similar to the way you combine LTI
objects. The result of these operations is a numeric LTI model that belongs to the Control System
Toolbox software. The only exceptions are the model stacking and model concatenation operations,
which deliver results as identified models.

For example, you can perform the following operations on identified models:

• G1+G2
• G1*G2
• append(G1,G2)
• feedback(G1,G2)

See Also

Related Examples
• “Create and Plot Identified Models Using Control System Toolbox Software” on page 19-5

19 Control Design Applications

19-4



Create and Plot Identified Models Using Control System
Toolbox Software

This example shows how to create and plot models using the System Identification Toolbox software
and Control System Toolbox software. The example requires a Control System Toolbox license.

Construct a random numeric model using the Control System Toolbox software.

rng('default');
sys0 = drss(3,3,2);

rng('default') specifies the setting of the random number generator as its default setting.

sys0 is a third-order numeric state-space model with three outputs and two inputs.

Convert sys0 to an identified state-space model and set its output noise variance.

sys = idss(sys0);
sys.NoiseVariance = 0.1*eye(3);

Generate input data for simulating the output.

u = iddata([],idinput([800 2],'rbs'));

Simulate the model output with added noise.

opt = simOptions('AddNoise',true);
y = sim(sys,u,opt);

opt is an option set specifying simulation options. y is the simulated output for sys0.

Create an input-output ( iddata ) object.

data = [y u];

Estimate the state-space model from the generated data using ssest .

estimated_ss = ssest(data(1:400));

estimated_ss is an identified state-space model.

Convert the identified state-space model to a numeric transfer function.

sys_tf = tf(estimated_ss);

Plot the model output for identified state-space model.

compare(data(401:800),estimated_ss)
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Plot the response of identified model using the Linear System Analyzer.

linearSystemAnalyzer(estimated_ss);
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See Also

More About
• “Using Identified Models for Control Design Applications” on page 19-2
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System Identification Toolbox Blocks

• “Using System Identification Toolbox Blocks in Simulink Models” on page 20-2
• “Preparing Data” on page 20-3
• “Identifying Linear Models” on page 20-4
• “Simulate Identified Model in Simulink” on page 20-5
• “Reproduce Command Line or System Identification App Simulation Results in Simulink”

on page 20-15
• “Resolve Fit Value Differences Between Model Identification and compare Command”

on page 20-22
• “Estimate Initial Conditions for Simulating Identified Models” on page 20-26
• “Apply Initial Conditions when Simulating Identified Linear Models” on page 20-45
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Using System Identification Toolbox Blocks in Simulink Models
System Identification Toolbox software provides blocks for sharing information between the MATLAB
and Simulink environments.

You can use the System Identification Toolbox block library to perform the following tasks:

• Stream time-domain data source (iddata object) into a Simulink model.
• Export data from a simulation in Simulink software as a System Identification Toolbox data object

(iddata object).
• Import estimated models into a Simulink model, and simulate the models with or without noise.

The model you import might be a component of a larger system modeled in Simulink. For example,
if you identified a plant model using the System Identification Toolbox software, you can import
this plant into a Simulink model for control design.

• Estimate parameters of linear polynomial models during simulation from single-output data.

To open the System Identification Toolbox block library, enter slLibraryBrowser at the MATLAB
prompt. In the Library Browser, select System Identification Toolbox.

You can also open the System Identification Toolbox block library directly by typing the following
command at the MATLAB prompt:

slident

To get help on a block, right-click the block in the Library Browser, and select Help.

See Also

More About
• “Simulate Identified Model in Simulink” on page 20-5
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Preparing Data
The following table summarizes the blocks you use to transfer data between the MATLAB and
Simulink environments.

After you add a block to the Simulink model, double-click the block to specify block parameters. For
an example of bringing data into a Simulink model, see the tutorial on estimating process models in
the System Identification Toolbox Getting Started Guide.

Block Description
Iddata Sink Export input and output signals to the MATLAB workspace as an

iddata object.
Iddata Source Import iddata object from the MATLAB workspace.

Input and output ports of the block correspond to input and
output signals of the data. These inputs and outputs provide
signals to blocks that are connected to this data block.

For information about configuring each block, see the corresponding reference pages.
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Identifying Linear Models
The following table summarizes the blocks you use to recursively estimate model parameters in a
Simulink model during simulation and export the results to the MATLAB environment.

After you add a block to the model, double-click the block to specify block parameters.

Block Description
Recursive Least Squares
Estimator

Estimate model coefficients using recursive least squares (RLS)
algorithm

Recursive Polynomial Model
Estimator

Estimate input-output and time-series model coefficients

Kalman Filter Estimate states of discrete-time or continuous-time linear system
Model Type Converter Convert polynomial model coefficients to state-space model

matrices

For information about configuring each block, see the corresponding reference pages.
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Simulate Identified Model in Simulink
After estimating a model at the command line or in the System Identification app, you can import
the model from the MATLAB workspace into Simulink using model blocks. You can then simulate the
model output for the initial conditions and the model inputs that you specify.

Add model simulation blocks to your Simulink model from the System Identification Toolbox block
library when you want to:

• Represent the dynamics of a physical component in a Simulink model using a data-based model
• Replace a complex Simulink subsystem with a simpler data-based model

Summary of Simulation Blocks
The following model blocks are available in the System Identification Toolbox library in Simulink.

Block Description
Idmodel Simulate a linear identified model in Simulink software. The

model can be a process (idproc), linear polynomial (idpoly),
state-space (idss), grey-box (idgrey), or transfer function

(idtf) model.
Nonlinear ARX Model Simulate idnlarx model in Simulink.
Hammerstein-Wiener Model Simulate idnlhw model in Simulink.
Nonlinear Grey-Box Model Simulate nonlinear ODE (idnlgrey model object) in Simulink.

In any of these model blocks, you specify the model-variable name of the identified model you want to
import. You also specify initial conditions for simulation (see “Specifying Initial Conditions for
Simulation” on page 20-5.) You can specify time-domain input data by:

• Using a From Workspace block, if one sample of input data is a scalar or vector
• Using an Iddata Source block, if the input data is in an iddata object

For detailed information about how to configure the blocks, see the corresponding block reference
pages.

Specifying Initial Conditions for Simulation
When your model is not at rest at the start of the simulation, you must specify the initial conditions.
The model may not start at rest, for example, when you are:

• Comparing your model response with measured output data or a previous simulation
• Continuing from a previous simulation
• Initiating your simulation during the steady-state phase
• Initiating your simulation from a predetermined operating condition

If you do not specify initial conditions, you introduce an error source that impacts the apparent
performance of your model. This error may be transient; in a model that is lightly damped or includes
an integral component, the error may not completely die out.
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Specifying initial conditions requires two steps:

1 Determine what the initial conditions should be (see “Estimate Initial Conditions for Simulating
Identified Models” on page 20-26)

2 Specify these values as parameters in the model block.

If you have a linear model that is not idss or idgrey, you also have to convert the model into state-
space form before the first step.

If you have already performed a simulation using compare, sim, or the System Identification app,
and you want to check out your Simulink implementation by precisely reproducing your earlier
results, see “Reproduce Command Line or System Identification App Simulation Results in Simulink”
on page 20-15.

Specifying Initial States of Linear Models
To specify initial states for state-space linear models (idss, idgrey), use the Initial states (state
space only: idss, idgrey) parameter in the Idmodel block. Initial states must be a vector of length
equal to the order of the model.

Other types of linear model, such as transfer-function form models (idtf), do not use an explicit state
representation. The model blocks therefore have no input for initial state specification; the software
assumes initial conditions of zero. To specify initial conditions for one of these models, first convert
your model m into state-space form mss at the command line.

mss = idss(m);

Then use mss in the Identified modelparameter of the Idmodel block. You can now specify your
initial states as described in the previous paragraph for state-space models.

Simulate Identified Linear Model in Simulink with Initial Conditions

This example shows how to set the initial states for simulating a linear model such that the simulation
provides a best fit to measured input-output data.

You first estimate a model M using a multiple-experiment data set Z, which contains data from three
experiments - z1, z2, and z3.

Load the multi-experiment data.

load(fullfile(matlabroot,'toolbox','ident','iddemos',...
'data', 'twobodiesdata'))

Create an iddata object to store the multi-experiment data. Set 'Tstart' to 0 so that the data start
time matches the Simulink start time 0f 0 s.

z1=iddata(y1,u1,0.005,'Tstart',0);
z2=iddata(y2,u2,0.005,'Tstart',0);
z3=iddata(y3,u3,0.005,'Tstart',0);
Z = merge(z1,z2,z3);

Estimate a 5th order state-space model.

[M,x0] = n4sid(Z,5);
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To simulate the model using input u2, use x0(:,2) as the initial states. x0(:,2) is computed to
maximize the fit between the measured output y2 and the simulated response of M.

Extract the initial states that maximize the fit to the corresponding output y2, and simulate the model
in Simulink using the second experiment, z2.

X0est = x0(:,2);

Open a preconfigured Simulink model.

mdl = 'ex_idmodel_block';
open_system(mdl)

The model uses the Iddata Source, Idmodel, and Scope blocks. The following block parameters have
been preconfigured to specify the simulation data, estimated model, and initial conditions.

Block parameters of Iddata Source block:

• IDDATA Object - z2

Block parameters of Idmodel block:

• Identified Model - M
• Initial states - X0est

Simulate the model for two seconds, and compare the simulated output ysim with the measured
output ymeasured using the Scope block.

simOut = sim(mdl);
open_system([mdl '/Scope'])
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Compare this result with the result you would have gotten without setting initial conditions. You can
nullify X0 in the Initial States field of the Simulink model block by replacing the X0est variable with
0. You can also nullify X0est itself in command line, as shown here.

X0est = 0*X0est;

Run the simulation, and view the new results.

simOut = sim(mdl);
open_system([mdl '/Scope'])

20 System Identification Toolbox Blocks

20-8



In this plot, the simulated output has a significant transient at the start, but this transient settles out
in time.

Specifying Initial States of Hammerstein-Wiener Models
The states of a Hammerstein-Wiener model correspond to the states of the embedded linear (idpoly
or idss) model. For more information about the states of a Hammerstein-Wiener model, see the
idnlhw reference page.

The default initial state for simulating a Hammerstein-Wiener model is 0. For more information about
specifying initial conditions for simulation, see the IDNLHW Model reference page.

Simulate Hammerstein-Wiener Model in Simulink

Compare the simulated output of a Hammerstein-Wiener Model block to the measured output of a
system. You improve the agreement between the measured and simulated responses by estimating
initial state values.

Load the sample data.

load twotankdata

Create an iddata object from the sample data. Set 'Tstart' to 0 so that the data start time
matches the Simulink start time 0f 0 s.

z1 = iddata(y,u,0.2,'Tstart',0,'Name','Two tank system');

Estimate a Hammerstein-Wiener model using the data.

mw1 = nlhw(z1,[1 5 3],pwlinear,pwlinear);

You can now simulate the output of the estimated model in Simulink using the input data in z1. To do
so, open a preconfigured Simulink model.

model = 'ex_idnlhw_block';
open_system(model);

The model uses the Iddata Source, Hammerstein-Wiener Model, and Scope blocks. The following
block parameters have been preconfigured to specify the estimation data, estimated model, and
initial conditions:

Block parameters of Iddata Source block:

• IDDATA Object - z1

Block parameters of Hammerstein-Wiener Model block:
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• Model - mw1
• Initial conditions - Zero (default)

Run the simulation.

View the difference between measured output and model output by using the Scope block.

simOut = sim(model);
open_system([model '/Scope'])

To improve the agreement between the measured and simulated responses, estimate an initial state
vector for the model from the estimation data z1, using findstates. Specify the maximum number
of iterations for estimation as 100. Specify the prediction horizon as Inf, so that the algorithm
computes the initial states that minimize the simulation error.

opt = findstatesOptions;
opt.SearchOptions.MaxIterations = 100;
x0 = findstates(mw1,z1,Inf,opt);

Set the Initial conditions block parameter value of the Hammerstein-Wiener Model block to State
Values. The default initial states are x0.
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set_param([model '/Hammerstein-Wiener Model'],'IC','State values');

Run the simulation again, and view the difference between measured output and model output in the
Scope block. The difference between the measured and simulated responses is now reduced.

simOut = sim(model);

Specifying Initial States of Nonlinear ARX Models
The states of a nonlinear ARX model correspond to the dynamic elements of the nonlinear ARX model
structure, which are the model regressors. Regressors can be the delayed input/output variables
(standard regressors) or user-defined transformations of delayed input/output variables (custom
regressors). For more information about the states of a nonlinear ARX model, see the idnlarx
reference page.

For simulating nonlinear ARX models, you can specify the initial conditions as input/output values, or
as a vector. For more information about specifying initial conditions for simulation, see the IDNLARX
Model reference page.
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Simulate Nonlinear ARX Model in Simulink

This example shows how to compare the simulated output of a Nonlinear ARX Model block to the
measured output of a system. You improve the agreement between the measured and simulated
responses by estimating initial state values.

Load the sample data and create an iddata object. Set 'Tstart' to 0 so that the data start time
matches the Simulink start time 0f 0 s.

load twotankdata
z = iddata(y,u,0.2,'Tstart',0,'Name','Two tank system');
z1 = z(1:1000);

Estimate a nonlinear ARX model.

mnlarx1 = nlarx(z1,[5 1 3],wavenet('NumberOfUnits',8));

You can now simulate the output of the estimated model in Simulink using the input data in z1. To do
so, open a preconfigured Simulink model.

model = 'ex_idnlarx_block';
open_system(model);

The model uses the Iddata Source, Nonlinear ARX Model, and Scope blocks. The following block
parameters have been preconfigured to specify the estimation data, estimated model, and input and
output levels:

Block parameters of Iddata Source block:

• IDDATA Object - z1

Block parameters of Nonlinear ARX Model block:

• Model - mnlarx1
• Initial conditions - Input and output values (default)
• Input level - 10
• Output level - 0.1

Run the simulation.

View the difference between measured output and model output by using the Scope block.

simOut = sim(model);
open_system([model '/Scope'])
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To improve the agreement between the measured and simulated responses, estimate an initial state
vector for the model from the estimation data, z1.

x0 = findstates(mnlarx1,z1,Inf);

Set the Initial Conditions block parameter value of the Nonlinear ARX Model block to State
Values. Specify initial states as x0.

set_param([model '/Nonlinear ARX Model'],'ICspec','State values','X0','x0');

Run the simulation again, and view the difference between measured output and model output in the
Scope block. The difference between the measured and simulated responses is now reduced.

simOut = sim(model);
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See Also
IDNLARX Model | IDNLHW Model | Iddata Sink | Iddata Source | Idmodel

More About
• “Simulate and Predict Identified Model Output” on page 17-6
• “Estimate Initial Conditions for Simulating Identified Models” on page 20-26
• “Reproduce Command Line or System Identification App Simulation Results in Simulink” on

page 20-15
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Reproduce Command Line or System Identification App
Simulation Results in Simulink

Once you identify a model, you can simulate it at the command line, in the System Identification
app, or in Simulink. If you start with one simulation method, and migrate to a second method, you
may find that the results do not precisely match. This mismatch does not mean that one of the
simulations is implemented incorrectly. Each method uses a unique simulation algorithm, and yields
results with small numeric differences.

Generally, command-line simulation functions such as compare and sim,as well as the System
Identification app, use similar default settings and solvers. Simulink uses somewhat different
default settings and a different solver. If you want to validate your Simulink implementation against
command-line or app simulation results, you must ensure that your Simulink settings are consistent
with your command-line or app simulation settings. The following paragraphs list these settings in
order of decreasing significance.

Initial Conditions
The most significant source of variation when trying to reproduce results is usually the initial
conditions. The initial conditions that you specify for simulation in Simulink blocks must match the
initial conditions used by compare, sim, or the System Identification app. You can determine the
initial conditions returned in the earlier simulations. Or, if you are simulating against measurement
data, you can estimate a new set of initial conditions that best match that data. Then, apply those
conditions to any simulation methods that you use. For more information on estimating initial
conditions, see “Estimate Initial Conditions for Simulating Identified Models” on page 20-26.

Once you have determined the initial conditions x0 to use for a model m and a data set z, implement
them in your simulation tool.

• For compare or sim, use compareOptions or simOptions.
• For Simulink, use the Idmodel, Nonlinear ARX Model, or Hammerstein-Wiener Model block,

specifying m for the model and x0 for the initial states. With Idmodel structures, you can specify
initial states only for idss and idgrey models. If your linear model is of any other type, convert it
first to idss. See “Simulate Identified Model in Simulink” on page 20-5 or the corresponding
block reference pages.

• For the System Identification app, you cannot specify initial conditions other than zero. You can
specify only the method of computing them.

Start Time of Input Data
In Simulink, the simulation default start time is zero, while in the app or command line the default
start time is the sample time of the data.

Before exporting an iddata object for simulation in Simulink, set the object Tstart property to
zero. Then export the object to Simulink using an Iddata Source block.

Discretization of Continuous-Time Data
Simulink software assumes a first-order-hold interpolation on input data.

 Reproduce Command Line or System Identification App Simulation Results in Simulink

20-15



When using compare, sim, or the app, set the InterSample property of your iddata object to
'foh'.

Solvers for Continuous-Time Models
The compare command and the app simulate a continuous-time model by first discretizing the model
using c2d and then propagating the difference equations. Simulink defaults to a variable-step true
ODE solver. To better match the difference-equation propagation, set the solver in Simulink to a fixed-
step solver such as ode5.

Match Output of sim Command and Nonlinear ARX Model Block
Reproduce command-line sim results for an estimated nonlinear system in Simulink. When you have
an estimated system model, you can simulate it either with the command-line sim command or with
Simulink. The two outputs do not match precisely unless you base both simulations on the same
initial conditions. You can achieve this match by estimating the initial conditions in your MATLAB
model and applying both in the sim command and in your Simulink model.

Since you are directly comparing the sim and Simulink results, you also need to synchronize the
timestamps of the first data points by setting the first time stamp in the data, Tstart to 0. You set
this time because, by default, command-line simulation assigns the sample time to the first
timestamp, while Simulink assigns a timestamp of 0 seconds.

Load the estimation data you are using to identify a nonlinear ARX model. Create an iddata data
object from the data. Specify the sample time as 0.2 seconds, and Tstart as 0 seconds.

load twotankdata
z = iddata(y,u,0.2,'Tstart',0);

Use the first 1000 data points to estimate a nonlinear ARX model mw1 with orders [5 1 3] and wavelet
network nonlinearity.

z1 = z(1:1000);
mw1 = nlarx(z1,[5 1 3],wavenet);

To initialize your simulated response consistently with the measured data, estimate an initial state
vector x0 from the estimation data z1 using the findstates function. The third argument for
findstates in this example, Inf , sets the prediction horizon to infinity in order to minimize the
simulation error.

x0 = findstates(mw1,z1,Inf);

Simulate the model mw1 output using x0 and the first 50 seconds (250 samples) of input data.

opt = simOptions('InitialCondition',x0);
data_sim = sim(mw1,z1(1:251),opt);

Now simulate the output of mw1 in Simulink using a Nonlinear ARX Model block, and specify the
same initial conditions in the block. The Simulink model ex_idnlarx_block_match_sim is
preconfigured to specify the estimation data, nonlinear ARX model, initial conditions x0, and a
simulation time of 50 seconds.

Open the Simulink model.
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model = 'ex_idnlarx_block_match_sim';
open_system(model);

Simulate the nonlinear ARX model output for 50 seconds.

sim(model);

The IDDATA Sink block outputs the simulated output, data, to the MATLAB® workspace.

Plot and compare the simulated outputs you obtained using the sim command and Nonlinear ARX
block.

figure
plot(data_sim.SamplingInstants,data_sim.OutputData,'b*',...
    data.SamplingInstants,data.OutputData,'-r')
xlabel('Time(sec)');
ylabel('Simulated output');
legend('Output of sim command','Output of Nonlinear ARX block','location','southeast')
title('Estimated Initial Conditions for Simulink')
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The simulated outputs are the same because you specified the same initial condition when using sim
and the Nonlinear ARX Model block.

If you want to see what the comparison would look like without using the same initial conditions, you
can rerun the Simulink version with no initial conditions set.

Nullify initial-condition vector x0, and simulate for 50 seconds as before. This null setting of x0 is
equivalent to the Simulink initial conditions default.

x0 = [0;0;0;0;0;0;0;0];
sim(model);

Plot the difference between the command-line and Simulink methods for this case.

figure
plot(data_sim.SamplingInstants,data_sim.OutputData,'b*',...
    data.SamplingInstants,data.OutputData,'-r')
xlabel('Time(sec)');
ylabel('Simulated output');
legend('Output of sim command','Output of Nonlinear ARX block','location','southeast')
title('Default Initial Conditions for Simulink')
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The Simulink version starts at a different point than the sim version, but the two versions eventually
converge. The sensitivity to initial conditions is important for verifying reproducibility of the model,
but is usually a transient effect.

Match Output of compare Command and Nonlinear ARX Model Block
In this example, you first use the compare command to match the simulated output of a nonlinear
ARX model to measured data. You then reproduce the simulated output using a Nonlinear ARX Model
block.

Load estimation data to estimate a nonlinear ARX model. Create an iddata object from the data.
Specify the sample time as 0.2 seconds and the start time of the data as 0 seconds.

load twotankdata
z = iddata(y,u,0.2,'Tstart',0);

Use the first 1000 data points to estimate a nonlinear ARX model mw1 with orders [5 1 3] and wavelet
network nonlinearity.

z1 = z(1:1000);
mw1 = nlarx(z1,[5 1 3],wavenet);

Use the compare command to match the simulated response of mw1 to the measured output data in
z1.

data_compare = compare(mw1,z1);
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The compare function uses the first nx samples of the input-output data as past data, where nx is the
largest regressor delay in the model. compare uses this past data to compute the initial states, and
then simulates the model output for the remaining nx+1:end input data.

To reproduce this result in Simulink, compute the initial state values used by compare, and specify
the values in the Nonlinear ARX Model block. First compute the largest regressor delay in the model.
Use this delay to compute the past data for initial condition estimation.

nx = max(getDelayInfo(mw1));
past_data = z1(1:nx);

Use data2state to get state values using the past data.

x0 = data2state(mw1,z1(1:nx));

Now simulate the output of mw1 in Simulink using a Nonlinear ARX Model block, and specify x0 as
the initial conditions in the block. Use the remaining nx+1:end data for simulation.

zz = z1(nx+1:end);
zz.Tstart = 0;

The Simulink model ex_idnlarx_block_match_compare is preconfigured to specify the estimation
data, nonlinear ARX model, and initial conditions.

Open the Simulink model.

model = 'ex_idnlarx_block_match_compare';
open_system(model);

Simulate the nonlinear ARX model output for 200 seconds.

sim(model);

The IDDATA Sink block outputs the simulated output, data, to the MATLAB® workspace.

Compare the simulated outputs you obtained using the compare command and Nonlinear ARX block.
To do so, plot the simulated outputs.

To compare the output of compare to the output of the Nonlinear ARX Model block, discard the first
nx samples of data_compare.

data_compare = data_compare(nx+1:end);
data.Tstart=1;
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plot(data_compare,data,'r--')
xlabel('Time(sec)');
legend('compare','Nonlinear ARX Model block')

The simulated outputs are the same because you specified the same initial condition when using
compare and the Nonlinear ARX Model block.

See Also
Hammerstein-Wiener Model | Nonlinear ARX Model | Nonlinear Grey-Box Model | compare | sim

More About
• “Simulate Identified Model in Simulink” on page 20-5
• “Estimate Initial Conditions for Simulating Identified Models” on page 20-26
• “Resolve Fit Value Differences Between Model Identification and compare Command” on page

20-22
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Resolve Fit Value Differences Between Model Identification and
compare Command

This example shows how NRMSE fit values computed by model identification functions and by the
compare function can differ because of differences in initial conditions and prediction horizon
settings.

When you identify a model, the model identification algorithm returns a value for the fit percentage to
the measurement data you used. If you then use compare to plot the model simulation results against
the measured data, fit results are not always identical. This difference is because:

• The model-identification algorithm and the compare algorithm use different methods to estimate
initial conditions.

• The model-identification algorithm uses a default of one-step prediction focus, but compare
uses a default of Inf — equivalent to a simulation focus. See “Simulate and Predict Identified
Model Output” on page 17-6.

These differences are generally smalI, and they should not impact your model selection and validation
workflow. If you do want to reproduce the estimation fit results precisely, you must reconcile the
prediction horizon and initial condition settings used in compare with the values used during model
estimation.

Load the data, and estimate a three-state state-space model.

load iddata1 z1;
sys = ssest(z1,3);

Estimate a state-space model from the measured data.

Allow ssest to use its default 'Focus' setting of 'prediction', and its default 'InitialState'
estimation setting of 'auto'. The 'auto' setting causes ssest to select:

• 'zero' if the initial prediction error is not significantly higher than an estimation-based error, or
if the system is FRD

• 'estimate' for most single-experiment data sets, if 'zero' is not acceptable
• 'backcast' for multi-experiment data sets, if 'zero' is not acceptable

For more information, see ssestOptions.

You can retrieve the automatically selected initial-state option, the initial state vector, and the
NRMSE fit percentage from the estimation report for sys.

sys_is = sys.Report.InitialState

sys_is = 
'zero'

sys_x0 = sys.Report.Parameters.X0

sys_x0 = 3×1

     0
     0
     0
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sys_fit = sys.Report.Fit.FitPercent

sys_fit = 76.4001

ssest selected 'zero', rather than estimating the initial states, indicating that the contribution of
the initial states to prediction error is small.

Use compare to simulate the model and plot the results against the measured data. For this case,
allow compare to use its own method for estimating initial conditions and its default of Inf for the
prediction horizon.

figure
compare(z1,sys)

The NRMSE fit percentage computed by compare is lower than the fit that ssest computed. This
lower value is primarily because of the mismatch between prediction horizons for ssest (default of
1) and compare (default of Inf).

Rerun compare using an argument of 1 for the prediction horizon.

figure
compare(z1,sys,1)
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The change to the prediction horizon resolved most of the discrepancy between fit values. Now the
compare fit exceeds the ssest fit. This higher value is because ssest set initial states to 0, while
compare estimated initial states. You can investigate how far apart the initial-state vectors are by
rerunning compare with output arguments.

[y1,fit1,x0c] = compare(z1,sys,1);
x0c

x0c = 3×1

   -0.0063
   -0.0012
    0.0180

x0c is small, but not zero like sys_x0. To reproduce the ssest initial conditions in compare,
directly set the 'InitialCondition' option to sys_x0. Then run compare using the updated
option set.

compareOpt = compareOptions('InitialCondition',sys_x0);
figure
compare(z1,sys,1,compareOpt)
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The fit result now matches the fit result from the original estimation.

This method confirms that the ssest algorithm and the compare algorithm yield the same results
with the same initial-condition and prediction-horizon settings.

This example deals only with reproducing results when you want to confirm agreement between the
estimation algorithm and the compare algorithm NRMSE fit values as they relate to the original
estimation data. However, when you use compare to validate your model against validation data, or
to compare the goodness of multiple candidate models, use the compare defaults for
'InitialCondition' and prediction horizon as a general rule.

See Also
compare

Related Examples
• “Simulate and Predict Identified Model Output” on page 17-6
• “Estimate Initial Conditions for Simulating Identified Models” on page 20-26
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Estimate Initial Conditions for Simulating Identified Models
When you simulate a dynamic system that does not start from rest, you must initialize that simulation
to match the starting conditions. For example, you may be comparing your simulated response to
measured data, or to a previous simulation or computation. You might want to start your simulation at
a steady-state condition, or continue a simulation from a previous simulation.

Summary of Initial-Condition Estimation Approaches
System Identification Toolbox provides multiple techniques for determining initial conditions (ICs) to
use. These techniques include using:

• Model identification results
• Current or past input/output data measurements
• State information from previous simulations

The following table summarizes what approaches are available and when to use them. For
conciseness, this table uses the term "simulating" broadly to mean "simulating or predicting." For
more information, see “Simulate and Predict Identified Model Output” on page 17-6.
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Approaches for Estimating Initial Conditions

When to Use Approach Method Summary
You are simulating an
idss,idtf, idproc, idpoly,
or idgrey model response
using the same input data with
which you identified your model.

Extract ICs from model
identification results (returned
values or estimation report).
Estimation returns IC
information in one of the
following forms.

• An initial state vector (idss
and idgrey models)

• An initialCondition
object (idtf, idproc, and
idpoly models)

See “Estimate Initial Conditions
from Measured Data” on page
20-29.

[sys,x0est] =
ssest(z,__)

[sys,x0est] =
greyest(z,__)

x0est =
sys.Report.Parameters.X0

[sys,icest] =
tfest(z,__)

[sys,~,icest] =
procest(z,__)

[sys,icest] =
idpoly(z,__)

Examples:

“Resolve Fit Value Differences
Between Model Identification
and compare Command” on
page 20-22

“Apply Initial Conditions when
Simulating Identified Linear
Models” on page 20-45

You want to reproduce the
results generated by compare
(or generated by the Model
Output plot in the app).

Use returned ICs from
compare.

See “Estimate Initial Conditions
from Measured Data” on page
20-29.

[y,fit,x0] =
compare(sys,z)

[y,fit,ic] =
compare(sys,z)

Examples:

“Match Output of compare
Command and Nonlinear ARX
Model Block” on page 20-19

“Apply Initial Conditions when
Simulating Identified Linear
Models” on page 20-45
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When to Use Approach Method Summary
You are simulating model
response to a given input signal,
and want to start the simulation
at a point that leads to the
closest match to a given output
signal.

Use compare to return ICs for
idss, idtf, idproc, idpoly,
or idgrey models.

Use findstates to return the
initial state vector for idss
models only.

If the original model is idtf,
idproc, or idpoly, you can
use findstates by first
converting the model to state-
space form using idss. See
“Estimate Initial Conditions for
Simulating Linear Models” on
page 20-30.

See “Estimate Initial Conditions
from Measured Data” on page
20-29.

[y,fit,x0] =
compare(sys,z)

[y,fit,ic] =
compare(sys,z)

x0 =
findstates(sys_ss,z)

Examples:

“Apply Initial Conditions when
Simulating Identified Linear
Models” on page 20-45

“Estimate Initial Conditions for
Linear Model Using Measured
Data” on page 20-30

You are continuing a simulation,
such as for online processing.
You are using a split data set,
such as for nlarx model when
findstates is too
computationally expensive.

data2state
If original model is idtf,
idproc, or idpoly, convert to
state-space form first using
idss.
You can also use data2state
implicitly by specifying your
past data as a proxy for initial
conditions when using sim or
predict with any dynamic
model.
For more information, see
“Estimate Initial Conditions
from Measured Data” on page
20-29.

sys_ss = idss(sys)
x0 = data2state(sys,z_p)
or
IO = struct
('Input',zp.InputData,
'Output',zp.OutputData);
opt = simOptions
('InitialCondition',IO)
or
opt = predictOptions
('InitialCondition',IO).
examples: “Estimate Initial
Conditions for a Nonlinear ARX
Model” on page 20-40,
“Understand Use of Historical
Data for Model Simulation” on
page 20-32

You are working with a
continuing simulation, and want
to base initial conditions for the
current simulation segment on
the previous segment.
You intend to start your main
simulation in steady state, and
you want to have a prequel
which simulates the run-up to
steady state from rest.

Use state information from
previous simulation or
presimulation.
If original model is idtf,
idproc, or idpoly, convert to
state-space form first using
idss.
For more information, see “Use
Initial Conditions from Past
State Information” on page 20-
30.

sys_ss = idss(sys)
x0 = x(end) from
[y,y_sd,x] =
sim(sys_ss,z_p)
example: “Continue Simulation
of an Identified Model using
Past States” on page 20-33
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Initial-Condition Estimation Techniques
The preceding table calls out various techniques for initial-condition estimation. The following
sections summarize these techniques by the estimation data source.

Estimate Initial Conditions from Measured Data

Estimate the initial conditions from the measurement data from which you are getting your
simulation inputs. Techniques include the following.

• Extract initial conditions from model-identification results, such as from the identification report
for your model or as returned values from compare. X0 represents an initial state vector and IC
represents an initialCondition object. For examples, see “Resolve Fit Value Differences
Between Model Identification and compare Command” on page 20-22, “Match Output of compare
Command and Nonlinear ARX Model Block” on page 20-19, and “Apply Initial Conditions when
Simulating Identified Linear Models” on page 20-45.

• Estimate initial conditions using measured input/output data, using the function findstates to
estimate the initial states consistent with the data set. For an example, see “Estimate Initial
Conditions for Linear Model Using Measured Data” on page 20-30.

Estimate Initial Conditions from Past Measurement Data

Estimate the initial conditions from the measurement data immediately preceding your simulation
start. Techniques include the following.

• Using the function data2state to estimate that data set end state. The past end state then
becomes the initial state for follow-on simulation. For an example, see “Estimate Initial Conditions
for a Nonlinear ARX Model” on page 20-40.

• Using your past data as a proxy for initial conditions when using sim or predict. When you run
your simulation, the model internally calls data2state for you. For an example, see “Understand
Use of Historical Data for Model Simulation” on page 20-32.

• Splitting the data set you are using into two parts. Make the first part just large enough to allow
data2state to calculate an accurate end state. This split-data approach can be much less
computationally intensive than using findstates on the full data set, especially for nonlinear
ARX models. For an example, see “Estimate Initial Conditions for a Nonlinear ARX Model” on page
20-40.
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Use Initial Conditions from Past State Information

Use state information from previous simulations or presimulations. If no previous simulation is
available, you can presimulate from rest or a known initial condition up to the point of your
simulation start. The end states of the past or presimulation are the starting states for the simulation
you want to perform. For an example, see “Continue Simulation of an Identified Model using Past
States” on page 20-33.

Estimate Initial Conditions for Simulating Linear Models
The findstates and data2state functions are the most general tools for determining initial or end
states from any measurements of input/output data. However, to use these functions, you must have a
model structure that includes explicit state representation. Linear models other than idss and
idgrey do not use explicit states. To find the equivalent initial states, you can convert these models
to idss models and find the initial states from the idss versions. As an alternative to findstates,
you can also use compare to obtain initial conditions without converting your models into state-space
form. For these models, compare returns an initialCondition object that contains information on
the model free response, in state-space form, and the corresponding initial states.

After you estimate the initial conditions, you can incorporate them into your command-line simulation
syntax, your Simulink model, or the System Identification app.

The following examples illustrate initial-condition estimation for linear models. The first example uses
findstates and compare. The second and third examples use historical data. That is, the examples
determine initial conditions from the data immediately preceding the simulation start time.

Estimate Initial Conditions for Linear Model Using Measured Data

Use different methods to obtain initial conditions for a linear model and compare the results.

Estimate a transfer function for measured data. Return the initial conditions in ic.

load iddata1 z1;
[sys,ic] = tfest(z1,3);
ic

ic = 
  initialCondition with properties:

     A: [3x3 double]
    X0: [3x1 double]
     C: [0.2303 5.9117 2.2283]
    Ts: 0

ic.X0
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ans = 3×1

   -1.7569
    2.6195
   -6.5177

sys is a continuous-time identified transfer function (idtf) model. ic is an initialCondition
object. An initialCondition object represents the free response of the system in state-space form.
The object includes the converted A and C state-space matrices that correspond to sys and the
estimated initial state vector X0.

You can also use findstates to find initial conditions for linear models, but only if they are in idss
or idgrey form.

Convert sys to state-space form.

sys_ss = idss(sys);

Use findstates to estimate the initial states.

X0 = findstates(sys_ss,z1)

X0 = 3×1

   -1.7569
    2.6195
   -6.5177

Now use compare to estimate the initial states, using the original transfer function model.

[y_tf,fit,ic2] = compare(z1,sys);
ic2

ic2 = 
  initialCondition with properties:

     A: [3x3 double]
    X0: [3x1 double]
     C: [0.2303 5.9117 2.2283]
    Ts: 0

ic2.X0

ans = 3×1

   -1.7569
    2.6195
   -6.5177

The initial state vectors are identical in all three cases.
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Understand Use of Historical Data for Model Simulation

Use historical input-output data as a proxy for initial conditions when simulating your model. You first
simulate using the sim command and specify the historical data using the simOptions option set.
You then reproduce the simulated output by manually mapping the historical data to initial states.

Load a two-input, one-output data set.

load iddata7 z7

Identify a fifth-order state-space model using the data.

sys = n4sid(z7,5);

Split the data set into two parts.

zA = z7(1:15);
zB = z7(16:end);

Simulate the model using the input signal in zB.

uSim = zB;

Simulation requires initial conditions. The signal values in zA are the historical data, that is, they are
the input and output values for the time immediately preceding data in zB. Use zA as a proxy for the
required initial conditions.

IO = struct('Input',zA.InputData,'Output',zA.OutputData);
opt = simOptions('InitialCondition',IO);

Simulate the model.

ysim = sim(sys,uSim,opt);

Now reproduce the output by manually mapping the historical data to initial states of sys. To do so,
use the data2state command.

xf = data2state(sys,zA);

xf contains the state values of sys at the time instant immediately after the most recent data sample
in zA.

Simulate the system using xf as the initial states.

opt2 = simOptions('InitialCondition',xf);
ysim2 = sim(sys,uSim,opt2);

Plot the output of the sim command ysim and the manually computed results ysim2.

plot(ysim,'b',ysim2,'--r')
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ysim2 is the same as ysim.

Continue Simulation of an Identified Model using Past States

Estimate the initial conditions for a simulation segment of an identified model by using the end states
of the previous simulation segment.

Load data z1, which is an iddata object containing input and output data. Estimate a fifth-order
linear model from the data.

load iddata1 z1
plot(z1)
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sys = n4sid(z1,5);

Divide the data into two segments. One segment z1past represents data for a past simulation, and
starts at rest. The second segment z1next represents data for a follow-on simulation.

z1past = z1(1:150);
z1next = z1(150:300);

Simulate the response to the input data in z1next without specifying initial conditions.

ynext_no_ic = sim(z1next,sys);
plot(ynext_no_ic,z1next)
legend
title('Simulation Continuation Without Setting ICs')
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Now determine the end states, x0, for the response to z1past input.

[ypast,y_sd,xpast] = sim(z1past,sys);
x0 = xpast(end,:)';

Use the end states to specify the initial states for the follow-on response to z1next.

opt = simOptions('InitialCondition',x0);
ynext_ic = sim(z1next,sys,opt);
figure
plot(ynext_ic,z1next)
legend
title('Simulation Continuation with Sychronized ICs')
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Estimate Initial Conditions for Simulating Hammerstein-Wiener and
Nonlinear Grey-Box Models
When you are simulating a Hammerstein-Wiener or a nonlinear grey-box model and want to use initial
conditions consistent with a measurement data set z, use findstates.

Simulate Hammerstein-Wiener Model in Simulink

Compare the simulated output of a Hammerstein-Wiener Model block to the measured output of a
system. You improve the agreement between the measured and simulated responses by estimating
initial state values.

Load the sample data.

load twotankdata

Create an iddata object from the sample data. Set 'Tstart' to 0 so that the data start time
matches the Simulink start time 0f 0 s.

z1 = iddata(y,u,0.2,'Tstart',0,'Name','Two tank system');

Estimate a Hammerstein-Wiener model using the data.

mw1 = nlhw(z1,[1 5 3],pwlinear,pwlinear);
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You can now simulate the output of the estimated model in Simulink using the input data in z1. To do
so, open a preconfigured Simulink model.

model = 'ex_idnlhw_block';
open_system(model);

The model uses the Iddata Source, Hammerstein-Wiener Model, and Scope blocks. The following
block parameters have been preconfigured to specify the estimation data, estimated model, and
initial conditions:

Block parameters of Iddata Source block:

• IDDATA Object - z1

Block parameters of Hammerstein-Wiener Model block:

• Model - mw1
• Initial conditions - Zero (default)

Run the simulation.

View the difference between measured output and model output by using the Scope block.

simOut = sim(model);
open_system([model '/Scope'])
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To improve the agreement between the measured and simulated responses, estimate an initial state
vector for the model from the estimation data z1, using findstates. Specify the maximum number
of iterations for estimation as 100. Specify the prediction horizon as Inf, so that the algorithm
computes the initial states that minimize the simulation error.

opt = findstatesOptions;
opt.SearchOptions.MaxIterations = 100;
x0 = findstates(mw1,z1,Inf,opt);

Set the Initial conditions block parameter value of the Hammerstein-Wiener Model block to State
Values. The default initial states are x0.

set_param([model '/Hammerstein-Wiener Model'],'IC','State values');

Run the simulation again, and view the difference between measured output and model output in the
Scope block. The difference between the measured and simulated responses is now reduced.

simOut = sim(model);
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Estimate Initial Conditions for Simulating Nonlinear ARX Models
When you are simulating a nonlinear ARX model and want to use initial conditions consistent with a
measurement data set z, you have a choice for which approach to take.

• You can use findstates. For nonlinear ARX models however, this approach has the cost of being
computationally expensive if the data set is large.

X0 = findstates(m,z,Inf);

• You can break the data set into two portions. Use the first nx samples of the input/output data as
past data, where nx is the largest regressor delay in the model. Then use data2state to compute
the end state of the "past data." You are then able to simulate the model for the remaining nx
+1:end input data with whatever simulation approach you choose. Both compare and the System
Identification app use this approach automatically for nonlinear ARX models.

nx = max(getDelayInfo(m));  % Find the largest regressor delay
past_data = z1(1:nx);
X0 = data2state(mw1,z1(1:nx));
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The following example illustrates the use of split-data technique for a nonlinear ARX model.

Estimate Initial Conditions for a Nonlinear ARX Model

Use two different techniques to estimate the initial conditions for a nonlinear ARX model. Simulate
each alongside the measurement data, and compare with a simulation that initializes at rest.

Load the input/output data z and plot it. Use the first 1000 points of z to estimate a nonlinear ARX
model.

load twotankdata
z = iddata(y,u,0.2);
z1 = z(1:1000);
plot(z1)
title('Estimation data')

mdlnlarx = nlarx(z1,[5 1 3],wavenet);

Extract the first 250 points of z1 (50 seconds) as z1sim for comparison simulations. Simulate mdlarx
without setting initial conditions, and plot the response alongside the measured output in z1sim.

z1sim = z1(1:250);
data_no_ic = sim(mdlnlarx,z1sim);
plot(data_no_ic,z1sim)
title('Nonlinear ARX Model with No Initial Condition Setting')
grid on
legend('location','se')
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Use findstates to estimate the initial conditions. In order to minimize the simulation error, specify
Inf for the prediction horizon. Then set the sim option for InitialCondition to the findstates
results. Plot the response alongside the measured output.

x0fs = findstates(mdlnlarx,z1sim,Inf);
opt = simOptions('InitialCondition',x0fs);
data_fs = sim(mdlnlarx,z1sim,opt);
figure
plot(data_fs,z1sim)
title('Nonlinear ARX Model with IC Estimation Using findstates')
grid on
legend('location','se')
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The response and the measured output now start at roughly the same point.

Now use the data2states method to estimate the initial conditions. First, break the data set into
two portions. Use the first nx samples of z1sim as "past data", where nx is the largest regressor
delay in the model.

nx = max(getDelayInfo(mdlnlarx))

nx = 5

z1past = z1sim(1:nx);
z1sim2 = z1sim(nx+1:end);

Use data2state to compute the end state of the "past data." Simulate the response using input
starting at z1sim(nx+1). Plot the response alongside the full z1sim measurement data so that you
can compare with the findstates plot.

x0d2s = data2state(mdlnlarx,z1past);
opt = simOptions('InitialCondition',x0d2s);
data_d2s = sim(mdlnlarx,z1sim2,opt);
figure
plot(data_d2s,z1sim)
title('Nonlinear ARX Model with IC Estimation Using data2state')
grid on
legend('location','se')
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If you executed each section separately, you may find that the data2states method completed more
quickly than the findstates method.

Now compare the responses for all three initial-condition cases.

plot(data_fs,data_d2s,data_no_ic)
title('Nonlinear ARX model Responses for Three IC Approaches Compared')
legend('location','se')
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The responses for cases using findstates and data2state are virtually the same. The response
for the case where the initial conditions were not set converges eventually, but not until after 30
seconds.

See Also
compare | compareOptions | data2state | findstates | predict | predictOptions | sim |
simOptions

More About
• “Simulate Identified Model in Simulink” on page 20-5
• “Reproduce Command Line or System Identification App Simulation Results in Simulink” on

page 20-15
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Apply Initial Conditions when Simulating Identified Linear
Models

This example shows the workflow for obtaining and using estimated initial conditions when you
simulate models to validate model performance against measured data.

Use initial conditions (ICs) when you want to simulate a model in order to validate model
performance by comparing the simulated response to measured data. If your measurement data
corresponds to a system that does not start at rest, a simulation that assumes a resting start point
results in a mismatch. The simulated and measured responses do not agree at the beginning of the
simulation.

For state-space models, the initial state vector is sufficient to describe initial conditions. For other LTI
models, the initialCondition object allows you to represent ICs in the form of the free response
of your model to the initial conditions. This representation is in state-space form, as shown in the
following equation:

G s = C sI− A −1X0

Here, G s is the free response that the initialCondition encapsulates. A and C are the A and C
matrices of the state-space form of your model. X0 is the corresponding initial state vector. The free
response does not include B and D matrices because the IC free response is independent of input
signals. Although the initialCondition object packages the state-space form, you can use the
information to model a free response for any LTI system. The simulation software computes the free
and forced responses separately and then adds them together to obtain the total response.

Prepare Data

Load the data and split it into estimation and validation data sets. For this example, the splits occur
where the output data has a visibly nonzero start point.

load iddata2 z2
z2e = z2(10:210);
z2v = z2(210:400);
plot(z2e,z2v)
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Display the first output sample for each data set.

z2e.y(1)

ans = -5.9588

z2v.y(1)

ans = -9.2141

Estimate Transfer Function Model

Using the estimation data, estimate a second-order transfer function model and return the initial
condition ic. Display ic.

np = 2;
nz = 1;
[sys_tf,ic] = tfest(z2e,np,nz);
ic

ic = 
  initialCondition with properties:

     A: [2x2 double]
    X0: [2x1 double]
     C: [-1.6158 5.1969]
    Ts: 0
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ic represents the free response of the transfer function model, in state-space form, to the initial
condition.

A = ic.A

A = 2×2

   -3.4145   -5.6635
    4.0000         0

C = ic.C

C = 1×2

   -1.6158    5.1969

The X0 property contains the initial state vector.

X0 = ic.X0

X0 = 2×1

   -0.5053
   -1.2941

Simulate Model

Simulate the model. First, as a reference, simulate the model without incorporating ic. Plot the
simulated response with the estimation data.

y_no_ic = sim(sys_tf,z2e);
plot(y_no_ic,z2e)
legend('Model Response','Output Data')
title('Transfer Function Model - No IC Specification')
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The simulated and measured responses do not agree at the start of the simulation.

Incorporate ic. To do so, first initialize opt to the option set simOptions. Specify ic as the
'InitialCondition' setting. Simulate the model and plot the results.

opt = simOptions;
opt.InitialCondition = ic;
y_ic = sim(sys_tf,z2e,opt);
plot(y_ic,z2e)
legend('Model Response','Output Data')
title('Transfer Function Model - ICs Specified')
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The responses now agree more closely at the start of the simulation.

Obtain ICs for Validation Data

ic represents the ICs only for the estimation data set. If you want to run a simulation using the
validation inputs and compare the results with the validation output, you must obtain the ICs for the
validation data set. To do so, use compare. You can use compare to estimate ICs for any combination
of model and measurement data.

[yv,fitv,icv] = compare(z2v,sys_tf);
icv

icv = 
  initialCondition with properties:

     A: [2x2 double]
    X0: [2x1 double]
     C: [-1.6158 5.1969]
    Ts: 0

Display the A, C, and X0 properties of icv.

Av = icv.A

Av = 2×2

   -3.4145   -5.6635

 Apply Initial Conditions when Simulating Identified Linear Models

20-49



    4.0000         0

Cv = icv.C

Cv = 1×2

   -1.6158    5.1969

X0v = icv.X0

X0v = 2×1

    0.4512
   -1.5068

For this case, the A and C matrices representing the free-response model are identical to the ic.A
and ic.C values in the original estimation. However, the initial state vector X0v is different from
ic.X0.

Specify icv as the 'InitialCondition' setting in opt and simulate the model using the validation
data. Plot the simulated and measured responses.

opt.InitialCondition = icv;
y_ic = sim(sys_tf,z2v,opt);
plot(y_ic(:,:,[]),z2v(:,:,[]))
legend('Model Response','Output Data')
title('Transfer Function Model Response For Validation Data')
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The simulated and measured responses have good agreement at the start of the simulation.

Apply ICs to Simulation of Converted Model

You can apply the ICs when you convert your model to another form.

Convert sys_tf to an idpoly model. Simulate the converted model, preserving the current
SimOptions 'InitialCondition' setting, icv, in opt.

sys_poly = idpoly(sys_tf);
y_poly = sim(sys_poly,z2v,opt);
plot(y_poly(:,:,[]),y_ic(:,:,[]),z2v(:,:,[]))
legend('idpoly Model Response','idtf Model Response','Output Data')
title('Converted Polynomial Model')
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The sys_tf and sys_poly responses appear identical.

Apply ICs to Simulation of State-Space Model

State-space models can use initial conditions represented either by a single numeric initial state
vector or by an initialCondition object.

When you convert sys_tf to an idss model, you can again use icv by retaining the icv setting in
opt.

sys_ss = idss(sys_tf);
y_ss = sim(sys_ss,z2v,opt);
plot(y_ss(:,:,[]),z2v(:,:,[]))
legend('Model Response','Output Data')
title('Converted State-Space Model')
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When you use compare or a state-space estimation function such as ssest, the function returns the
initial state vector x0. Estimate the state-space model sys_ss2 using z2e and use compare to obtain
ICs corresponding to z2v.

sys_ss2 = ssest(z2e,2);
[yvss,fitvss,x0] = compare(z2v,sys_ss2);
x0

x0 = 2×1

   -0.1061
    0.0097

x0 is a numeric vector. Specify x0 as the 'InitialCondition' setting in opt and simulate the
response.

opt.InitialCondition = x0;
y_ss2 = sim(sys_ss2,z2v,opt);
plot(y_ss2(:,:,[]),z2v(:,:,[]))
legend('Model Response','Output Data')
title('State-Space Model Simulated with Initial State Vector')
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Convert State-Space Initial State Vector to initialCondition object

If your original model is a state-space model and you want to convert the model into a polynomial or
transfer function model and apply the same initial conditions, you must convert the initial state vector
into an initialCondition object.

Extract and display the A, C, and Ts properties from sys_ss2.

As = sys_ss2.A

As = 2×2

   -1.7643   -3.7716
    5.2918   -1.7327

Cs = sys_ss2.C

Cs = 1×2

   82.9765   25.5146

Tss = sys_ss2.Ts

Tss = 0

The A and C matrices that are estimated using ssest have different values than the A and C matrices
estimated in icv using tfest. There are infinitely many state-space representations of a given linear
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model. The two pairs of matrices, along with the associated initial state vectors, are equivalent and
produce the same free response.

Create the initialCondition object ic_ss2 using sys_ss2 model properties and the initial state
vector x0 you obtained when you used compare.

ic_ss2 = initialCondition(As,x0,Cs,Tss)

ic_ss2 = 
  initialCondition with properties:

     A: [2x2 double]
    X0: [2x1 double]
     C: [82.9765 25.5146]
    Ts: 0

Convert sys_ss2 into a transfer function model and simulate the converted model using ic_ss2 as
the 'InitialCondition' setting.

sys_tf2 = idtf(sys_ss2);
opt.InitialCondition = ic_ss2;
y_tf2 = sim(sys_tf2,z2v,opt);
plot(y_tf2(:,:,[]),z2v(:,:,[]))
legend('Model Response','Output Data')
title('Transfer Function Model Converted from State-Space Model')
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Using the constructed initialCondition object ic_ss2 produces a similar response to simulated
responses that use directly estimated initialCondition objects.

See Also
compare | idpoly | idss | initialCondition | sim | simOptions | ssest | tfest

More About
• “Estimate Initial Conditions for Simulating Identified Models” on page 20-26
• “Compare Simulated Output with Measured Validation Data” on page 17-23

20 System Identification Toolbox Blocks

20-56



System Identification App

• “Steps for Using the System Identification App” on page 21-2
• “Working with System Identification App” on page 21-3
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Steps for Using the System Identification App
A typical workflow in the System Identification app includes the following steps:

1 Import your data into the MATLAB workspace, as described in “Representing Data in MATLAB
Workspace” on page 2-8.

2 Start a new session in the System Identification app, or open a saved session. For more
information, see “Starting a New Session in the App” on page 21-3.

3 Import data into the app from the MATLAB workspace. For more information, see “Represent
Data”.

4 Plot and preprocess data to prepare it for system identification. For example, you can remove
constant offsets or linear trends (for linear models only), filter data, or select data regions of
interest. For more information, see “Preprocess Data”.

5 Specify the data for estimation and validation. For more information, see “Specify Estimation and
Validation Data in the App” on page 2-22.

6 Select the model type to estimate using the Estimate menu.
7 Validate models. For more information, see “Model Validation”.
8 Export models to the MATLAB workspace for further analysis. For more information, see

“Exporting Models from the App to the MATLAB Workspace” on page 21-8.
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Working with System Identification App

Starting and Managing Sessions
What Is a System Identification Session?

A session represents the total progress of your identification process, including any data sets and
models in the System Identification app.

You can save a session to a file with a .sid extension. For example, you can save different stages of
your progress as different sessions so that you can revert to any stage by simply opening the
corresponding session.

To start a new session, see “Starting a New Session in the App” on page 21-3.

For more information about the steps for using the System Identification app, see “Steps for Using
the System Identification App” on page 21-2.

Starting a New Session in the App

To start a new session in the System Identification app, type systemIdentification in the
MATLAB Command Window:

systemIdentification

Alternatively, you can start a new session by selecting the Apps tab of MATLAB desktop. In the Apps
section, click System Identification. This action opens the System Identification app.

Note Only one session can be open at a time.
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You can also start a new session by closing the current session using File > Close session. This
toolbox prompts you to save your current session if it is not already saved.

Description of the System Identification App Window

The following figure describes the different areas in the System Identification app.

The layout of the window organizes tasks and information from left to right. This organization follows
a typical workflow, where you start in the top-left corner by importing data into the System
Identification app using the Import data menu and end in the bottom-right corner by plotting the
characteristics of your estimated model on model plots. For more information about using the System
Identification app, see “Steps for Using the System Identification App” on page 21-2.

The Data Board area, located below the Import data menu in the System Identification app,
contains rectangular icons that represent the data you imported into the app.

The Model Board, located to the right of the <--Preprocess menu in the System Identification app,
contains rectangular icons that represent the models you estimated or imported into the app. You can
drag and drop model icons in the Model Board into open dialog boxes.

Opening a Saved Session

You can open a previously saved session using the following syntax:

systemIdentification(session,path)

session is the file name of the session you want to open and path is the location of the session file.
Session files have the extension .sid. When the session file in on the matlabpath, you can omit the
path argument.

If the System Identification app is already open, you can open a session by selecting File > Open
session.

Note If there is data in the System Identification app, you must close the current session before you
can open a new session by selecting File > Close session.

Saving, Merging, and Closing Sessions

The following table summarizes the menu commands for saving, merging, and closing sessions in the
System Identification app.

Task Command Comment
Close the current
session and start a
new session.

File > Close session You are prompted to save the current
session before closing it.

21 System Identification App

21-4



Task Command Comment
Merge the current
session with a
previously saved
session.

File > Merge session You must start a new session and import
data or models before you can select to
merge it with a previously saved session.
You are prompted to select the session
file to merge with the current. This
operation combines the data and the
models of both sessions in the current
session.

Save the current
session.

File > Save Useful for saving the session repeatedly
after you have already saved the session
once.

Save the current
session under a new
name.

File > Save As Useful when you want to save your work
incrementally. This command lets you
revert to a previous stage, if necessary.

Deleting a Session

To delete a saved session, you must delete the corresponding session file.

Managing Models
Importing Models into the App

You can import System Identification Toolbox models from the MATLAB workspace into the System
Identification app. If you have Control System Toolbox software, you can also import any models (LTI
objects) you created using this toolbox.

The following procedure assumes that you begin with the System Identification app already open. If
this window is not open, type the following command at the prompt:

systemIdentification

To import models into the System Identification app:

1 Select Import from the Import models list to open the Import Model Object dialog box.
2 In the Enter the name field, type the name of a model object. Press Enter.
3 (Optional) In the Notes field, type any notes you want to store with this model.
4 Click Import.
5 Click Close to close the Import Model Object dialog box.

Viewing Model Properties

You can get information about each model in the System Identification app by right-clicking the
corresponding model icon.

The Data/model Info dialog box opens. This dialog box describes the contents and the properties of
the corresponding model. It also displays any associated notes and the command-line equivalent of
the operations you used to create this model.
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Tip To view or modify properties for several models, keep this window open and right-click each
model in the System Identification app. The Data/model Info dialog box updates when you select each
model.

Renaming Models and Changing Display Color

You can rename a model and change its display color by double-clicking the model icon in the System
Identification app.

The Data/model Info dialog box opens. This dialog box describes both the contents and the properties
of the model. The object description area displays the syntax of the operations you used to create the
model in the app.

To rename the model, enter a new name in the Model name field.

You can also specify a new display color using three RGB values in the Color field. Each value is
between 0 to 1 and indicates the relative presence of red, green, and blue, respectively. For more
information about specifying default data color, see “Customizing the System Identification App” on
page 21-11.

Tip As an alternative to using three RGB values, you can enter any one of the following letters in
single quotes:

'y' 'r' 'b' 'c' 'g' 'm' 'k'

These represent yellow, red, blue, cyan, green, magenta, and black, respectively.

Finally, you can enter comments about the origin and state of the model in the Diary And Notes
area.

To view model properties in the MATLAB Command Window, click Present.

Organizing Model Icons

You can rearrange model icons in the System Identification app by dragging and dropping the icons
to empty Model Board rectangles.

Note You cannot drag and drop a model icon into the data area on the left.

When you need additional space for organizing model icons, select Options > Extra model/data
board in the System Identification app. This action opens an extra session window with blank
rectangles. The new window is an extension of the current session and does not represent a new
session.
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Tip When you import or estimate models and there is insufficient space for the icons, an additional
session window opens automatically.

You can drag and drop model icons between the main System Identification app and any extra session
windows.

Type comments in the Notes field to describe the models. When you save a session, as described in
“Saving, Merging, and Closing Sessions” on page 21-4, all additional windows and notes are also
saved.

Deleting Models in the App

To delete models in the System Identification app, drag and drop the corresponding icon into Trash.
You can also use the Delete key on your keyboard to move items to the Trash. Moving items to Trash
does not permanently delete these items.

To restore a model from Trash, drag its icon from Trash to the Model Board in the System
Identification app. You can view the Trash contents by double-clicking the Trash icon.

Note You must restore a model to the Model Board; you cannot drag model icons to the Data Board.

To permanently delete all items in Trash, select Options > Empty trash.
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Exiting a session empties Trash automatically.

Exporting Models from the App to the MATLAB Workspace

The models you create in the System Identification app are not available in the MATLAB workspace
until you export them. Exporting is necessary when you need to perform an operation on the model
that is only available at the command line. Exporting models to the MATLAB workspace also makes
them available to the Simulink software or another toolbox, such as the Control System Toolbox
product.

To export a model to the MATLAB workspace, do one of the following:

• Drag and drop the corresponding icon to the To Workspace rectangle.
• Right-click the icon to open the Data/model Info dialog box. Click Export to export the model.

When you export models to the MATLAB workspace, the resulting variables have the same name as in
the System Identification app.

Working with Plots
Identifying Data Sets and Models on Plots

You can identify data sets and models on a plot by color: the color of the line in the data or model icon
in the System Identification app matches the line color on the plots.

You can also display data tips for each line on the plot by clicking a plot curve and holding down the
mouse button.

Note You must disable zoom by selecting Style > Zoom before you can display data tips. For more
information about enabling zoom, see “Magnifying Plots” on page 21-9.

The following figure shows an example of a data tip, which contains the name of the data set and the
coordinates of the data point.
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Data Tip on a Plot

Changing and Restoring Default Axis Limits

There are two ways to change which portion of the plot is currently in view:

• Magnifying plots
• Setting axis limits

Magnifying Plots

Enable zoom by selecting Style > Zoom in the plot window. To disable zoom, select Style > Zoom
again.

Tip To verify that zoom is active, click the Style menu. A check mark should appear next to Zoom.

You can adjust magnification in the following ways:

• To zoom in default increments, left-click the portion of the plot you want to center in the plot
window.

• To zoom in on a specific region, click and drag a rectangle that identifies the region for
magnification. When you release the mouse button, the selected region is displayed.

• To zoom out, right-click on the plot.

Note To restore the full range of the data in view, select Options > Autorange in the plot window.

Setting Axis Limits

You can change axis limits for the vertical and the horizontal axes of the input and output channels
that are currently displayed on the plot.
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1 Select Options > Set axes limits to open the Limits dialog box.
2 Specify a new range for each axis by editing its lower and upper limits. The limits must be

entered using the format [LowerLimit UpperLimit]. Click Apply. For example:

[0.1 100]

Note To restore full axis limits, select the Auto check box to the right of the axis name, and click
Apply.

3 To plot data on a linear scale, clear the Log check box to the right of the axis name, and click
Apply.

Note To revert to base-10 logarithmic scale, select the Log check box to the right of the axis
name, and click Apply.

4 Click Close.

Note To view the entire data range, select Options > Autorange in the plot window.

Selecting Measured and Noise Channels in Plots

Model inputs and outputs are called channels. When you create a plot of a multivariable input-output
data set or model, the plot only shows one input-output channel pair at a time. The selected channel
names are displayed in the title bar of the plot window.

Note When you select to plot multiple data sets, and each data set contains several input and output
channels, the Channel menu lists channel pairs from all data sets.

You can select a different input-output channel pair from the Channel menu in any System
Identification Toolbox plot window.

The Channel menu uses the following notation for channels: u1->y2 means that the plot displays a
transfer function from input channel u1 to output channel y2. System Identification Toolbox
estimates as many noise sources as there are output channels. In general, e@ynam indicates that the
noise source corresponds to the output with name ynam.

For example, e@y3->y1 means that the transfer function from the noise channel (associated with y3)
to output channel y2 is displayed. For more information about noise channels, see “Separation of
Measured and Noise Components of Models” on page 4-33.

Tip When you import data into the System Identification app, it is helpful to assign meaningful
channel names in the Import Data dialog box. For more information about importing data, see
“Represent Data”.

Grid and Line Styles in Plots

There are several Style options that are common to all plot types.
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Grid Lines

To toggle showing or hiding grid lines, select Style > Grid.

Solid or Dashed Lines

To display currently visible lines as a combination of solid, dashed, dotted, and dash-dotted line style,
select Style > Separate linestyles.

To display all solid lines, select Style > All solid lines. This choice is the default.

All line styles match the color of the corresponding data or model icon in the System Identification
app.

Opening a Plot in a MATLAB Figure Window

The MATLAB Figure window provides editing and printing commands for plots that are not available
in the System Identification Toolbox plot window. To take advantage of this functionality, you can first
create a plot in the System Identification app, and then open it in a MATLAB Figure window to fine-
tune the display.

After you create the plot, as described in “Plot Models in the System Identification App” on page 17-5,
select File > Copy figure in the plot window. This command opens the plot in a MATLAB Figure
window.

Printing Plots

To print a System Identification Toolbox plot, select File > Print in the plot window. In the Print
dialog box, select the printing options and click OK.

Customizing the System Identification App
Types of App Customization

The System Identification app lets you customize the window behavior and appearance. For example,
you can set the size and position of specific dialog boxes and modify the appearance of plots.

You can save the session to save the customized app state.

You might choose to edit the file that controls default settings, as described in “Modifying idlayout.m”
on page 21-12 (advanced usage).

Saving Session Preferences

Use Options > Save preferences to save the current state of the System Identification app. This
command saves the following settings to a preferences file, idprefs.mat:

• Size and position of the System Identification app
• Sizes and positions of dialog boxes
• Four recently used sessions
• Plot options, such as line styles, zoom, grid, and whether the input is plotted using zero-order hold

or first-order hold between samples

You can only edit idprefs.mat by changing preferences in the app.
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The idprefs.mat file is located in the same folder as startup.m, by default. To change the location
where your preferences are saved, use the midprefs command with the new path as the argument.
For example:

midprefs('c:\matlab\toolbox\local\')

You can also type midprefs and browse to the desired folder.

To restore the default preferences, select Options > Default preferences.

Modifying idlayout.m

You might want to customize the default plot options by editing idlayout.m (advanced usage).

To customize idlayout.m defaults, save a copy of idlayout.m to a folder in your matlabpath just
above the ident folder level.

Caution Do not edit the original file to avoid overwriting the idlayout.m defaults shipped with the
product.

You can customize the following plot options in idlayout.m:

• Order in which colors are assigned to data and model icons
• Line colors on plots
• Axis limits and tick marks
• Plot options, set in the plot menus
• Font size

Note When you save preferences using Options > Save preferences to idprefs.mat, these
preferences override the defaults in idlayout.m. To give idlayout.m precedence every time you
start a new session, select Options > Default preferences.
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Initial Conditions
Specify initial conditions for the system under Systems. To see the choices, click the entry under
Initial Conditions. You can select one of the following options.

• Estimate — Estimate initial conditions such that the prediction error for observed output is
minimized.

• Zero — Zero initial conditions.
• Absorb Delays and Estimate — Similar to Estimate, but this option also absorbs nonzero

delays into the model coefficients. The software converts delays into explicit model states, and
estimates and returns the initial values of those states.

Use this option for linear models only.
• Custom — Specify the initial conditions. Use this option when you already know or have an

estimate for the initial conditions. Specify a column vector of length equal to the order of the
model.

For nonlinear grey-box models, when you select Estimate, the software estimates only those initial
states i that are designated as free in the model, as indicated by the property
sys.InitialStates(i).Fixed equal to false. To estimate all the states of the model, first
specify all the Nx states of the idnlgrey model sys as free.

for i = 1:Nx
sys.InitialStates(i).Fixed = false;
end 

Similarly, to fix all the initial states to values specified in sys.InitialStates, first specify all the
states as fixed in the sys.InitialStates property of the nonlinear grey-box model.

When you have completed your selection, regenerate the response plot by clicking Simulate.
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Time Series Prediction and Forecasting for Prognosis
This example shows how to create a time series model and use the model for prediction, forecasting,
and state estimation. The measured data is from an induction furnace whose slot size erodes over
time. The slot size cannot be measured directly but the furnace current and consumed power are
measured. It is known that as the slot size increases, the slot resistance decreases. The ratio of
measured current squared to measured power is thus proportional to the slot size. You use the
measured current-power ratio (both current and power measurements are noisy) to create a time
series model and use the model to estimate the current slot size and forecast the future slot size.
Through physical inspection the induction furnace slot size is known at some points in time.

Load and Plot the Measured Data

The measured current-power ratio data is stored in the iddata_TimeSeriesPrediction MATLAB
file. The data is measured at hourly intervals and shows that over time the ratio increases indicating
erosion of the furnace slot. You develop a time series model using this data. Start by separating the
data into an identification and a validation segment.

load iddata_TimeSeriesPrediction
n = numel(y);
ns = floor(n/2);
y_id = y(1:ns,:);
y_v = y((ns+1:end),:);
data_id = iddata(y_id, [], Ts, 'TimeUnit', 'hours');
data_v  = iddata(y_v, [], Ts, 'TimeUnit', 'hours', 'Tstart', ns+1);

plot(data_id,data_v)
legend('Identification data','Validation data','location','SouthEast');
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Model Identification

The slot erosion can be modelled as a state-space system with noise input and measured current-
power ratio as output. The measured current-power ratio is proportional to the system state, or

Where  the state vector, contains the slot size;  is the measured current-power ratio;  noise and
 are to be identified.

Use the ssest() command to identify a discrete state-space model from the measured data.

sys = ssest(data_id,1,'Ts',Ts,'form','canonical')

sys =
  Discrete-time identified state-space model:
    x(t+Ts) = A x(t) + K e(t)
       y(t) = C x(t) + e(t)
 
  A = 
          x1
   x1  1.001
 
  C = 
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       x1
   y1   1
 
  K = 
            y1
   x1  0.09465
 
Sample time: 1 hours
  
Parameterization:
   CANONICAL form with indices: 1.
   Disturbance component: estimate
   Number of free coefficients: 2
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                             
Estimated using SSEST on time domain data "data_id".
Fit to estimation data: 67.38% (prediction focus)   
FPE: 0.09575, MSE: 0.09348                          

The identified model minimizes the 1-step ahead prediction. Validate the model using a 10 step ahead
predictor, i.e., given  use the model to predict . Note that the error between the
measured and predicted values, , are used to make the  prediction.

Use the 10 step ahead predictor for the identification data and the independent validation data.

nstep = 10;
compare(sys,data_id,nstep)  % comparison of 10-step prediction to estimation data
grid('on');
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figure; compare(sys,data_v,nstep)  % comparison to validation data
grid('on');
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The above exercise Both data sets show that the predictor matches the measured data.

Forecasting is used to further verify the model. Forecasting uses the measured data record
 to compute the model state at time step n. This value is used as initial condition for

forecasting the model response for a future time span. We forecast the model response over the time
span of the validation data and then compare the two. We can also compute the uncertainty in
forecasts and plot +/- 3 sd of their values.

MeasuredData = iddata(y, [], Ts, 'TimeUnit', 'hours'); % = [data_id;data_v]
t0 = MeasuredData.SamplingInstants;

Horizon = size(data_v,1); % forecasting horizon
[yF, ~, ~, yFSD]  = forecast(sys, data_id, Horizon);
% Note: yF is IDDATA object while yFSD is a double vector
t = yF.SamplingInstants; % extract time samples
yFData = yF.OutputData;      % extract response as double vector
plot(MeasuredData)
hold on
plot(t, yFData, 'r.-', t, yFData+3*yFSD, 'r--', t, yFData-3*yFSD, 'r--')
hold off
title('Forecasted response over the validation data''s time span')
grid on
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The plot shows that the model response with confidence intervals (indicated by the red colored
dashed curves) overlap the measured value for the validation data. The combined prediction and
forecasting results indicate that the model represents the measured current-power ratio.

The forecasting results also show that over large horizons the model variance is large and for
practical purposes future forecasts should be limited to short horizons. For the induction furnace
model a horizon of 200 hours is appropriate.

Finally we use the model to forecast the response 200 steps into future for the time span of 502-701
hours.

Horizon = 200; % forecasting horizon
[yFuture, ~, ~, yFutureSD] = forecast(sys, MeasuredData, Horizon);
t = yFuture.SamplingInstants; % extract time samples
yFutureData = yFuture.OutputData;      % extract response as double vector
plot(t0, y,...
   t, yFutureData, 'r.-', ...
   t, yFutureData+3*yFutureSD, 'r--', ...
   t, yFutureData-3*yFutureSD, 'r--')
title('Forecasted response (200 steps)')
grid on
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The blue curve shows the measured data that spans over 1-501 hours. The red curve is the forecasted
response for 200 hours beyond the measured data's time range. The red dashed curves shows the 3
sd uncertainty in the forecasted response based on random sampling of the identified model.

State Estimation

The identified model matches the measured current-power ratio but we are interested in the furnace
slot size which is a state in the model. The identified model has an arbitrary state that can be
transformed so that the state has meaning, in this case the slot size.

Create a predictor for the arbitrary state. The identified model covariances need to be translated to
the predictor model using the translatecov() command. The createPredictor() function
simply extracts the third output argument of the predict() function to be used with
translatecov().

type createPredictor
est = translatecov(@(s) createPredictor(s,data_id),sys)

function pred = createPredictor(mdl,data)
%CREATEPREDICTOR Return 1-step ahead predictor.
%
%   sys = createPredictor(mdl,data)
%
%   Create a 1-step ahead predictor model sys for the specified model mdl
%   and measured data. The function is used by
%   |TimeSeriedPredictionExample| and the |translatecov()| command to
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%   translate the identified model covariance to the predictor.

% Copyright 2015 The MathWorks, Inc.
[~,~,pred] = predict(mdl,data,1);

est =
  Discrete-time identified state-space model:
    x(t+Ts) = A x(t) + B u(t)
       y(t) = C x(t) + D u(t)
 
  A = 
           x1
   x1  0.9064
 
  B = 
            y1
   x1  0.09465
 
  C = 
       x1
   y1   1
 
  D = 
       y1
   y1   0
 
Sample time: 1 hours
  
Parameterization:
   CANONICAL form with indices: 1.
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 2
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

The model est is a 1-step ahead predictor expressed in the same state coordinates as the original
model sys. How do we transform the state coordinates so that the model's state corresponds to the
(time dependent) slot size? The solution is to rely on actual, direct measurements of the slot size
taken intermittently. This is not uncommon in practice where the cost of taking direct measurements
is high and only be done periodically (such as when the component is being replaced).

Specifically, transform the predictor state, , to , so that  where  the measured current-
power ratio, and  is the furnace slot size. In this example, four direct measurements of the furnace
slot size, sizeMeasured, and furnace current-power ratio, ySizeMeasured, are used to estimate .
In transforming the predictor the predictor covariances also need to be transformed. Hence we use
the translatecov() command to carry out the state coordinate transformation.

Cnew = sizeMeasured\ySizeMeasured;
est  = translatecov(@(s) ss2ss(s,s.C/Cnew),est)

est =
  Discrete-time identified state-space model:
    x(t+Ts) = A x(t) + B u(t)
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       y(t) = C x(t) + D u(t)
 
  A = 
           x1
   x1  0.9064
 
  B = 
           y1
   x1  0.9452
 
  C = 
           x1
   y1  0.1001
 
  D = 
       y1
   y1   0
 
Sample time: 1 hours
  
Parameterization:
   CANONICAL form with indices: 1.
   Feedthrough: none
   Disturbance component: none
   Number of free coefficients: 2
   Use "idssdata", "getpvec", "getcov" for parameters and their uncertainties.

Status:                                                         
Created by direct construction or transformation. Not estimated.

The predictor is now expressed in the desired state coordinates. It has one input that is the measured
system output (the furnace current-power ratio) and one output that is the predicted system output
(the furnace slot size). The predictor is simulated to estimate the system output and system state.

opts = simOptions;
opts.InitialCondition = sizeMeasured(1);
U = iddata([],[data_id.Y; data_v.Y],Ts,'TimeUnit','hours');
[ye,ye_sd,xe] = sim(est,U,opts);

Compare the estimated output and slot size with measured and known values.

yesdp   = ye;
yesdp.Y = ye.Y+3*ye_sd;
yesdn   = ye;
yesdn.Y = ye.Y-3*ye_sd;
n = numel(xe);
figure, plot([data_id;data_v],ye,yesdp,'g',yesdn,'g')
legend('Measured output','Estimated output','99.7% bound','location','SouthEast')
grid('on')
figure, plot(tSizeMeasured,sizeMeasured,'r*',1:n,xe,1:n,yesdp.Y/est.C,'g',1:n,yesdn.Y/est.C,'g');
legend('Measured state','Estimated state','99.7% bound','location','SouthEast')
xlabel('Time (hours)')
ylabel('Amplitude');
grid('on')
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Using Prediction and Forecasting for Prognosis

The combination of predictor model and forecasting allow us to perform prognosis on the induction
furnace.

The predictor model allows us to estimate the current furnace slot size based on measured data. If
the estimated value is at or near critical values an inspection or maintenance can be scheduled.
Forecasting allows us to, from the estimated current state, predict the future system behaviour
allowing us to predict when an inspection or maintenance may be needed.

Further the predictor and forecast model can be re-identified as more data becomes available. In this
example one data set was used to identify the predictor and forecast models but as more data is
accumulated the models can be re-identified.

See Also
compare | forecast | predict

More About
• “Forecast Multivariate Time Series” on page 17-25
• “Introduction to Forecasting of Dynamic System Response” on page 14-33
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